

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Beginning
Android™ ApplicAtion development

introduction .xv

Getting Started with Android ProgrammingchApter 1 . 1

Activities and IntentschApter 2 . 27

Getting to Know the Android User InterfacechApter 3 . 81

Designing Your User Interface Using ViewschApter 4 . 125

Displaying Pictures and Menus with ViewschApter 5 . 169

Data PersistencechApter 6 . 203

Content ProviderschApter 7 . 237

Messaging and NetworkingchApter 8 . 263

Location-Based ServiceschApter 9 . 301

Developing Android ServiceschApter 10 . 331

Publishing Android ApplicationschApter 11 . 359

Using Eclipse for Android DevelopmentAppendix A . 381

Using the Android EmulatorAppendix B . 393

Answers to ExercisesAppendix c .411

index . 415

Beginning

Android™ Application development

Wei-Meng Lee

Beginning Android™ Application Development

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-01711-1
ISBN: 978-1-118-08729-9 (ebk)
ISBN: 978-1-118-08749-7 (ebk)
ISBN: 978-1-118-08780-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for dam-
ages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the organization or Web
site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work
may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011921777

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in
this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

To my family:

Thanks for the understanding and support while I

worked on getting this book ready! I love you all!

—Wei-Meng Lee

executive editor
Robert Elliott

Senior project editor
Ami Frank Sullivan

technicAl editor
Kunal Mittal

production editor
Kathleen Wisor

copy editor
Luann Rouff

editoriAl director
Robyn B . Siesky

editoriAl mAnAger
Mary Beth Wakefield

FreelAncer editoriAl mAnAger
Rosemarie Graham

ASSociAte director oF mArketing
David Mayhew

production mAnAger
Tim Tate

vice preSident And
executive group puBliSher
Richard Swadley

vice preSident And
executive puBliSher
Barry Pruett

ASSociAte puBliSher
Jim Minatel

project coordinAtor, cover
Katie Crocker

compoSitor
James D . Kramer,
Happenstance Type-O-Rama

prooFreAder
Nancy Carrasco

indexer
Robert Swanson

cover deSigner
Michael E . Trent

cover imAge
© Viktoriya Sukhanova/istockphoto .com

creditS

ABout the Author

Wei-meng lee is a technologist and founder of Developer Learning Solutions (www.learn2develop.net),
a technology company specializing in hands-on training on the latest mobile technologies. Wei-Meng
has many years of training experience, and his training courses place special emphasis on the learning-
by-doing approach. This hands-on approach to learning programming makes understanding the subject
much easier than reading books, tutorials, and documentation.

Wei-Meng is also the author of Beginning iOS 4 Application Development (Wrox), along with sev-
eral other Wrox titles. You can contact Wei-Meng at weimenglee@learn2develop.net.

ABout the technicAl editor

kunAl mittAl serves as an Executive Director of Technology at Sony Pictures Entertainment where
he is responsible for the SOA, Identity Management, and Content Management programs. Kunal is
an entrepreneur who helps startups define their technology strategy, product roadmap, and develop-
ment plans. He generally works in an Advisor or Consulting CTO capacity, and serves actively in the
Project Management and Technical Architect functions.

He has authored, and edited several books and articles on J2EE, Cloud Computing, and mobile tech-
nologies. He holds a Master’s degree in Software Engineering and is an instrument-rated private pilot.

http://www.learn2develop.net
mailto:weimenglee@learn2develop.net

AcknoWledgmentS

every time i FiniSh A Book project, I always tell myself that this will be the last book that I ever
write. That’s because writing books is such a time-consuming and laborious effort. However, when
you receive e-mail messages from readers who want to thank you for helping them learn a new tech-
nology, all the frustrations disappear.

Sure enough, when I finished my previous book on iOS programming, I immediately signed on to
do another book — this time about Android. Although you only see the author’s name on the book
cover, a lot of people actually worked behind the scenes to make it possible. And now that the
book is finally done, it is time to thank a number of those people.

First, a huge thanks to Ami Sullivan, my editor, who is always a pleasure to work with. I cannot
believe that we have already worked on three books together in such a short duration (only one year)
and this is our fourth book! When I hear that Ami is going to be my editor, I know the project is
in good hands. Thanks for the guidance, Ami; and thank you for your patience during those times
when it seemed like the book was never going to be finished on schedule!

I should not forget the heroes behind the scene: copy editor Luann Rouff and technical editor Kunal
Mittal. They have been eagle-eye editing the book, making sure that every sentence makes sense —
both grammatically as well as technically. Thanks, Luann and Kunal!

I also want to take this chance to thank my editor at MobiForge.com, Ruadhan O'Donoghue, who has
always been very supportive of my articles. He is always receptive of my ideas and has always been
understanding when my schedule falls behind. Thanks for maintaining such a great site, Ruadhan!

Last, but not least, I want to thank my parents, and my wife, Sze Wa, for all the support they have
given me. They selflessly adjusted their schedules to accommodate mine when I was working on this
book. My wife, as always, stayed up late with me on numerous nights as I furiously worked to meet
the deadlines, and for this I am very grateful. Finally, to our lovely dog, Ookii, thanks for staying by
our side. (For those readers who do not know who Ookii is, you can find two pictures of her in this
book. I will leave finding them as an extra exercise for you!)

contentS

IntroductIon xv

getting StArted With Android progrAmming chApter 1: 1

What is Android? 2
Android Versions 2

Features of Android 3

Architecture of Android 3

Android Devices in the Market 4

The Android Market 6

Obtaining the Required Tools 6
Eclipse 7

Android SDK 7

Android Development Tools (ADT) 7

Creating Android Virtual Devices (AVDs) 11

Creating Your First Android Application 14

Anatomy of an Android Application 22

Summary 25

ActivitieS And intentS 2chApter 2: 7

Understanding Activities 27
Applying Styles and Themes to Activity 32

Hiding the Activity Title 33

Displaying a Dialog Window 34

Displaying a Progress Dialog 39

Linking Activities Using intents 43
Resolving Intent Filter Collision 48

Returning Results from an Intent 50

Passing Data Using an Intent Object 54

Calling Built-in Applications Using intents 56
Understanding the Intent Object 64

Using Intent Filters 65

Adding Categories 71

Displaying notifications 73
Summary 78

x

COnTenTS

getting to knoW the Android uSer interFAce chApter 3: 81

Understanding the Components of a Screen 81
Views and ViewGroups 82

LinearLayout 83

AbsoluteLayout 87

TableLayout 89

RelativeLayout 91

FrameLayout 93

ScrollView 95

Adapting to Display Orientation 97
Anchoring Views 98

Resizing and Repositioning 101

Managing Changes to Screen Orientation 104
Persisting State Information during Changes in Configuration 108

Detecting Orientation Changes 109

Controlling the Orientation of the Activity 110

Creating the User interface Programmatically 111
Listening for Ui notifications 114

Overriding Methods Defined in an Activity 114

Registering Events for Views 119

Summary 122

deSigning your uSer interFAce uSing vieWS chApter 4: 125

Basic Views 126
TextView View 126

Button, ImageButton, EditText, CheckBox, ToggleButton, RadioButton,
and RadioGroup Views 127

ProgressBar View 135

AutoCompleteTextView View 141

Picker Views 144
TimePicker View 144

Displaying the TimePicker in a Dialog Window 147

DatePicker View 149

Displaying the DatePicker View in a Dialog Window 153

List Views 156
ListView View 156

Customizing the ListView 159

Using the Spinner View 162

Summary 166

xi

COnTenTS

diSplAying pictureS And menuS With vieWS chApter 5: 169

Using image Views to Display Pictures 169
Gallery and ImageView Views 170

ImageSwitcher 177

GridView 181

Using Menus with Views 185
Creating the Helper Methods 186

Options Menu 188

Context Menu 190

Some Additional Views 193
AnalogClock and DigitalClock Views 194

WebView 194

Summary 200

dAtA perSiStence 20chApter 6: 3

Saving and Loading User Preferences 203
Using getSharedPreferences() 204

Using getPreferences() 208

Persisting Data to Files 209
Saving to Internal Storage 209

Saving to External Storage (SD Card) 214

Choosing the Best Storage Option 216

Using Static Resources 217

Creating and Using Databases 218
Creating the DBAdapter Helper Class 218

Using the Database Programmatically 224

Adding Contacts 224

Retrieving All the Contacts 225

Retrieving a Single Contact 226

Updating a Contact 227

Deleting a Contact 228

Upgrading the Database 230

Pre-Creating the Database 230

Bundling the Database with an Application 231

Summary 234

content providerS 23chApter 7: 7

Sharing Data in Android 237
Using a Content Provider 238

Predefined Query String Constants 243

xii

COnTenTS

Projections 246

Filtering 246

Sorting 247

Creating Your Own Content Providers 247
Using the Content Provider 256

Summary 260

meSSAging And netWorking 26chApter 8: 3

SMS Messaging 263
Sending SMS Messages Programmatically 264

Getting Feedback After Sending the Message 267

Sending SMS Messages Using Intent 269

Receiving SMS Messages 270

Updating an Activity from a BroadcastReceiver 273

Invoking an Activity from a BroadcastReceiver 277

Caveats and Warnings 280

Sending e-Mail 281
networking 284

Downloading Binary Data 286

Downloading Text Files 288

Accessing Web Services 291

Performing Asynchronous Calls 296

Summary 297

locAtion-BASed ServiceS 3chApter 9: 01

Displaying Maps 302
Creating the Project 302

Obtaining the Maps API Key 303

Displaying the Map 305

Displaying the Zoom Control 308

Changing Views 310

Navigating to a Specific Location 312

Adding Markers 315

Getting the Location That Was Touched 318

Geocoding and Reverse Geocoding 320

getting Location Data 322
Monitoring a Location 327

Summary 327

xiii

COnTenTS

developing Android ServiceS 3chApter 10: 31

Creating Your Own Services 331
Performing Long-Running Tasks in a Service 336

Performing Repeated Tasks in a Service 341

Executing Asynchronous Tasks on
Separate Threads Using IntentService 343

Communicating between a Service and an Activity 346
Binding Activities to Services 350
Summary 356

puBliShing Android ApplicAtionS 35chApter 11: 9

Preparing for Publishing 359
Versioning 360

Digitally Signing Your Android Applications 362

Deploying APK Files 367
Using the adb .exe Tool 367

Using a Web Server 369

Publishing on the Android Market 372

Creating a Developer Profile 372

Submitting Your Apps 373

Summary 378

uSing eclipSe For Android development 3Appendix A: 81

getting Around in eclipse 381
Workspaces 381

Package Explorer 382

Using Projects from Other Workspaces 383

Editors 385

Perspectives 387

Auto Import of Namespaces 387

Code Completion 388

Refactoring 388

Debugging 389
Setting Breakpoints 389

Exceptions 390

uSing the Android emulAtor 39Appendix B: 3

Uses of the Android emulator 393
installing Custom AVDs 393

xiv

COnTenTS

emulating Real Devices 398
SD Card emulation 399
emulating Devices with Different Screen Sizes 401
emulating Physical Capabilities 402
Sending SMS Messages to the emulator 403
Making Phone Calls 406
Transferring Files into and out of the emulator 407
Resetting the emulator 409

AnSWerS to exerciSeS Appendix c: 411

Chapter 1 Answers 411
Chapter 2 Answers 411
Chapter 3 Answers 412
Chapter 4 Answers 412
Chapter 5 Answers 412
Chapter 6 Answers 413
Chapter 7 Answers 413
Chapter 8 Answers 413
Chapter 9 Answers 413
Chapter 10 Answers 414
Chapter 11 Answers 414

Index 415

introduction

i FirSt StArted plAying With the Android Sdk before it was offi cially released as version 1.0. Back
then, the tools were unpolished, the APIs in the SDK were unstable, and the documentation was sparse.
Fast forward two and a half years, Android is now a formidable mobile operating system, with a fol-
lowing no less impressive than the iPhone. Having gone through all the growing pains of Android, I
think now is the best time to start learning about Android programming — the APIs have stabilized,
and the tools have improved. But one challenge remains: getting started is still an elusive goal for many.
It was with this challenge in mind that I was motivated to write this book, one that could benefi t begin-
ning Android programmers and enable them to write progressively more sophisticated applications.

As a book written to help jump-start beginning Android developers, it covers the necessary topics in
a linear manner so that you can build on your knowledge without being overwhelmed by the details.
I adopt the philosophy that the best way to learn is by doing — hence the numerous Try It Out sec-
tions in each chapter, which fi rst show you how to build something and then explain how everything
works.

Although Android programming is a huge topic, my aim for this book is threefold: to get you started
with the fundamentals, to help you understand the underlying architecture of the SDK, and to appre-
ciate why things are done in certain ways. It is beyond the scope of any book to cover everything
under the sun related to Android programming, but I am confi dent that after reading this book (and
doing the exercises), you will be well equipped to tackle your next Android programming challenge.

Who thiS Book iS For

This book is targeted for the beginning Android developer who wants to start developing applications
using Google’s Android SDK. To truly benefi t from this book, you should have some background in
programming and at least be familiar with object-oriented programming concepts. If you are totally
new to Java — the language used for Android development — you might want to take a programming
course in Java programming fi rst, or grab one of many good books on Java programming. In my expe-
rience, if you already know C# or VB.NET, learning Java is not too much of an effort; you should be
comfortable just following along with the Try It Outs.

For those totally new to programming, I know the lure of developing mobile apps and making some
money is tempting. However, before attempting to try out the examples in this book, I think a better
starting point would be to learn the basics of programming fi rst.

NOTE All the examples discussed in this book were written and tested using version
2.3 of the Android SDK. While every e� ort is made to ensure that all the tools used
in this book are the latest, it is always possible that by the time you read this book,
a newer version of the tools may be available. If so, some of the instructions and/or
screenshots may di� er slightly. However, any variations should be manageable.

xvi

introduction

WhAt thiS Book coverS

This book covers the fundamentals of Android programming using the Android SDK. It is divided
into 11 chapters and three appendices.

Chapter 1: Getting Started with Android Programming covers the basics of the Android OS and its
current state. You will learn about the features of Android devices, as well as some of the popular
devices in the market. You will then learn how to download and install all the required tools to
develop Android applications and then test them on the Android Emulator.

Chapter 2: Activities and Intents gets you acquainted with the two fundamental concepts in Android
programming: activities and intents. Activities are the building blocks of an Android application. You
will learn how to link activities together to form a complete Android application using intents, the
glue to links activities and one of the unique characteristics of the Android OS.

Chapter 3: Getting to Know the Android User Interface covers the various components that make up
the UI of an Android application. You will learn about the various layouts you can use to build the UI
of your application, and the numerous events that are associated with the UI when users interact with
the application.

Chapter 4: Designing Your User Interface Using Views walks you through the various basic views
you can use to build your Android UI. You will learn three main groups of views: basic views, picker
views, and list views.

Chapter 5: Displaying Pictures and Menus with Views continues the exploration of views. Here, you
will learn how to display images using the various image views, as well as display options and con-
text menus in your application. This chapter ends with some additional cool views that you can use
to spice up your application.

Chapter 6: Data Persistence shows you how to save, or store, data in your Android application. In
addition to learning the various techniques to store user data, you will also learn file manipulation
and how to save files onto internal and external storage (SD card). In addition, you will learn how to
create and use a SQLite database in your Android application.

Chapter 7: Content Providers discusses how data can be shared among different applications on an
Android device. You will learn how to use a content provider and then build one yourself.

Chapter 8: Messaging and Networking explores two of the most interesting topics in mobile pro-
gramming — sending SMS messages and network programming. You will learn how to programmat-
ically send and receive SMS and e-mail messages; and how to connect to web servers to download
data. Finally, you will see how Web services can be consumed in an Android application.

Chapter 9: Location-Based Services demonstrates how to build a location-based service application
using Google Maps. You will also learn how to obtain geographical location data and then display
the location on the map.

Chapter 10: Developing Android Services shows you how you can write applications using services.
Services are background applications that run without a UI. You will learn how to run your services asyn-
chronously on a separate thread, and how your activities can communicate with them.

xvii

introduction

Chapter 11: Publishing Android Applications discusses the various ways you can publish your Android
applications when you are ready. You will also learn about the steps to publishing and selling your appli-
cations on the Android Market.

Appendix A: Using Eclipse for Android Development provides a brief overview of the many features
in Eclipse.

Appendix B: Using the Android Emulator provides some tips and tricks on using the Android Emulator
for testing your applications.

Appendix C: Answers to Exercises contains the solutions to the end-of-chapter exercises found in
every chapter.

hoW thiS Book iS Structured

This book breaks down the task of learning Android programming into several smaller chunks, enabling
you to digest each topic before delving into a more advanced one.

If you are a total beginner to Android programming, start with Chapter 1 first. Once you have familiar-
ized yourself with the basics, head over to the appendixes to read more about Eclipse and the Android
Emulator. When you are ready, continue with Chapter 2 and gradually move into more advanced topics.

A feature of this book is that all the code samples in each chapter are independent of those discussed
in previous chapters. That way, you have the flexibility to dive into the topics that interest you and
start working on the Try It Out projects.

WhAt you need to uSe thiS Book

All the examples in this book run on the Android Emulator (which is included as part of the Android
SDK). However, to get the most out of this book, having a real Android device would be useful
(though not absolutely necessary).

conventionS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout the book.

These Are exercises or examples for You to Followtry it out

The Try It Out sections appear once or more per chapter. These are exercises to work through as you
follow the related discussion in the text.

 1 . They consist of a set of numbered steps.

 2 . Follow the steps with your copy of the project files.

xviii

introduction

How It Works

After each Try It Out, the code you’ve typed is explained in detail.

As for other conventions in the text:

New terms and important words are ➤➤ highlighted in italics when fi rst introduced.

Keyboard combinations are treated like this: Ctrl+R.➤➤

Filenames, URLs, and code within the text are treated like so: ➤➤ persistence.properties.

Code is presented in two different ways:➤➤

Weuseamonofonttypewithnohighlightingformostcodeexamples.

We use bolding to emphasize code that is of particular importance in the
present context.

NOTE Notes, tips, hints, tricks, and asides to the current discussion look like this.

Source code

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

You’ll fi nd the fi lename of the project you need in a CodeNote such as this at the beginning of the
Try it Out features:

code snippet fi lename

After you download the code, just decompress it with your favorite compression tool. Alternatively,
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-01711-1.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

xix

introduction

errAtA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and at the same time help us provide even higher-quality
information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent
editions of the book.

p2p .Wrox .com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you not only as you read
this book but also as you develop your own applications. To join the forums, just follow these steps:

 1 . Go to p2p.wrox.com and click the Register link.

 2 . Read the terms of use and click Agree.

 3 . Complete the required information to join as well as any optional information you want to
provide and click Submit.

 4 . You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport

xx

introduction

After you join, you can post new messages and respond to messages that other users post. You can
read messages at any time on the Web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as for many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

getting Started with
Android Programming

WhAt you Will leArn in thiS chApter

What is Android?➤➤

Android versions and its feature set➤➤

The Android architecture➤➤

The various Android devices on the market➤➤

The Android Market application store➤➤

How to obtain the tools and SDK for developing Android applications➤➤

How to develop your fi rst Android application➤➤

Welcome! The fact that you are holding this book in your hands (or are reading it on your lat-
est mobile device) signifi es that you are interested in learning how to write applications for the
Android platform — and there’s no better time to do this than now! The mobile application
market is exploding, and recent market research shows that Android has overtaken iPhone
to occupy the second position in the U.S. smartphone market. The fi rst place honor currently
goes to Research In Motion (RIM), with Apple’s iPhone taking third place. By the time you
read this, chances are good that Android may have become the number one smartphone plat-
form in the U.S., and that you may even be reading this on one of the latest Android devices.

What propelled this relatively unknown operating system, which Google bought in 2005, to
its popular status today? And what features does it offer? In this chapter you will learn what
Android is, and what makes it so compelling to both developers and device manufacturers alike.
You will also get started with developing your fi rst Android application, and learn how to obtain
all the necessary tools and set them up. By the end of this chapter, you will be equipped with the
basic knowledge you need to explore more sophisticated techniques and tricks for developing
your next killer Android application.

1

2 ❘ chApter 1 GettinG Started with android ProGramminG

WhAt iS Android?

Android is a mobile operating system that is based on a modified version of Linux. It was originally
developed by a startup of the same name, Android, Inc. In 2005, as part of its strategy to enter the
mobile space, Google purchased Android and took over its development work (as well as its develop-
ment team).

Google wanted Android to be open and free; hence, most of the Android code was released under
the open-source Apache License, which means that anyone who wants to use Android can do so by
downloading the full Android source code. Moreover, vendors (typically hardware manufacturers)
can add their own proprietary extensions to Android and customize Android to differentiate their
products from others. This simple development model makes Android very attractive and has thus
piqued the interest of many vendors. This has been especially true for companies affected by the phe-
nomenon of Apple’s iPhone, a hugely successful product that revolutionized the smartphone industry.
Such companies include Motorola and Sony Ericsson, which for many years have been developing
their own mobile operating systems. When the iPhone was launched, many of these manufacturers
had to scramble to find new ways of revitalizing their products. These manufacturers see Android as
a solution — they will continue to design their own hardware and use Android as the operating sys-
tem that powers it.

The main advantage of adopting Android is that it offers a unified approach to application development.
Developers need only develop for Android, and their applications should be able to run on numerous
different devices, as long as the devices are powered using Android. In the world of smartphones, appli-
cations are the most important part of the success chain. Device manufacturers therefore see Android
as their best hope to challenge the onslaught of the iPhone, which already commands a large base of
applications.

Android versions
Android has gone through quite a number of updates since its first release. Table 1-1 shows the vari-
ous versions of Android and their codenames.

tABle 1-1: A Brief History of Android Versions

Android verSion releASe dAte codenAme

1 .1 9 February 2009

1 .5 30 April 2009 Cupcake

1 .6 15 September 2009 Donut

2 .0/2 .1 26 October 2009 Eclair

2 .2 20 May 2010 Froyo

2 .3 6 December 2010 Gingerbread

3 .0 Unconfirmed at the time of writing Honeycomb

What is Android? ❘ 3

Features of Android
As Android is open source and freely available to manufacturers for customization, there are no fixed
hardware and software configurations. However, Android itself supports the following features:

Storage➤➤ — Uses SQLite, a lightweight relational database, for data storage. Chapter 6 discusses
data storage in more detail.

Connectivity➤➤ — Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth (includes
A2DP and AVRCP), WiFi, LTE, and WiMAX. Chapter 8 discusses networking in more detail.

Messaging➤➤ — Supports both SMS and MMS. Chapter 8 discusses messaging in more detail.

Web➤➤ browser — Based on the open-source WebKit, together with Chrome’s V8 JavaScript engine

Media➤➤ support — Includes support for the following media: H.263, H.264 (in 3GP or MP4
container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or
3GP container), MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

Hardware➤➤ support — Accelerometer Sensor, Camera, Digital Compass, Proximity Sensor,
and GPS

Multi➤➤ -touch — Supports multi-touch screens

Multi➤➤ -tasking — Supports multi-tasking applications

Flash➤➤ support — Android 2.3 supports Flash 10.1.

Tethering➤➤ — Supports sharing of Internet connections as a wired/wireless hotspot

Architecture of Android
In order to understand how Android works, take a look at Figure 1-1, which shows the various layers
that make up the Android operating system (OS).

Home Contacts Browser ...

APPLICATIONS

APPLICATION FRAMEWORK

LIBRARIES ANDROID RUNTIME

Phone

Package Manager Telephony Manager Location Manager Notification ManagerResource Manager

Surface Manager Media Framework SQLite

OpenGL / ES FreeType WebKit

SGL SSL Iibc

Activity Manager Window Manager View System

Dalvik Virtual Machine

Core Libraries

Content Providers

LINUX KERNEL

Keypad Driver WiFi Driver Power ManagementAudio Drivers

Display Driver Camera Driver Binder (IPC) DriverFlash Memory Driver

Figure 1-1

4 ❘ chApter 1 GettinG Started with android ProGramminG

The Android OS is roughly divided into five sections in four main layers:

Linux kernel➤➤ — This is the kernel on which Android is based. This layer contains all the low-
level device drivers for the various hardware components of an Android device.

Libraries➤➤ — These contain all the code that provides the main features of an Android OS. For
example, the SQLite library provides database support so that an application can use it for
data storage. The WebKit library provides functionalities for web browsing.

Android➤➤ runtime — At the same layer as the libraries, the Android runtime provides a set of core
libraries that enable developers to write Android apps using the Java programming language. The
Android runtime also includes the Dalvik virtual machine, which enables every Android appli-
cation to run in its own process, with its own instance of the Dalvik virtual machine (Android
applications are compiled into the Dalvik executables). Dalvik is a specialized virtual machine
designed specifically for Android and optimized for battery-powered mobile devices with limited
memory and CPU.

Application➤➤ framework — Exposes the various capabilities of the Android OS to application
developers so that they can make use of them in their applications.

Applications➤➤ — At this top layer, you will find applications that ship with the Android device
(such as Phone, Contacts, Browser, etc.), as well as applications that you download and install
from the Android Market. Any applications that you write are located at this layer.

Android devices in the market
Android devices come in all shapes and sizes. As of late
November 2010, the Android OS can be seen powering
the following types of devices:

Smartphones➤➤

Tablets➤➤

E-reader devices➤➤

Netbooks➤➤

MP4 players➤➤

Internet TVs➤➤

Chances are good that you own at least one of the preceding
devices. Figure 1-2 shows (clockwise) the Samsung Galaxy S,
the HTC Desire HD, and the LG Optimus One smartphones.

Another popular category of devices that manufacturers
are rushing out is the tablet. Tablet sizes typically start at
seven inches, measured diagonally. Figure 1-3 shows the
Samsung Galaxy Tab and the Dell Streak, which is a five-
inch phone tablet.

Figure 1-2

What is Android? ❘ 5

Besides smartphones and tablets, Android is also beginning to appear in dedicated devices, such as
e-book readers. Figure 1-4 shows the Barnes and Noble’s NOOKcolor, which is a color e-Book reader
running the Android OS.

In addition to these popular mobile devices, Android is also slowly finding its way into your living
room. People of Lava, a Swedish company, has developed an Android-based TV, call the Scandinavia
Android TV (see Figure 1-5).

Google has also ventured into a proprietary smart TV platform based on Android and co-developed
with companies such as Intel, Sony, and Logitech. Figure 1-6 shows Sony’s Google TV.

Figure 1-3 Figure 1-4

Figure 1-5 Figure 1-6

6 ❘ chApter 1 GettinG Started with android ProGramminG

the Android market
As mentioned earlier, one of the main factors determining the success of a smartphone platform is
the applications that support it. It is clear from the success of the iPhone that applications play a very
vital role in determining whether a new platform swims or sinks. In addition, making these applica-
tions accessible to the general user is extremely important.

As such, in August 2008, Google announced the Android Market, an online application store for
Android devices, and made it available to users in October 2008. Using the Market application that
is preinstalled on their Android device, users can simply download third-party applications directly
onto their devices. Both paid and free applications are supported on the Android Market, though
paid applications are available only to users in certain countries due to legal issues.

Similarly, in some countries, users can buy paid applications from the Android Market, but develop-
ers cannot sell in that country. As an example, at the time of writing, users in India can buy apps from
the Android Market, but developers in India cannot sell apps on the Android Market. The reverse may
also be true; for example, users in South Korea cannot buy apps, but developers in South Korea can sell
apps on the Android Market.

Chapter 11 discusses more about the Android Market and how you can sell your own applications in it.

oBtAining the reQuired toolS

Now that you know what Android is and its feature set, you are probably anxious to get your hands
dirty and start writing some applications! Before you write your fi rst app, however, you need to
download the required tools and SDKs.

For Android development, you can use a Mac, a Windows PC, or a Linux machine. All the tools needed
are free and can be downloaded from the Web. Most of the examples provided in this book should work
fi ne with the Android emulator, with the exception of a few examples that require access to the hard-
ware. For this book, I will be using a Windows 7 computer to demonstrate all the code samples. If you
are using a Mac or Linux computer, the screenshots should look similar; some minor differences may be
present, but you should be able to follow along without problems.

So, let the fun begin!

jAvA jdk

The Android SDK makes use of the Java SE Development Kit (JDK). Hence, if your
computer does not have the JDK installed, you should start by downloading the JDK
from www.oracle.com/technetwork/java/javase/downloads/index.html and install-
ing it prior to moving to the next section.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Obtaining the Required Tools ❘ 7

eclipse
The first step towards developing any applications is obtaining the integrated development environment
(IDE). In the case of Android, the recommended IDE is Eclipse, a multi-language software development
environment featuring an extensible plug-in system. It can be used to develop various types of applica-
tions, using languages such as Java, Ada, C, C++, COBOL, Python, etc.

For Android development, you should download the Eclipse IDE for Java EE
Developers (www.eclipse.org/downloads/packages/eclipse-ide-java-ee-
developers/heliossr1). Six editions are available: Windows (32 and 64-bit),
Mac OS X (Cocoa 32 and 64), and Linux (32 and 64-bit). Simply select the rel-
evant one for your operating system. All the examples in this book were tested
using the 32-bit version of Eclipse for Windows.

Once the Eclipse IDE is downloaded, unzip its content (the eclipse folder) into
a folder, say C:\Android\. Figure 1-7 shows the content of the eclipse folder.

Android Sdk
The next important piece of software you need to download is, of course, the
Android SDK. The Android SDK contains a debugger, libraries, an emulator,
documentation, sample code, and tutorials.

You can download the Android SDK from http://developer.android.com/sdk/
index.html.

Once the SDK is downloaded, unzip its content (the android-sdk-windows folder)
into the C:\Android\ folder, or whatever name you have given to the folder you just
created.

Android development tools (Adt)
The Android Development Tools (ADT) plug-in for Eclipse is an extension to the Eclipse IDE that
supports the creation and debugging of Android applications. Using the ADT, you will be able to do
the following in Eclipse:

Create new Android application projects.➤➤

Access the tools for accessing your Android emulators and devices.➤➤

Compile and debug Android applications.➤➤

Export Android applications into Android Packages (APK).➤➤

Create digital certificates for code-signing your APK.➤➤

To install the ADT, first launch Eclipse by double-clicking on the eclipse.exe file located in the
eclipse folder.

Figure 1-7

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr1
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr1

8 ❘ chApter 1 GettinG Started with android ProGramminG

When Eclipse is first started, you will be prompted for a folder to use as your workspace. In Eclipse,
a workspace is a folder where you store all your projects. Take the default suggested and click OK.

Once Eclipse is up and running, select the Help ➪ Install New Software… menu item (see
Figure 1-8).

In the Install window that appears, type http://dl-ssl.google.com/android/eclipse in the text box (see
Figure 1-9) and click Add….

After a while, you will see the Developer Tools item appear in the middle of the window (see Figure 1-10).
Expand it, and it will reveal its content: Android DDMS, Android Development Tools, and Android
Hierarchy Viewer. Check all of them and click Next.

Figure 1-8

Figure 1-9

http://dl-ssl.google.com/android/eclipse

Obtaining the Required Tools ❘ 9

Figure 1-10

When you see the installation details, as shown in Figure 1-11, click Next.

Figure 1-11

10 ❘ chApter 1 GettinG Started with android ProGramminG

You will be asked to review the licenses for the tools. Check the option to accept the license agree-
ments (see Figure 1-12). Click Finish to continue.

Figure 1-12

Eclipse will now proceed to download the tools from the Internet and install them (see Figure 1-13).
This will take some time, so be patient.

Figure 1-13

NOTE If you have any problems downloading the ADT, check out Google’s help
at http://developer.android.com/sdk/eclipse-adt.html#installing.

Once the ADT is installed, you will be prompted to restart Eclipse. After doing so, go to Window ➪
Preferences (see Figure 1-14).

http://developer.android.com/sdk/eclipse-adt.html#installing

Obtaining the Required Tools ❘ 11

Figure 1-14

In the Preferences window that appears, select Android. You will see an error message saying that
the SDK has not been set up (see Figure 1-15). Click OK to dismiss it.

Figure 1-15

Enter the location of the Android SDK folder. In this example, it would be C:\Android\
android-sdk-windows. Click OK.

creating Android virtual devices (Avds)
The next step is to create AVD to be used for testing your Android applications. AVD stands for
Android Virtual Devices. An AVD is an emulator instance that enables you to model an actual device.

12 ❘ chApter 1 GettinG Started with android ProGramminG

Each AVD consists of a hardware profi le, a mapping to a system image, as well as emulated storage,
such as a secure digital (SD) card.

You can create as many AVDs as you want in order to test your applications with several different
confi gurations. This testing is important to confi rm the behavior of your application when it is run
on different devices with varying capabilities.

NOTE Appendix B will discuss some of the capabilities of the Android Emulator.

To create an AVD, go to Windows ➪ Android SDK and AVD Manager.

Select the Available packages option in the left pane and expand the package name shown in the right
pane. Figure 1-16 shows the various packages available for you to create AVDs to emulate the differ-
ent versions of an Android device.

Figure 1-16

Check the relevant tools, documentation, and platforms you need for your project.

Once you have selected the items you want, click the Install Selected button to download them. Because
it takes a while to download from Google’s server, it is a good idea to download only whatever you
need immediately, and download the rest when you have more time.

Obtaining the Required Tools ❘ 13

NOTE For a start, you should at least select the latest SDK platform. At the time
of writing, the latest SDK platform is SDK Platform Android 2.3, API 9, revision 1.

Each version of the Android OS is identifi ed by an API level number. For example, Android 2.3 is
level 9 (API 9), while Android 2.2 is level 8 (API 8), and so on. For each level, two platforms are
available. For example, level 9 offers the following:

SDK Platform Android 2.3➤➤

Google APIs by Google Inc.➤➤

The key difference between the two is that the Google APIs platform contains the Google Maps library.
Therefore, if the application you are writing requires Google Maps, you need to create an AVD using
the Google APIs platform (more on this in Chapter 9, “Location Based Services.”

Click the Virtual Devices item in the left pane of the window. Then click the New… button located
in the right pane of the window.

In the Create new Android Virtual Device (AVD) window, enter the items as shown in Figure 1-17.
Click the Create AVD button when you are done.

Figure 1-17

14 ❘ chApter 1 GettinG Started with android ProGramminG

In this case, you have created an AVD (put simply, an Android emulator) that emulates an Android
device running version 2.3 of the OS. In addition to what you have created, you also have the option
to emulate the device with an SD card and different screen densities and resolutions.

NOTE Appendix B explains how to emulate the di� erent types of Android devices.

It is preferable to create a few AVDs with different API levels so that your application can be tested
on different devices. The example shown in Figure 1-18 shows the many AVDs created to test your
applications on a wide variety of different Android platforms.

Figure 1-18

creating your First Android Application
With all the tools and the SDK downloaded and installed, it is now time to start your engine! As
in all programming books, the fi rst example uses the ubiquitous Hello World application. This will
enable you to have a detailed look at the various components that make up an Android project.

So, without any further ado, let’s dive straight in!

Creating Your First Android Applicationtry it out

codefi le HelloWorld.zip available for download at Wrox.com

1 . Using Eclipse, create a new project by selecting File ➪ Project… (see Figure 1-19).

Obtaining the Required Tools ❘ 15

Figure 1-19

NOTE After you have created your fi rst Android application, subsequent
Android projects can be created by selecting File ➪ New ➪ Android Project.

2 . Expand the Android folder and select Android Project (see Figure 1-20).

Figure 1-20

16 ❘ chApter 1 GettinG Started with android ProGramminG

3 . Name the Android project as shown in Figure 1-21 and then click Finish.

Figure 1-21

NOTE You need to have at least a period (.) in the package name. The rec-
ommended convention for the package name is to use your domain name
in reverse order, followed by the project name. For example, my company’s
domain name is learn2develop.net, hence my package name would be
net.learn2develop.HelloWorld.

4 . The Eclipse IDE should now look like Figure 1-22.

5 . In the Package Explorer (located on the left of the Eclipse IDE), expand the HelloWorld project by
clicking on the various arrows displayed to the left of each item in the project. In the res/layout
folder, double-click the main.xml fi le (see Figure 1-23).

Obtaining the Required Tools ❘ 17

Figure 1-22

Figure 1-23

 6 . The main.xml file defines the user interface (UI) of your application. The default view is the Layout
view, which lays out the activity graphically. To modify the UI, click the main.xml tab located at
the bottom (see Figure 1-24).

18 ❘ chApter 1 GettinG Started with android ProGramminG

Figure 1-24

7 . Add the following code in bold to the main.xml fi le:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”/>

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”This is my first Android Application!” />

<Button
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”And this is a clickable button!” />

</LinearLayout>

 8 . To save the changes made to your project, press Ctrl+s.

 9 . You are now ready to test your application on the Android Emulator. Select the project name in
Eclipse and press F11. You will be asked to select a way to debug the application. Select Android
Application as shown in Figure 1-25 and click OK.

NOTE Some Eclipse installations have an irritating bug: After creating a new proj-
ect, Eclipse reports that it contains errors when you try to debug the application.
This happens even when you have not modifi ed any fi les or folders in the project.
To solve this problem, simply delete the R.java fi le located under the gen/net
.learn2develop.HelloWorld folder; Eclipse will automatically generate a new
R.java fi le for you. Once this is done, the project shouldn’t contain any errors.

http://schemas.android.com/apk/res/android

Obtaining the Required Tools ❘ 19

Figure 1-25

 10 . The Android Emulator will now be started (if the emulator is locked, you need to slide the unlock
button to unlock it first). Figure 1-26 shows the application running on the Android Emulator.

Figure 1-26

 11 . Click the Home button (the house icon in the lower-left corner above the keyboard) so that it now
shows the Home screen (see Figure 1-27).

20 ❘ chApter 1 GettinG Started with android ProGramminG

Figure 1-27

 12 . Click the application Launcher icon to display the list of applications installed on the device. Note
that the HelloWorld application is now installed in the application launcher (see Figure 1-28).

Figure 1-28

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Obtaining the Required Tools ❘ 21

Which Avd Will Be uSed to teSt your ApplicAtion?

Recall that earlier you created a few AVDs using the AVD Manager. So which one
will be launched by Eclipse when you run an Android application? Eclipse will
check the target that you specifi ed (when you created a new project), comparing it
against the list of AVDs that you have created. The fi rst one that matches will be
launched to run your application.

If you have more than one suitable AVD running prior to debugging the application,
Eclipse will display the Android Device Chooser window, which enables you to select
the desired emulator/device to debug the application (see Figure 1-29).

Figure 1-29

How It Works

To create an Android project using Eclipse, you need to supply the information shown in Table 1-2.

tABle 1-2: Project Files Created by Default

propertieS deScription

Project name The name of the project

Application name A user-friendly name for your application

Package name The name of the package . You should use a reverse domain name for this .

Create Activity The name of the fi rst activity in your application

Min SDK Version The minimum version of the SDK that your project is targeting

22 ❘ chApter 1 GettinG Started with android ProGramminG

In Android, an Activity is a window that contains the user interface of your applications. An application
can have zero or more activities; in this example, the application contains one activity: MainActivity.
This MainActivity is the entry point of the application, which is displayed when the application is
started. Chapter 2 discusses activities in more detail.

In this simple example, you modified the main.xml file to display the string “This is my first Android
Application!” and a button. The main.xml file contains the user interface of the activity, which is dis-
played when MainActivity is loaded.

When you debug the application on the Android Emulator, the application is automatically installed on
the emulator. And that’s it — you have developed your first Android application!

The next section unravels how all the various files in your Android project work together to make your
application come alive.

Anatomy of an Android Application
Now that you have created your first Hello World Android application, it is time to dissect the innards
of the Android project and examine all the parts that make everything work.

First, note the various files that make up an Android project in the
Package Explorer in Eclipse (see Figure 1-30).

The various folders and their files are as follows:

src➤➤ — Contains the .java source files for your project. In
this example, there is one file, MainActivity.java. The
MainActivity.java file is the source file for your activity.
You will write the code for your application in this file.

Android2.3➤➤ library — This item contains one file,
android.jar, which contains all the class libraries needed
for an Android application.

gen➤➤ — Contains the R.java file, a compiler-generated file
that references all the resources found in your project.
You should not modify this file.

assets➤➤ — This folder contains all the assets used by your
application, such as HTML, text files, databases, etc.

res➤➤ — This folder contains all the resources used in your application. It also contains a few
other subfolders: drawable-<resolution>, layout, and values. Chapter 3 talks more about
how you can support devices with different screen resolutions and densities.

AndroidManifest.xml➤➤ — This is the manifest file for your Android application. Here you spec-
ify the permissions needed by your application, as well as other features (such as intent-filters,
receivers, etc.). Chapter 2 discusses the use of the AndroidManifest.xml file in more details.

Figure 1-30

Obtaining the Required Tools ❘ 23

The main.xml file defines the user interface for your activity. Observe the following in bold:

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”/>

The @string in this case refers to the strings.xml file located in the res/values folder. Hence,
@string/hello refers to the hello string defined in the strings.xml file, which is “Hello World,
MainActivity!”:

<?xmlversion=”1.0”encoding=”utf-8”?>
<resources>
<string name=”hello”>Hello World, MainActivity!</string>
<stringname=”app_name”>HelloWorld</string>
</resources>

It is recommended that you store all the string constants in your application in this strings.xml file
and reference these strings using the @string identifier. That way, if you ever need to localize your
application to another language, all you need to do is replace the strings stored in the strings.xml
file with the targeted language and recompile your application.

Observe the content of the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.HelloWorld”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

The AndroidManifest.xml file contains detailed information about the application:

It defines the package name of the application as ➤➤ net.learn2develop.HelloWorld.

The version code of the application is 1. This value is used to identify the version number of ➤➤

your application. It can be used to programmatically determine whether an application needs
to be upgraded.

The version name of the application is 1.0. This string value is mainly used for display to the ➤➤

user. You should use the format: <major>.<minor>.<point> for this value.

The application uses the image named ➤➤ icon.png located in the drawable folder.

http://schemas.android.com/apk/res/android

24 ❘ chApter 1 GettinG Started with android ProGramminG

The name of this application is the string named ➤➤ app_name defi ned in the strings.xml fi le.

There is one activity in the application represented by the ➤➤ MainActivity.java fi le. The label
displayed for this activity is the same as the application name.

Within the defi nition for this activity, there is an element named ➤➤ <intent-filter>:

The action for the intent fi lter is named ➤➤ android.intent.action.MAIN to indicate that
this activity serves as the entry point for the application.

The category for the intent-fi lter is named ➤➤ android.intent.category.LAUNCHER
to indicate that the application can be launched from the device’s Launcher icon.
Chapter 2 discusses intents in more details.

Finally, the ➤➤ android:minSdkVersion attribute of the <uses-sdk> element specifi es the minimum
version of the OS on which the application will run.

As you add more fi les and folders to your project, Eclipse will automatically generate the content of
R.java, which at the moment contains the following:

packagenet.learn2develop.HelloWorld;

publicfinalclassR{
publicstaticfinalclassattr{
}
publicstaticfinalclassdrawable{
publicstaticfinalinticon=0x7f020000;
}
publicstaticfinalclasslayout{
publicstaticfinalintmain=0x7f030000;
}
publicstaticfinalclassstring{
publicstaticfinalintapp_name=0x7f040001;
publicstaticfinalinthello=0x7f040000;
}
}

You are not supposed to modify the content of the R.javafi le; Eclipse automatically generates the
content for you when you modify your project.

NOTE If you delete R.java manually, Eclipse will regenerate it for you imme-
diately. Note that in order for Eclipse to generate the R.java fi le for you, the
project must not contain any errors. If you realize that Eclipse has not regener-
ated R.java after you have deleted it, check your project again. The code may
contain syntax errors, or your XML fi les (such as AndroidManifest.xml, main.xml,
etc.) may not be well-formed.

Summary ❘ 25

Finally, the code that connects the activity to the UI (main.xml) is the setContentView() method,
which is in the MainActivity.java file:

packagenet.learn2develop.HelloWorld;

importandroid.app.Activity;
importandroid.os.Bundle;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

Here, R.layout.main refers to the main.xml file located in the res/layout folder. As you add additional
XML files to the res/layout folder, the filenames will automatically be generated in the R.java file. The
onCreate() method is one of many methods that are fired when an activity is loaded. Chapter 2 discusses
the life cycle of an activity in more detail.

SummAry

This chapter has provided a brief overview of Android, and highlighted some of its capabilities. If
you have followed the sections on downloading the tools and SDK, you should now have a work-
ing system — one that is capable of developing more interesting Android applications other than
the Hello World application. In the next chapter, you will learn about the concepts of activities and
intents, and the very important roles they play in Android.

exerciSeS

 1 . What is an AVD?

 2 . What is the difference between the android:versionCode and android:versionName attributes in

the AndroidManifest.xml file?

 3 . What is the use of the strings .xml file?

Answers to the Exercises can be found in Appendix C.

26 ❘ chApter 1 GettinG Started with android ProGramminG

WhAt you leArned in thiS chApter ⊲

topic key conceptS

Android oS Android is an open-source mobile operating system based on the

Linux operating system . It is available to anyone who wants to adapt

it to run on their own devices .

languages used for
Android application
development

You use the Java programming language to develop Android appli-

cations . Written applications are compiled into Dalvik executables,

which are then run on top of the Dalvik Virtual Machine .

Android market The Android Market hosts all the various Android applications written

by third-party developers .

tools for Android
Application development

Eclipse IDE, Android SDK, and the ADT

Activity An activity is represented by a screen in your Android application .

Each application can have zero or more activities .

the Android manifest file The AndroidManifest.xml file contains detailed configuration infor-

mation for your application . As your application gets more sophisti-

cated, you will modify this file, and you will see the different information

you can add to this file as you progress through the chapters .

Activities and intents

WhAt you Will leArn in thiS chApter

What activities are➤➤

How to apply styles and themes to activities➤➤

How to display activities as dialog windows➤➤

Understanding the concept of intents➤➤

How to use the ➤➤ Intent object to link activities

How intent fi lters help you to selectively connect to other activities➤➤

How to display alerts to the user using notifi cations➤➤

In Chapter 1, you learned that an activity is a window that contains the user interface of your
applications. An application can have zero or more activities. Typically, applications have one
or more activities, and the main aim of an activity is to interact with the user. From the moment
an activity appears on the screen to the moment it is hidden, it goes through a number of stages,
known as an activity’s life cycle. Understanding the life cycle of an activity is vital to ensuring
that your application works correctly. In this chapter, you will learn more about how activities
work and the things that you need to take note of when designing your Android application.

Apart from activities, another unique concept in Android is that of an intent. An intent is basically
the “glue” that enables different activities from different applications to work together seamlessly,
ensuring that tasks can be performed as though they all belong to one single application. In the
second part of this chapter, you will learn more about this very important concept and how you
can use it to call built-in applications such as the Browser, Phone, Maps, and more.

underStAnding ActivitieS
This chapter begins by looking at how to create an activity. To create an activity, you create a
Java class that extends the Activity base class:

packagenet.learn2develop.Activities;

2

28 ❘ chApter 2 activitieS and intentS

importandroid.app.Activity;
importandroid.os.Bundle;

public class MainActivity extends Activity {
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

Your activity class would then load its UI component using the XML file defined in your res/layout
folder. In this example, you would load the UI from the main.xml file:

setContentView(R.layout.main);

Every activity you have in your application must be declared in your AndroidManifest.xml file,
like this:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Activities”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”
android:label=”@string/app_name”>
<activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
<intent-filter>
<action android:name=”android.intent.action.MAIN” />
<category
android:name=”android.intent.category.LAUNCHER” />
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

The Activity base class defines a series of events that governs the life cycle of an activity. The Activity
class defines the following events:

onCreate()➤➤ — Called when the activity is first created

onStart()➤➤ — Called when the activity becomes visible to the user

onResume()➤➤ — Called when the activity starts interacting with the user

onPause()➤➤ — Called when the current activity is being paused and the previous activity is
being resumed

onStop()➤➤ — Called when the activity is no longer visible to the user

onDestroy()➤➤ — Called before the activity is destroyed by the system (either manually or by
the system to conserve memory)

onRestart()➤➤ — Called when the activity has been stopped and is restarting again

http://schemas.android.com/apk/res/android

Understanding Activities ❘ 29

By default, the activity created for you contains the onCreate() event. Within this event handler is
the code that helps to display the UI elements of your screen.

Figure 2-1 shows the life cycle of an activity and the various stages it goes through — from when the
activity is started until it ends.

Activity
starts

Activity is
running

Process is
killed

The activity
comes to the
foreground

Activity is
shut down

onCreate()

onStart()

onResume()

onDestroy()

Another activity comes
in front of the activity

Other applications
need memory

The activity is no longer visible

User navigates
back to the

activity

onStop()

onPause()

The activity
comes to the
foreground

onRestart()

Image reproduced from work created and shared by the Android Open Source Project
and used according to terms described in the Creative Commons 2.5 Attribution
License. See http://developer.android.com/reference/android/app/Activity.html

Figure 2-1

http://developer.android.com/reference/android/app/Activity.html

30 ❘ chApter 2 activitieS and intentS

The best way to understand the various stages experienced by an activity is to create a new project,
implement the various events, and then subject the activity to various user interactions.

Understanding the Life Cycle of an Activitytry it out

codefile Activities.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as shown in Figure 2-2.

Figure 2-2

 2 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.Activities;

importandroid.app.Activity;
importandroid.os.Bundle;
import android.util.Log;

publicclassMainActivityextendsActivity{
String tag = “Events”;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Log.d(tag, “In the onCreate() event”);

Understanding Activities ❘ 31

}
public void onStart()
{
super.onStart();
Log.d(tag, “In the onStart() event”);
}
public void onRestart()
{
super.onRestart();
Log.d(tag, “In the onRestart() event”);
}
public void onResume()
{
super.onResume();
Log.d(tag, “In the onResume() event”);
}
public void onPause()
{
super.onPause();
Log.d(tag, “In the onPause() event”);
}
public void onStop()
{
super.onStop();
Log.d(tag, “In the onStop() event”);
}
public void onDestroy()
{
super.onDestroy();
Log.d(tag, “In the onDestroy() event”);
}
}

 3 . Press F11 to debug the application on the Android Emulator.

 4 . When the activity is first loaded, you should see the following in the LogCat window (click on the
Debug perspective; see also Figure 2-3):

12-2813:45:28.115:DEBUG/Events(334):IntheonCreate()event
12-2813:45:28.115:DEBUG/Events(334):IntheonStart()event
12-2813:45:28.115:DEBUG/Events(334):IntheonResume()event

Figure 2-3

32 ❘ chApter 2 activitieS and intentS

5 . When you now press the back button on the Android Emulator, observe that the following is printed:

12-2813:59:46.266:DEBUG/Events(334):IntheonPause()event
12-2813:59:46.806:DEBUG/Events(334):IntheonStop()event
12-2813:59:46.806:DEBUG/Events(334):IntheonDestroy()event

6 . Click the Home button and hold it there. Click the Activities icon and observe the following:

12-2814:00:54.115:DEBUG/Events(334):IntheonCreate()event
12-2814:00:54.156:DEBUG/Events(334):IntheonStart()event
12-2814:00:54.156:DEBUG/Events(334):IntheonResume()event

7 . Press the Phone button on the Android Emulator so that the activity is pushed to the background.
Observe the output in the LogCat window:

12-2814:01:16.515:DEBUG/Events(334):IntheonPause()event
12-2814:01:17.135:DEBUG/Events(334):IntheonStop()event

8 . Notice that the onDestroy() event is not called, indicating that the activity is still in memory. Exit
the phone dialer by pressing the Back button. The activity is now visible again. Observe the output
in the LogCat window:

12-2814:02:17.255:DEBUG/Events(334):IntheonRestart()event
12-2814:02:17.255:DEBUG/Events(334):IntheonStart()event
12-2814:02:17.255:DEBUG/Events(334):IntheonResume()event

The onRestart() event is now fi red, followed by the onStart() and onResume() events.

How It Works

As you can see from this simple experiment, an activity is destroyed when you press the Back button.
This is crucial to know, as whatever state the activity is currently in will be lost; hence, you need to write
additional code in your activity to preserve its state when it is destroyed (Chapter 3 will show you how).
At this point, note that the onPause() event is called in both scenarios — when an activity is sent to the
background, as well as when it is killed when the user presses the Back button.

When an activity is started, the onStart() and onResume() events are always called, regardless of whether
the activity is restored from the background or newly created.

NOTE Even if an application has only one activity and the activity is killed, the
application will still be running in memory.

Applying Styles and themes to Activity
By default, an activity occupies the entire screen. However, you can also apply a dialog theme to an
activity so that it is displayed as a fl oating dialog. For example, you might want to customize your activ-
ity to display as a pop-up, warning the user about some actions that they are going to perform. In this
case, displaying the activity as a dialog is a good way to get their attention.

Understanding Activities ❘ 33

To apply a dialog theme to an activity, simply modify the <Activity> element in the
AndroidManifest.xml file by adding the android:theme attribute:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Activities”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”
android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”
 android:theme=”@android:style/Theme.Dialog” >
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<category
android:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

Doing so will make the activity appear as a dialog, as shown in Figure 2-4.

hiding the Activity title
You can also hide the title of an activity if desired (such as when you just want to display a status update
to the user). To do so, use the requestWindowFeature() method and pass it the Window.FEATURE_NO_
TITLE constant, like this:

packagenet.learn2develop.Activities;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.util.Log;

import android.view.Window;

publicclassMainActivityextendsActivity{
Stringtag=“Events”;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

//---hides the title bar---
requestWindowFeature(Window.FEATURE_NO_TITLE);

setContentView(R.layout.main);
Log.d(tag,“IntheonCreate()event”);
}
}

This will hide the title bar, as shown in Figure 2-5.

http://schemas.android.com/apk/res/android

34 ❘ chApter 2 activitieS and intentS

displaying a dialog Window
There are times where you need to display a dialog window to get a confirmation from the user. In
this case, you can override the onCreateDialog() protected method defined in the base Activity
class to display a dialog window. The following Try It Out shows you how.

Displaying a Dialog Window Using an Activitytry it out

codefile Dialog.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Dialog.

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”/>
<Button
android:id=”@+id/btn_dialog”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Click to display a dialog” />
</LinearLayout>

Figure 2-4 Figure 2-5

http://schemas.android.com/apk/res/android

Understanding Activities ❘ 35

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Dialog;

importandroid.app.Activity;
importandroid.os.Bundle;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
CharSequence[] items = { “Google”, “Apple”, “Microsoft” };
boolean[] itemsChecked = new boolean [items.length];

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn = (Button) findViewById(R.id.btn_dialog);
btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
showDialog(0);
}
});
}

@Override
protected Dialog onCreateDialog(int id) {
switch (id) {
case 0:
return new AlertDialog.Builder(this)
.setIcon(R.drawable.icon)
.setTitle(“This is a dialog with some simple text...”)
.setPositiveButton(“OK”, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)
{
Toast.makeText(getBaseContext(),
 “OK clicked!”, Toast.LENGTH_SHORT).show();
}
})
.setNegativeButton(“Cancel”, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)
{
Toast.makeText(getBaseContext(),
“Cancel clicked!”, Toast.LENGTH_SHORT).show();
}
})

36 ❘ chApter 2 activitieS and intentS

.setMultiChoiceItems(items, itemsChecked, new
DialogInterface.OnMultiChoiceClickListener() {
@Override
public void onClick(DialogInterface dialog, int which,
boolean isChecked) {
Toast.makeText(getBaseContext(),
items[which] + (isChecked ? “ checked!”:
“ unchecked!”),
Toast.LENGTH_SHORT).show();
}
}
)
.create();
}
return null;
}
}

 4 . Press F11 to debug the application on the Android Emulator. Click the button to display the dialog
(see Figure 2-6). Checking the various checkboxes will cause the Toast class to display the text of
the item checked/unchecked. To dismiss the dialog, click the OK or Cancel button.

Figure 2-6

How It Works

To display a dialog, you first override the onCreateDialog() method in the Activity class:

@Override
protectedDialogonCreateDialog(intid){
//...
}

Understanding Activities ❘ 37

This method is called when you call the showDialog() method:

Buttonbtn=(Button)findViewById(R.id.btn_dialog);
btn.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
showDialog(0);
}
});

The onCreateDialog() method is a callback for creating dialogs that are managed by the activity. When
you call the showDialog() method, this callback will be invoked. The showDialog() method accepts an
integer argument identifying a particular dialog to display.

To create a dialog, you use the AlertDialog class’s Builder constructor. You set the various properties,
such as icon, title, and buttons, as well as checkboxes:

@Override
protectedDialogonCreateDialog(intid){
switch(id){
case0:
returnnewAlertDialog.Builder(this)
.setIcon(R.drawable.icon)
.setTitle(“Thisisadialogwithsomesimpletext...”)
.setPositiveButton(“OK”,new
DialogInterface.OnClickListener(){
publicvoidonClick(DialogInterfacedialog,
intwhichButton)
{
Toast.makeText(getBaseContext(),
“OKclicked!”,Toast.LENGTH_SHORT).show();
}
})
.setNegativeButton(“Cancel”,new
DialogInterface.OnClickListener(){
publicvoidonClick(DialogInterfacedialog,
intwhichButton)
{
Toast.makeText(getBaseContext(),
“Cancelclicked!”,Toast.LENGTH_SHORT).show();
}
})
.setMultiChoiceItems(items,itemsChecked,new
DialogInterface.OnMultiChoiceClickListener(){
@Override
publicvoidonClick(DialogInterfacedialog,intwhich,
booleanisChecked){
Toast.makeText(getBaseContext(),
items[which]+(isChecked?“checked!”:
“unchecked!”),
Toast.LENGTH_SHORT).show();
}
}
)
.create();
}
returnnull;
}

38 ❘ chApter 2 activitieS and intentS

The preceding code sets two buttons: OK and Cancel, using
the setPositiveButton() and setNegativeButton() methods,
respectively. You also set a list of checkboxes for users to choose via
the setMultiChoiceItems() method. For the setMultiChoiceItems()
method, you passed in two arrays: one for the list of items to display
and another to contain the value of each item to indicate if they are
checked. When each item is checked, you use the Toast class to
display a message (see Figure 2-7).

the context oBject

In Android, you will often encounter the Context class and its instances. Instances of
the Context class are often used to provide reference to your application. For exam-
ple, in this example, the fi rst parameter of the Toast class takes in a Context object.

returnnewAlertDialog.Builder(this)
.setIcon(R.drawable.icon)
.setTitle(“Thisisadialogwithsomesimpletext...”)
.setPositiveButton(“OK”,new
DialogInterface.OnClickListener(){
publicvoidonClick(DialogInterfacedialog,
intwhichButton)
{
Toast.makeText(getBaseContext(),
“OKclicked!”,Toast.LENGTH_SHORT).show();
}
})
...

But because the Toast() class is not used directly in the activity (it is used within
the AlertDialog class), you need to return an instance of the Context class by using
the getBaseContext() method.

Another area where you will encounter the Context class is when creating a view
dynamically in an activity. For example, you may want to dynamically create a
TextView view from code. To do so, you instantiate the TextView class, like this:

TextViewtv=newTextView(this);

The constructor for the TextView class takes a Context object, and because the
Activity class is a subclass of Context, you can use the this keyword to represent
the Context object.

Figure 2-7

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Understanding Activities ❘ 39

displaying a progress dialog
Besides the plain dialog that you created in the previous section, you can also create a progress dialog.
A progress dialog is useful for showing the progress of some activities, such as the status of a download
operation.

The following Try It Out shows you how to display a progress dialog.

Displaying a Progress Dialog Window Using an Activitytry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.Dialog;

importandroid.app.Activity;
importandroid.app.AlertDialog;
importandroid.app.Dialog;
importandroid.content.DialogInterface;
importandroid.os.Bundle;
importandroid.view.View;
importandroid.widget.Button;
importandroid.widget.Toast;

import android.app.ProgressDialog;
import android.os.Handler;
import android.os.Message;

publicclassMainActivityextendsActivity{
CharSequence[]items={“Google”,“Apple”,“Microsoft”};
boolean[]itemsChecked=newboolean[items.length];

private ProgressDialog _progressDialog;
private int _progress = 0;
private Handler _progressHandler;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Buttonbtn=(Button)findViewById(R.id.btn_dialog);
btn.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
showDialog(1);
_progress = 0;
_progressDialog.setProgress(0);
_progressHandler.sendEmptyMessage(0);
}
});

_progressHandler = new Handler() {

40 ❘ chApter 2 activitieS and intentS

public void handleMessage(Message msg) {
super.handleMessage(msg);
if (_progress >= 100) {
_progressDialog.dismiss();
} else {
_progress++;
_progressDialog.incrementProgressBy(1);
_progressHandler.sendEmptyMessageDelayed(0, 100);
}
}
};
}

@Override
protectedDialogonCreateDialog(intid){
switch(id){
case0:
returnnewAlertDialog.Builder(this)
//...
//...
.create();
case 1:
_progressDialog = new ProgressDialog(this);
_progressDialog.setIcon(R.drawable.icon);
_progressDialog.setTitle(“Downloading files...”);
_progressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
_progressDialog.setButton(DialogInterface.BUTTON_POSITIVE, “Hide”, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)
{
Toast.makeText(getBaseContext(),
“Hide clicked!”, Toast.LENGTH_SHORT).show();
}
});
_progressDialog.setButton(DialogInterface.BUTTON_NEGATIVE, “Cancel”, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)
{
Toast.makeText(getBaseContext(),
“Cancel clicked!”, Toast.LENGTH_SHORT).show();
}
});
return _progressDialog;
}
returnnull;
}
}

 2 . Press F11 to debug the application on the Android Emulator. Click the button to display the prog-
ress dialog (see Figure 2-8). Observe that the progress bar will count up to 100.

Understanding Activities ❘ 41

Figure 2-8

How It Works

To create a progress dialog, you first create an instance of the ProgressDialog class and set its various
properties, such as icon, title, and style:

_progressDialog=newProgressDialog(this);
_progressDialog.setIcon(R.drawable.icon);
_progressDialog.setTitle(“Downloadingfiles...”);
_progressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);

You then set the two buttons that you want to display inside the progress dialog:

_progressDialog.setButton(DialogInterface.BUTTON_POSITIVE,“Hide”,new
DialogInterface.OnClickListener(){
publicvoidonClick(DialogInterfacedialog,
intwhichButton)
{
Toast.makeText(getBaseContext(),
“Hideclicked!”,Toast.LENGTH_SHORT).show();
}
});
_progressDialog.setButton(DialogInterface.BUTTON_NEGATIVE,“Cancel”,new
DialogInterface.OnClickListener(){
publicvoidonClick(DialogInterfacedialog,
intwhichButton)
{
Toast.makeText(getBaseContext(),
“Cancelclicked!”,Toast.LENGTH_SHORT).show();

42 ❘ chApter 2 activitieS and intentS

}
});
return_progressDialog;
}

The preceding causes a progress dialog to appear (see Figure 2-9).

Figure 2-9

To display the progress status in the progress dialog, you need to use a Handler object to run a back-
ground thread:

_progress=0;
_progressDialog.setProgress(0);
_progressHandler.sendEmptyMessage(0);

The background thread counts up to 100, with each count delayed by 100 milliseconds:

_progressHandler=newHandler(){
publicvoidhandleMessage(Messagemsg){
super.handleMessage(msg);
if(_progress>=100){
_progressDialog.dismiss();
}else{
_progress++;
_progressDialog.incrementProgressBy(1);
_progressHandler.sendEmptyMessageDelayed(0,100);
}
}
};

When the count reaches 100, the progress dialog is dismissed.

Linking Activities Using intents ❘ 43

linking ActivitieS uSing intentS

An Android application can contain zero or more activities. When your application has more than one
activity, you may need to navigate from one activity to another. In Android, you navigate between activi-
ties through what is known as an intent.

The best way to understand this very important but somewhat abstract concept in Android is to experi-
ence it fi rsthand and see what it helps you to achieve.

The following Try It Out shows how to add another activity to an existing project and then navigate
between the two activities.

Linking Activities with intentstry it out

1 . Using the Activities project created earlier, add the following statements in bold to the
AndroidManifest.xml fi le:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Activities”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”
 android:theme=”@android:style/Theme.Dialog” >
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<activity android:name=”.Activity2”
 android:label=”Activity 2”>
<intent-filter>
<action android:name=”net.learn2develop.ACTIVITY2” />
<category android:name=”android.intent.category.DEFAULT” />
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>

NOTE You’ll need to remove the attribute that has strikethrough applied.

2 . Right click on the package name under the src folder and select New ➪ Class (see Figure 2-10).

3 . Name the new class fi le Activity2 (see Figure 2-11) and click Finish.

http://schemas.android.com/apk/res/android

44 ❘ chApter 2 activitieS and intentS

 4 . Make a copy of the main.xml file by right-clicking on it and selecting Copy. Then, right-click on the
res/layout folder and select Paste. Name the file activity2.xml. The res/layout folder will now
contain the activity2.xml file (see Figure 2-12).

Figure 2-10

 5 . Modify the activity2.xml file as follows:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

Figure 2-11 Figure 2-12

http://schemas.android.com/apk/res/android

Linking Activities Using intents ❘ 45

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”This is Activity 2!”
/>
</LinearLayout>

 6 . In the Activity2.java file, add the following statements in bold:

packagenet.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;

public class Activity2 extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity2);
}
}

 7 . Modify the MainActivity.java file as shown in bold:

packagenet.learn2develop.Activities;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.util.Log;
importandroid.view.Window;

importandroid.view.KeyEvent;
importandroid.content.Intent;

publicclassMainActivityextendsActivity{
Stringtag=“Events”;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

//---hidesthetitlebar---
//requestWindowFeature(Window.FEATURE_NO_TITLE);
setContentView(R.layout.main);
Log.d(tag,“IntheonCreate()event”);
}

public boolean onKeyDown(int keyCode, KeyEvent event)
{
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{
startActivity(new Intent(“net.learn2develop.ACTIVITY2”));

46 ❘ chApter 2 activitieS and intentS

}
return false;
}

publicvoidonStart(){//...}
publicvoidonRestart(){//...}
publicvoidonResume(){//...}
publicvoidonPause(){//...}
publicvoidonStop(){//...}
publicvoidonDestroy(){//...}
}

 8 . Press F11 to debug the application on the Android Emulator. When the first activity is loaded, click
the center of the directional pad (see Figure 2-13; on a real device this can be achieved by pressing
down the trackball). The second activity will now be loaded.

Figure 2-13

How It Works

As you have learned, an activity is made up of a UI component (for example, main.xml) and a class
component (for example, MainActivity.java). Hence, if you want to add another activity to a project,
you need to create these two components.

In the AndroidManifest.xml file, specifically you have added the following:

<activityandroid:name=”.Activity2”
android:label=”Activity2”>

Linking Activities Using intents ❘ 47

<intent-filter>
<actionandroid:name=”net.learn2develop.ACTIVITY2”/>
<categoryandroid:name=”android.intent.category.DEFAULT”/>
</intent-filter>
</activity>

Here, you have added a new activity to the application. Note the following:

The name of the new activity added is “➤➤ Activity2”.

The label for the activity is named “➤➤ Activity2”.

The intent filter name for the activity is “➤➤ net.learn2develop.ACTIVITY2”. Other activities that wish
to call this activity will invoke it via this name. Ideally, you should use the reverse domain name of
your company as the intent filter name in order to reduce the chances of another application having
the same intent filter. The next section discusses what happens when two or more activities have the
same intent filter.

The category for the intent filter is “➤➤ android.intent.category.DEFAULT”. You need to add this to
the intent filter so that this activity can be started by another activity using the startActivity()
method (more on this shortly).

In the MainActivity.java file, you implemented the onKeyDown event handler. This event is fired when-
ever the user presses one of the keys on the device. When the user presses the center key on the direc-
tional pad (as represented by the KeyEvent.KEYCODE_DPAD_CENTER constant), you use the startActivity()
method to display Activity2 by creating an instance of the Intent class and passing it the intent filter
name of Activity2 (which is net.learn2develop.ACTIVITY2):

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
if(keyCode==KeyEvent.KEYCODE_DPAD_CENTER)
{
startActivity(new Intent(“net.learn2develop.ACTIVITY2”));
}
returnfalse;
}

Activities in Android can be invoked by any application running on the device. For example, you can
create a new Android project and then display Activity2 by using its net.learn2develop.ACTIVITY2
intent filter. This is one of the fundamental concepts in Android that enables an application to invoke
another easily.

If the activity that you want to invoke is defined within the same project, you can rewrite the preceding
statement like this:

startActivity(newIntent(this,Activity2.class));

However, this approach is applicable only when the activity you want to display is within the same
project as the current activity.

48 ❘ chApter 2 activitieS and intentS

resolving intent Filter collision
In the previous section, you learned that the <intent-filter> element defines how your activity can
be invoked by another activity. What happens if another activity (in either the same or a separate
application) has the same filter name? For example, suppose your application has another activity
named Activity3, with the following entry in the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Activities”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<!--android:theme=”@android:style/Theme.Dialog”-->
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<activityandroid:name=”.Activity2”
android:label=”Activity2”>
<intent-filter>
<actionandroid:name=”net.learn2develop.ACTIVITY2”/>
<categoryandroid:name=”android.intent.category.DEFAULT”/>
</intent-filter>
</activity>
<activity android:name=”.Activity3”
 android:label=”Activity 3”>
<intent-filter>
<action android:name=”net.learn2develop.ACTIVITY2” />
<category android:name=”android.intent.category.DEFAULT” />
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

 If you call the startActivity() method with the following intent, then the Android OS will display
a selection as shown in Figure 2-14:

startActivity(new Intent(“net.learn2develop.ACTIVITY2”));

If you check the “Use by default for this action” item and then select an activity, then the next time
the intent “net.learn2develop.ACTIVITY2” is called again, it will always launch the previous activ-
ity that you have selected.

To clear away this default, go to the Settings application in Android and select Applications ➪
Manage applications and select the application name (see Figure 2-15). When the details of the
application are shown, scroll down to the bottom and click the Clear defaults button.

http://schemas.android.com/apk/res/android

Linking Activities Using intents ❘ 49

Figure 2-14

Figure 2-15

50 ❘ chApter 2 activitieS and intentS

returning results from an intent
The startActivity() method invokes another activity but does not return a result to the current
activity. For example, you may have an activity that prompts the user for username and password.
The information entered by the user in that activity needs to be passed back to the calling activity
for further processing. If you need to pass data back from an activity, you should instead use the
startActivityForResult() method. The following Try It Out demonstrates this.

Obtaining a Result from an Activitytry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Please enter your name” />
<EditText
android:id=”@+id/txt_username”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />
<Button
android:id=”@+id/btn_OK”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”OK” />
</LinearLayout>

 2 . Add the following statements in bold to Activity2.java:

packagenet.learn2develop.Activities;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Intent;
import android.net.Uri;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

publicclassActivity2extendsActivity{
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.activity2);

//---get the OK button---
Button btn = (Button) findViewById(R.id.btn_OK);

//---event handler for the OK button---

http://schemas.android.com/apk/res/android

Linking Activities Using intents ❘ 51

btn.setOnClickListener(new View.OnClickListener()
{
public void onClick(View view) {
Intent data = new Intent();

//---get the EditText view---
EditText txt_username =
(EditText) findViewById(R.id.txt_username);

//---set the data to pass back---
data.setData(Uri.parse(
txt_username.getText().toString()));
setResult(RESULT_OK, data);

//---closes the activity---
finish();
}
});
}
}

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Activities;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.util.Log;
importandroid.view.Window;
importandroid.view.KeyEvent;
importandroid.widget.Toast;
importandroid.content.Intent;

publicclassMainActivityextendsActivity{
Stringtag=“Events”;
int request_Code = 1;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

//---hidesthetitlebar---
//requestWindowFeature(Window.FEATURE_NO_TITLE);

setContentView(R.layout.main);
Log.d(tag,“IntheonCreate()event”);
}

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
if(keyCode==KeyEvent.KEYCODE_DPAD_CENTER)
{
//startActivity(new Intent(“net.learn2develop.ACTIVITY2”));
//startActivity(new Intent(this, Activity2.class));

startActivityForResult(new Intent(

52 ❘ chApter 2 activitieS and intentS

“net.learn2develop.ACTIVITY2”),
request_Code);
}
returnfalse;
}

public void onActivityResult(int requestCode, int resultCode, Intent data)
{
if (requestCode == request_Code) {
if (resultCode == RESULT_OK) {
Toast.makeText(this,data.getData().toString(),
Toast.LENGTH_SHORT).show();
}
}
}

publicvoidonStart(){//...}
publicvoidonRestart(){//...}
publicvoidonResume(){//...}
publicvoidonPause(){//...}
publicvoidonStop(){//...}
publicvoidonDestroy(){//...}
}

 4 . Press F11 to debug the application on the Android Emulator. When the first activity is loaded,
click the center button on the directional pad. Activity2 will now be loaded. Enter your name (see
Figure 2-16) and click the OK button. You will see that the first activity now displays the name you
have entered using the Toast class.

Figure 2-16

Linking Activities Using intents ❘ 53

How It Works

To call an activity and wait for a result to be returned from it, you need to use the
startActivityForResult() method, like this:

startActivityForResult(new Intent(
“net.learn2develop.ACTIVITY2”),
request_Code);

In addition to passing in an Intent object, you need to pass in request code as well. The request code is
simply an integer value that identifi es an activity you are calling. This is needed because when an activity
returns a value, you must have a way to identify it. For example, you may be calling multiple activities
at the same time and some activities may not return immediately (for example, waiting for a reply from
a server). When an activity returns, you need this request code to determine which activity is actually
returned.

NOTE If the request code is set to -1, then calling it using the
startActivityForResult() method is equivalent to calling it using
the startActivity() method. That is, no result will be returned.

In order for an activity to return a value to the calling activity, you use an Intent object to send data
back via the setData() method:

Intentdata=newIntent();

//---gettheEditTextview---
EditTexttxt_username=
(EditText)findViewById(R.id.txt_username);

//---setthedatatopassback---
data.setData(Uri.parse(
txt_username.getText().toString()));
setResult(RESULT_OK,data);

//---closestheactivity---
finish();

The setResult() method sets a result code (either RESULT_OK or RESULT_CANCELLED) and the data (an
Intent object) to be returned back to the calling activity. The finish() method closes the activity and
returns control back to the calling activity.

In the calling activity, you need to implement the onActivityResult() method, which is called whenever
an activity returns:

publicvoidonActivityResult(intrequestCode,intresultCode,Intentdata)
{
if(requestCode==request_Code){
if(resultCode==RESULT_OK){
Toast.makeText(this,data.getData().toString(),

54 ❘ chApter 2 activitieS and intentS

Toast.LENGTH_SHORT).show();
}
}
}

Here, you check for the appropriate request code and display the result that is returned. The returned
result is passed in via the data argument; and you obtain its details through the getData() method.

passing data using an intent object
Besides returning data from an activity, it is also common to pass data to an activity. For example,
in the previous example you may want to set some default text in the EditText view before the activ-
ity is displayed. In this case, you can use the Intent object to pass the data to the target activity. The
following Try It Out shows you how.

Passing Data to the Target Activitytry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
if(keyCode==KeyEvent.KEYCODE_DPAD_CENTER)
{
//startActivity(newIntent(“net.learn2develop.ACTIVITY2”));
//startActivity(newIntent(this,Activity2.class));
/*
startActivityForResult(newIntent(
“net.learn2develop.ACTIVITY2”),
request_Code);
*/

Intent i = new Intent(“net.learn2develop.ACTIVITY2”);
Bundle extras = new Bundle();
extras.putString(“Name”, “Your name here”);
i.putExtras(extras);
startActivityForResult(i, 1);
}
returnfalse;
}

 2 . Add the following statements in bold to Activity2.java:

publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.activity2);

String defaultName=””;
Bundle extras = getIntent().getExtras();
if (extras!=null)
{

Linking Activities Using intents ❘ 55

defaultName = extras.getString(“Name”);
}
//---get the EditText view---
EditText txt_username =
(EditText) findViewById(R.id.txt_username);
txt_username.setHint(defaultName);

//---gettheOKbutton---
Buttonbtn=(Button)findViewById(R.id.btn_OK);

//---eventhandlerfortheOKbutton---
btn.setOnClickListener(newView.OnClickListener()
{
//...
});
}

3 . Press F11 to debug the application on the Android Emulator. When you click the center button of
the directional keypad, notice that the EditText view in the target activity displays the hint text
(see Figure 2-17).

Figure 2-17

NOTE The hint text is placeholder text that is commonly found in EditText
views. It is displayed when the view is empty, and it disappears as soon as the
user types something into it. It is useful for displaying hints that tell users what
type of information they should enter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

56 ❘ chApter 2 activitieS and intentS

How It Works

To use the Intent object to carry data to the target activity, you made use of a Bundle object:

Bundleextras=newBundle();
extras.putString(“Name”,“Yournamehere”);
i.putExtras(extras);

A Bundle object is basically a dictionary object that enables you to set data in key/value pairs. In this
case, you created a key named Name and assigned it a value of “Yournamehere”. The Bundle object is
then added to the Intent object using the putExtras() method.

In the target activity, you first use the getIntent() method to obtain the intent that started the activity.
You then use the getExtras() method to obtain the Bundle object:

Bundleextras=getIntent().getExtras();
if(extras!=null)
{
defaultName=extras.getString(“Name”);
}

The getString() method retrieves the Name key from the Bundle object. The string retrieved is then
assigned to the EditText view using the setHint() method:

//---gettheEditTextview---
EditTexttxt_username=
(EditText)findViewById(R.id.txt_username);
txt_username.setHint(defaultName);

cAlling Built-in ApplicAtionS uSing intentS

Until this point, you have seen how to call activities within your own application. One of the key
aspects of Android programming is using the intent to call activities from other applications. In par-
ticular, your application can call the many built-in applications that are included with an Android
device. For example, if your application needs to enable a user to call a particular person saved in
the Contacts application, you can simply use an Intent object to bring up the Contacts application,
from which the user can select the person to call. This enables your application to present a consis-
tent user experience, and enables you to avoid building another application to retrieve all the con-
tacts in the Contacts application.

The following Try It Out demonstrates how to call some of the built-in applications commonly
found on an Android device.

Calling Built-in Applications Using intentstry it out

codefile Intents.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Intents.

Calling Built-in Applications Using intents ❘ 57

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<Button
android:id=”@+id/btn_webbrowser”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Web Browser” />
<Button
android:id=”@+id/btn_makecalls”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Make Calls” />
<Button
android:id=”@+id/btn_showMap”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Show Map” />
<Button
android:id=”@+id/btn_chooseContact”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Choose Contact” />
</LinearLayout>

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Intents;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Intent;
import android.net.Uri;
import android.provider.ContactsContract;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Toast;

publicclassMainActivityextendsActivity{

Button b1, b2, b3, b4;
int request_Code = 1;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---Web browser button---

http://schemas.android.com/apk/res/android

58 ❘ chApter 2 activitieS and intentS

b1 = (Button) findViewById(R.id.btn_webbrowser);
b1.setOnClickListener(new OnClickListener()
{
public void onClick(View arg0){
Intent i = new
Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse(“http://www.amazon.com”));
startActivity(i);
}
});

//---Make calls button---
b2 = (Button) findViewById(R.id.btn_makecalls);
b2.setOnClickListener(new OnClickListener()
{
public void onClick(View arg0){
Intent i = new
Intent(android.content.Intent.ACTION_DIAL,
 Uri.parse(“tel:+651234567”));
startActivity(i);
}
});

//---Show Map button---
b3 = (Button) findViewById(R.id.btn_showMap);
b3.setOnClickListener(new OnClickListener()
{
public void onClick(View arg0){
Intent i = new
Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse(“geo:37.827500,-122.481670”));
startActivity(i);
}
});

//---Choose Contact button---
b4 = (Button) findViewById(R.id.btn_chooseContact);
b4.setOnClickListener(new OnClickListener()
{
public void onClick(View arg0){
Intent i = new
Intent(android.content.Intent.ACTION_PICK);
i.setType(ContactsContract.Contacts.CONTENT_TYPE);
startActivityForResult(i,request_Code);
}
});
}

public void onActivityResult(int requestCode, int resultCode, Intent data)
{
if (requestCode == request_Code)
{
 if (resultCode == RESULT_OK)
 {

Calling Built-in Applications Using intents ❘ 59

 Toast.makeText(this,data.getData().toString(),
 Toast.LENGTH_SHORT).show();
 Intent i = new Intent(
 android.content.Intent.ACTION_VIEW,
 Uri.parse(data.getData().toString()));
 startActivity(i);
 }
}
}
}

4 . Press F11 to debug the application on the Android Emulator.

5 . Click the Web Browser button to load the Browser application on the emulator (see Figure 2-18).

Figure 2-18

6 . Click the Make Calls button and the Phone application will load (see Figure 2-19).

7 . Similarly, to load the Maps application, shown in Figure 2-20, click the Show Map button.

NOTE In order to display the Maps application, you need to run the application
on an AVD that supports the Google APIs.

8 . Click the Choose Contact application to show a list of contacts that you can select (see
Figure 2-21). Selecting a contact will show details about that contact.

60 ❘ chApter 2 activitieS and intentS

Figure 2-21

How It Works

In this example, you saw how you can use the Intent class to invoke some of the built-in applications in
Android (such as Maps, Phone, Contacts, and Browser).

Figure 2-19 Figure 2-20

Calling Built-in Applications Using intents ❘ 61

In Android, intents usually come in pairs: action and data. The action describes what is to be performed,
such as editing an item, viewing the content of an item, and so on. The data specifi es what is affected, such
as a person in the Contacts database. The data is specifi ed as an Uri object.

Some examples of action are as follows:

ACTION_VIEW➤➤

ACTION_DIAL➤➤

ACTION_PICK➤➤

Some examples of data include the following:

http://www.google.com➤➤

tel:+651234567➤➤

geo:37.827500,-122.481670➤➤

content://contacts➤➤

NOTE The section “Using Intent Filters” will explain the type of data you can
defi ne for use in an activity.

Collectively, the action and data pair describes the operation to be performed. For example, to dial
a phone number, you would use the pair ACTION_DIAL/tel:+651234567. To display a list of contacts
stored in your phone, you use the pair ACTION_VIEW/content://contacts. To pick a contact from the
list of contacts, you use the pair ACTION_PICK/content://contacts.

In the fi rst button, you create an Intent object and then pass two arguments to its constructor — the
action and the data:

Intenti=new
Intent(android.content.Intent.ACTION_VIEW,
Uri.parse(“http://www.amazon.com”));
startActivity(i);

The action here is represented by the android.content.Intent.ACTION_VIEW constant. You use the
parse() method of the Uri class to convert an URL string into an Uri object.

The android.content.Intent.ACTION_VIEW constant actually refers to the “android.intent.action
.VIEW” action, so the preceding could be rewritten as follows:

Intenti=new
Intent(“android.intent.action.VIEW”,
Uri.parse(“http://www.amazon.com”));
startActivity(i);

The preceding code snippet can also be rewritten like this:

Intenti=new
Intent(“android.intent.action.VIEW”);

http://www.google.com

62 ❘ chApter 2 activitieS and intentS

i.setData(Uri.parse(“http://www.amazon.com”));
startActivity(i);

Here, you set the data separately using the setData() method.

For the second button, you dial a specifi c number by passing in the telephone number in the data portion:

Intent i = new
Intent(android.content.Intent.ACTION_DIAL,
Uri.parse(“tel:+651234567”));
startActivity(i);

In this case, the dialer will display the number to be called. The user must still press the dial button to dial
the number. If you want to directly call the number without user intervention, change the action as follows:

Intenti=new
Intent(android.content.Intent.ACTION_CALL,
Uri.parse(“tel:+651234567”));
startActivity(i);

NOTE If you want your application to directly call the specifi ed number, you
need to add the android.permission.CALL_PHONE permission to your application.

If you simply want to display the dialer without specifying any number, simply omit the data portion,
like this:

Intenti=new
Intent(android.content.Intent.ACTION_DIAL);
startActivity(i);

The third button displays a map using the ACTION_VIEW constant:

Intenti=new
Intent(android.content.Intent.ACTION_VIEW,
Uri.parse(“geo:37.827500,-122.481670”));
startActivity(i);

Here, instead of using “http” you use the “geo” scheme.

The fourth button invokes the Contacts application to enable the user to pick a contact. Because you are
asking the user to select a contact, you need the Contacts application to return a value; in this case, you
need to set the type of data to indicate what kind of data needs to be returned:

Intenti=new
Intent(android.content.Intent.ACTION_PICK);
i.setType(ContactsContract.Contacts.CONTENT_TYPE);
startActivityForResult(i,request_Code);

If you want to view and select only those contacts with a phone number, you could set the type as follows:

 i.setType(
 ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE);

Calling Built-in Applications Using intents ❘ 63

In this case, the contacts and their phone numbers are displayed (see Figure 2-22).

Figure 2-22

Because you are expecting a result from the Contacts application, you invoke it using the
startActivityForResult() method, passing in the Intent object and a request code. You need
to implement the onActivityResult() method in order to obtain a result from the activity:

publicvoidonActivityResult(intrequestCode,
intresultCode,Intentdata)
{
if(requestCode==request_Code)
{
if(resultCode==RESULT_OK)
{
Toast.makeText(this,data.getData().toString(),
Toast.LENGTH_SHORT).show();
Intenti=newIntent(
android.content.Intent.ACTION_VIEW,
Uri.parse(data.getData().toString()));
startActivity(i);
}
}
}

In the case of the Contacts application, when you choose a particular contact (using the ACTION_PICK
constant), an URL containing the contact selected is returned, like this:

content://com.android.contacts/contacts/loopup/0r1-1234567890/1

64 ❘ chApter 2 activitieS and intentS

Obtaining this URL is not very useful unless you know what to do with it. Therefore, in this case, you
can create another Intent object to view it:

Intenti=newIntent(
android.content.Intent.ACTION_VIEW,
Uri.parse(data.getData().toString()));
startActivity(i);

This will show details about the selected contact.

understanding the intent object
So far, you have seen the use of the Intent object to call other activities. This is a good time to recap
and gain a more detailed understanding of how the Intent object performs its magic.

First, you see that you can call another activity by passing its action to the constructor of an Intent
object:

startActivity(newIntent(“net.learn2develop.ACTIVITY2”));

The action (in this example “net.learn2develop.ACTIVITY2”) is also known as the component name.
This is used to identify the target activity/application that you want to invoke. You can also rewrite
the component name by specifying the class name of the activity if it resides in your project, like this:

startActivity(newIntent(this,Activity2.class));

You can also create an Intent object by passing in an action constant and data, such as the following:

Intent i = new
Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse(“http://www.amazon.com”));
startActivity(i);

The action portion defines what you want to do, while the data portion contains the data for the tar-
get activity to act upon. You can also pass the data to the Intent object using the setData() method:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW);
 i.setData(Uri.parse(“http://www.amazon.com”));

In this example, you indicate that you want to view a web page with the specified URL. The Android
OS will look for all activities that are able to satisfy your request. This process is known as intent
resolution. The next section discusses in more detail how your activities can be the target of other
activities.

For some intents, there is no need to specify the data. For example, to select a contact from the Contacts
application, you specify the action and then indicate the MIME type using the setType() method:

Intenti=new
Intent(android.content.Intent.ACTION_PICK);
i.setType(ContactsContract.Contacts.CONTENT_TYPE);

Calling Built-in Applications Using intents ❘ 65

The setType() method explicitly specifies the MIME data type to indicate the type of data to
return. The MIME type for ContactsContract.Contacts.CONTENT_TYPE is “vnd.android.cursor
.dir/contact”.

Besides specifying the action, the data, and the type, an Intent object can also specify a category. A
category groups activities into logical units so that Android can use it for further filtering. The next
section discusses categories in more details.

To summarize, an Intent object can contain the following information:

Action➤➤

Data➤➤

Type➤➤

Category➤➤

using intent Filters
Earlier, you saw how an activity can invoke another activity using the Intent object. In order for
other activities to invoke your activity, you need to specify the action and category within the
<intent-filter> element in the AndroidManifest.xml file, like this:

<intent-filter>
<actionandroid:name=”net.learn2develop.ACTIVITY2”/>
<categoryandroid:name=”android.intent.category.DEFAULT”/>
</intent-filter>

This is a very simple example in which one activity calls another using the “net.learn2develop
.ACTIVITY2” action. The following Try It Out shows you a more sophisticated example.

Specifying intent Filters in More Detailstry it out

 1 . Using the Intents project created earlier, add a new class to the project and name it MyBrowserActivity
.java. Also add a new XML file to the res/layout folder and name it browser.xml (see Figure 2-23).

Figure 2-23

66 ❘ chApter 2 activitieS and intentS

 2 . Add the following statements in bold to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Intents”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<activity android:name=”.MyBrowserActivity”
 android:label=”@string/app_name”>
<intent-filter>
<action android:name=”android.intent.action.VIEW” />
<action android:name=”net.learn2develop.MyBrowser” />
<category android:name=”android.intent.category.DEFAULT” />
<data android:scheme=”http” />
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
<uses-permissionandroid:name=”android.permission.CALL_PHONE”/>
<uses-permission android:name=”android.permission.INTERNET” />
</manifest>

 3 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<Button
android:id=”@+id/btn_webbrowser”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”WebBrowser”/>
<Button
android:id=”@+id/btn_makecalls”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”MakeCalls”/>
<Button
android:id=”@+id/btn_showMap”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”ShowMap”/>
<Button
android:id=”@+id/btn_chooseContact”

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Calling Built-in Applications Using intents ❘ 67

android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”ChooseContact”/>
<Button
android:id=”@+id/btn_launchMyBrowser”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Launch My Browser” />
</LinearLayout>

 4 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Intents;

importandroid.app.Activity;
importandroid.content.Intent;
importandroid.net.Uri;
importandroid.os.Bundle;
importandroid.provider.ContactsContract;
importandroid.view.View;
importandroid.view.View.OnClickListener;
importandroid.widget.Button;
importandroid.widget.Toast;

publicclassMainActivityextendsActivity{

Buttonb1,b2,b3,b4,b5;
intrequest_Code=1;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---Webbrowserbutton---
b1=(Button)findViewById(R.id.btn_webbrowser);
b1.setOnClickListener(newOnClickListener()
{
//...
});

//---Makecallsbutton---
b2=(Button)findViewById(R.id.btn_makecalls);
b2.setOnClickListener(newOnClickListener()
{
//...
});

//---ShowMapbutton---
b3=(Button)findViewById(R.id.btn_showMap);
b3.setOnClickListener(newOnClickListener()
{
//...

68 ❘ chApter 2 activitieS and intentS

});

//---ChooseContactbutton---
b4=(Button)findViewById(R.id.btn_chooseContact);
b4.setOnClickListener(newOnClickListener()
{
//...
});

b5 = (Button) findViewById(R.id.btn_launchMyBrowser);
b5.setOnClickListener(new OnClickListener()
{
public void onClick(View arg0)
{
Intent i = new
Intent(“net.learn2develop.MyBrowser”);
i.setData(Uri.parse(“http://www.amazon.com”));
startActivity(i);
}
});
}

publicvoidonActivityResult(intrequestCode,intresultCode,Intentdata)
{
//...
}
}

 5 . Add the following statements in bold to the browser.xml file:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent” >
<WebView
android:id=”@+id/WebView01”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />
</LinearLayout>

 6 . Add the following statements in bold to the MyBrowserActivity.java file:

packagenet.learn2develop.Intents;

import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class MyBrowserActivity extends Activity {

http://schemas.android.com/apk/res/android

Calling Built-in Applications Using intents ❘ 69

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.browser);

Uri url = getIntent().getData();
WebView webView = (WebView) findViewById(R.id.WebView01);
webView.setWebViewClient(new Callback());
webView.loadUrl(url.toString());
}

private class Callback extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {
return(false);
}
}
}

 7 . Press F11 to debug the application on the Android Emulator.

 8 . Click the Launch my Browser button and you should see the new activity displaying the Amazon.com
web page (see Figure 2-24).

Figure 2-24

70 ❘ chApter 2 activitieS and intentS

How It Works

In this example, you created a new activity named MyBrowserActivity. You first needed to declare it in
the AndroidManifest.xml file:

<activityandroid:name=”.MyBrowserActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.VIEW”/>
<actionandroid:name=”net.learn2develop.MyBrowser”/>
<categoryandroid:name=”android.intent.category.DEFAULT”/>
<dataandroid:scheme=”http”/>
</intent-filter>
</activity>

In the <intent-filter> element, you declared it to have two actions, one category, and one data. This
means that all other activities can invoke this activity using either the “android.intent.action.VIEW” or
the “net.learn2develop.MyBrowser” action. For all activities that you want others to call using the start
Activity() or startActivityForResult() methods, they need to have the “android.intent.category
.DEFAULT” category. If not, your activity will not be callable by others. The <data> element specifies the
type of data expected by the activity. In this case, it expects the data to start with the “http://” prefix.

The preceding intent filter could also be rewritten as follows:

<activity android:name=”.MyBrowserActivity”
 android:label=”@string/app_name”>
<intent-filter>
<action android:name=”android.intent.action.VIEW” />
<category android:name=”android.intent.category.DEFAULT” />
<data android:scheme=”http” />
</intent-filter>
<intent-filter>
<action android:name=”net.learn2develop.MyBrowser” />
<category android:name=”android.intent.category.DEFAULT” />
<data android:scheme=”http” />
</intent-filter>
</activity>

Writing the intent filter this way makes it much more readable and logically groups the action, category,
and data within an intent filter.

If you now use the ACTION_VIEW action with the data shown here, Android will display a selection (as
shown in Figure 2-25):

Intenti=new
Intent(android.content.Intent.ACTION_VIEW,
Uri.parse(“http://www.amazon.com”));
startActivity(i);

You can choose between using the Browser application or the Intents application that you are currently
building.

Calling Built-in Applications Using intents ❘ 71

Figure 2-25

Adding categories
You can group your activities into categories by using the <category> element in the intent filter.
Suppose you have added the following <category> element to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Intents”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<activityandroid:name=”.MyBrowserActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.VIEW”/>
<actionandroid:name=”net.learn2develop.MyBrowser”/>
<categoryandroid:name=”android.intent.category.DEFAULT”/>
<category android:name=”net.learn2develop.Apps” />

http://schemas.android.com/apk/res/android

72 ❘ chApter 2 activitieS and intentS

<dataandroid:scheme=”http”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
<uses-permissionandroid:name=”android.permission.CALL_PHONE”/>
<uses-permissionandroid:name=”android.permission.INTERNET”/>
</manifest>

In this case, the following code will invoke the MyBrowerActivity activity:

Intenti=new
Intent(android.content.Intent.ACTION_VIEW,
Uri.parse(“http://www.amazon.com”));
i.addCategory(“net.learn2develop.Apps”);
startActivity(i);

You add the category to the Intent object using the addCategory() method. If you omit the
addCategory() statement, the preceding code will still invoke the MyBrowerActivity activity
because it will still match the default category “android.intent.category.DEFAULT”.

However, if you specify a category that does not match the category defined in the intent filter, it
will not work:

Intenti=new
Intent(“net.learn2develop.MyBrowser”,
Uri.parse(“http://www.amazon.com”));
//---thiscategorydoesnotmatchanyintheintent-filter---
i.addCategory(“net.learn2develop.OtherApps”);
startActivity(i);

The preceding category (“net.learn2develop.OtherApps”) does not match any in the intent filter, so
a run-time exception will be raised.

If you add the preceding category in the intent filter of MyBrowerActivity, then the preceding code
will work:

<intent-filter>
<actionandroid:name=”android.intent.action.VIEW”/>
<actionandroid:name=”net.learn2develop.MyBrowser”/>
<categoryandroid:name=”android.intent.category.DEFAULT”/>
<categoryandroid:name=”net.learn2develop.Apps”/>
<category android:name=”net.learn2develop.OtherApps” />
<dataandroid:scheme=”http”/>
</intent-filter>

You can add multiple categories to an Intent object; for example, the following statements add the
“net.learn2develop.SomeOtherApps” category to the Intent object:

Intenti=new
Intent(“net.learn2develop.MyBrowser”,
Uri.parse(“http://www.amazon.com”));
i.addCategory(“net.learn2develop.OtherApps”);
i.addCategory(“net.learn2develop.SomeOtherApps”);
startActivity(i);

Displaying notifications ❘ 73

Because the intent filter does not define the “net.learn2develop.SomeOtherApps” category, the pre-
ceding code will not be able to invoke the MyBrowerActivity activity. To fix this, you need to add
the “net.learn2develop.SomeOtherApps” category to the intent filter again.

From this example, it is evident that when using an Intent object with categories, all categories added
to the Intent object must fully match those defined in the intent filter before an activity can be invoked.

diSplAying notiFicAtionS

So far, you have been using the Toast class to display messages to the user. While the Toast class is
a handy way to show users alerts, it is not persistent. It flashes on the screen for a few seconds and
then disappears. If it contains important information, users may easily miss it if they are not looking
at the screen.

For messages that are important, you should use a more persistent method. In this case, you should
use the NotificationManager to display a persistent message at the top of the device, commonly
known as the status bar (sometimes also referred to as the notification bar). The following Try It
Out demonstrates how.

Displaying notifications on the Status Bartry it out

codefile Notifications.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Notifications.

 2 . Add a new class file named NotificationView.java to the src folder of the project (see Figure 2-26).
In addition, add a new notification.xml file to the res/layout folder as well.

Figure 2-26

 3 . Populate the notification.xml file as follows:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”

http://schemas.android.com/apk/res/android

74 ❘ chApter 2 activitieS and intentS

android:layout_height=”fill_parent”>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Here are the details for the notification...” />
</LinearLayout>

 4 . Populate the NotificationView.java file as follows:

packagenet.learn2develop.Notifications;

import android.app.Activity;
import android.app.NotificationManager;
import android.os.Bundle;

public class NotificationView extends Activity
{
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.notification);

//---look up the notification manager service---
NotificationManager nm = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);

//---cancel the notification that we started
nm.cancel(getIntent().getExtras().getInt(“notificationID”));
}
}

 5 . Add the following statements in bold to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Notifications”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<activity android:name=”.NotificationView”
android:label=”Details of notification”>
<intent-filter>
<action android:name=”android.intent.action.MAIN” />
<category android:name=”android.intent.category.DEFAULT” />
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>

http://schemas.android.com/apk/res/android

Displaying notifications ❘ 75

<uses-permissionandroid:name=”android.permission.VIBRATE”/>
</manifest>

 6 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<Button
android:id=”@+id/btn_displaynotif”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Display Notification” />
</LinearLayout>

 7 . Finally, add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Notifications;

importandroid.app.Activity;
importandroid.os.Bundle;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.view.View;
import android.widget.Button;

publicclassMainActivityextendsActivity{
int notificationID = 1;
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button button = (Button) findViewById(R.id.btn_displaynotif);
button.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
displayNotification();
}
});
}

protected void displayNotification()
{
//---PendingIntent to launch activity if the user selects
// this notification---
Intent i = new Intent(this, NotificationView.class);
i.putExtra(“notificationID”, notificationID);

PendingIntent pendingIntent =
PendingIntent.getActivity(this, 0, i, 0);

http://schemas.android.com/apk/res/android

76 ❘ chApter 2 activitieS and intentS

NotificationManager nm = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);

Notification notif = new Notification(
R.drawable.icon,
“Reminder: Meeting starts in 5 minutes”,
System.currentTimeMillis());

CharSequence from = “System Alarm”;
CharSequence message = “Meeting with customer at 3pm...”;

notif.setLatestEventInfo(this, from, message, pendingIntent);

//---100ms delay, vibrate for 250ms, pause for 100 ms and
// then vibrate for 500ms---
notif.vibrate = new long[] { 100, 250, 100, 500};
nm.notify(notificationID, notif);
}
}

 8 . Press F11 to debug the application on the Android Emulator.

 9 . Click the Display Notification button (see the top left of Figure 2-27) and a notification will appear
on the status bar.

 10 . Clicking and dragging the status bar down will reveal the notification (see the right of Figure 2-27).

 11 . Clicking on the notification will reveal the NotificationView activity. This also causes the
notification to be dismissed from the status bar.

Figure 2-27

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Displaying notifications ❘ 77

How It Works

To display a notification, you first created an Intent object to point to the NotificationView class:

//---PendingIntenttolaunchactivityiftheuserselects
//thisnotification---
Intenti=newIntent(this,NotificationView.class);
i.putExtra(“notificationID”,notificationID);

This intent will be used to launch another activity when the user selects a notification from the list of noti-
fications. In this example, you added a key/value pair to the Intent object so that you can tag the notifica-
tion ID, identifying the notification to the target activity. This ID will be used to dismiss the notifications
later.

You would also need to create a PendingIntent object. A PendingIntent object helps you to perform an
action on your application’s behalf, often at a later time, regardless of whether your application is run-
ning or not. In this case, you initialized it as follows:

PendingIntentpendingIntent=
PendingIntent.getActivity(this,0,i,0);

The getActivity() method retrieves a PendingIntent object and you set it using the following arguments:

context — Application context➤➤

request code — Request code for the intent➤➤

intent — The intent for launching the target activity➤➤

flags — The flags in which the activity is to be launched➤➤

You then obtain an instance of the NotificationManager class and create an instance of the
Notification class:

NotificationManager nm = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);

Notification notif = new Notification(
R.drawable.icon,
“Reminder: Meeting starts in 5 minutes”,
System.currentTimeMillis());

The Notification class enables you to specify the notification’s main information when the notification
first appears on the status bar. The second argument to the Notification constructor sets the “ticker
text” on the status bar (see Figure 2-28).

Figure 2-28

78 ❘ chApter 2 activitieS and intentS

Next, you set the details of the notification using the setLatestEventInfo() method:

CharSequence from = “System Alarm”;
CharSequence message = “Meeting with customer at 3pm...”;
notif.setLatestEventInfo(this, from, message, pendingIntent);
//---100ms delay, vibrate for 250ms, pause for 100 ms and
// then vibrate for 500ms---
notif.vibrate = new long[] { 100, 250, 100, 500};

The preceding also sets the notification to vibrate the phone. Finally, to display the notification you use
the notify() method:

nm.notify(notificationID, notif);

When the user clicks on the notification, the NotificationView activity is launched. Here, you dismiss
the notification by using the cancel() method of the NotificationManager object and passing it the ID
of the notification (passed in via the Intent object):

//---look up the notification manager service---
NotificationManager nm = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);

//---cancel the notification that we started
nm.cancel(getIntent().getExtras().getInt(“notificationID”));

SummAry

This chapter first provided a detailed look at how activities work and the various forms in which you
can display them. You also learned how to display dialog windows using activities.

The second part of this chapter demonstrated a very important concept in Android — the intent. The
intent is the “glue” that enables different activities to be connected, and is a vital concept to under-
stand when developing for the Android platform.

exerciSeS

 1 . What will happen if you have two or more activities with the same intent filter action name?

 2 . Write the code to invoke the built-in Browser application .

 3 . Which components can you specify in an intent filter?

 4 . What is the difference between the Toast and NotificationManager class?

Answers to the Exercises can be found in Appendix C.

Summary ❘ 79

WhAt you leArned in thiS chApter ⊲

topic key conceptS

creating an activity All activities must be declared in the AndroidManifest.xml file .

key life cycle of an activity When an activity is started, the onStart() and onResume() events

are always called .

When an activity is killed or sent to the background, the

onPause() event is always called .

displaying an activity as a
dialog

Use the showDialog() method and implement the onCreate

Dialog() method .

intent The “glue” that connects different activities

intent filter The “filter” that enables you to specify how your activities should

be called

calling an activity Use the startActivity() or startActivityForResult()

method .

passing data to an activity Use the Bundle object .

components in an Intent
object

An Intent object can contain the following: action, data, type, and

category .

displaying notifications Use the NotificationManager class .

PendingIntent object A PendingIntent object helps you to perform an action on your

application’s behalf, often at a later time, regardless of whether or

not your application is running .

getting to Know the Android
User interface

WhAt you Will leArn in thiS chApter

The various ViewGroups you can use to lay out your views➤➤

How to adapt to changes in screen orientation➤➤

How to manage screen orientation changes➤➤

How to create the UI programmatically➤➤

How to listen for UI notifi cations➤➤

In Chapter 2, you learned about the Activity class and its life cycle. You learned that an activity
is a means by which users interact with the application. However, an activity by itself does not
have a presence on the screen. Instead, it has to draw the screen using Views and ViewGroups. In
this chapter, you will learn the details about creating user interfaces in Android, how users inter-
act with them. In addition, you will learn how to handle changes in screen orientation on your
Android devices.

underStAnding the componentS oF A Screen

In Chapter 2, you saw that the basic unit of an Android application is an activity. An activity
displays the user interface of your application, which may contain widgets like buttons, labels,
text boxes, and so on. Typically, you defi ne your UI using an XML fi le (e.g., the main.xml fi le
located in the res/layout folder), which may look like this:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”

3

http://schemas.android.com/apk/res/android

82 ❘ chApter 3 GettinG to Know the android USer interface

android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>
</LinearLayout>

During run time, you load the XML UI in the onCreate() event handler in your Activity class, using
the setContentView() method of the Activity class:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

During compilation, each element in the XML fi le is compiled into its equivalent Android GUI class,
with attributes represented by methods. The Android system then creates the UI of the activity when
it is loaded.

NOTE While it is always easier to build your UI using an XML fi le, sometimes
you need to build your UI dynamically during run time (for example, when writing
games). Hence, it is also possible to create your UI entirely using code. Later in
this chapter you will see an example of how this can be done.

views and viewgroups
An activity contains Views and ViewGroups. A view is a widget that has an appearance on screen.
Examples of views are buttons, labels, and text boxes. A view derives from the base class android
.view.View.

NOTE Chapters 4 and 5 discuss the various common views in Android.

One or more views can be grouped together into a ViewGroup. A ViewGroup (which is itself a spe-
cial type of view) provides the layout in which you can order the appearance and sequence of views.
Examples of ViewGroups include LinearLayout and FrameLayout. A ViewGroup derives from the
base class android.view.ViewGroup.

Android supports the following ViewGroups:

LinearLayout➤➤

AbsoluteLayout➤➤

Understanding the Components of a Screen ❘ 83

TableLayout➤➤

RelativeLayout➤➤

FrameLayout➤➤

ScrollView➤➤

The following sections describe each of these ViewGroups in more detail. Note that in practice it is
common to combine different types of layouts to create the UI you want.

linearlayout
The LinearLayout arranges views in a single column or a single row. Child views can be arranged
either vertically or horizontally. To see how LinearLayout works, consider the following elements
typically contained in the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>
</LinearLayout>

In the main.xml file, observe that the root element is <LinearLayout> and it has a <TextView> ele-
ment contained within it. The <LinearLayout> element controls the order in which the views con-
tained within it appear.

Each View and ViewGroup has a set of common attributes, some of which are described in Table 3-1.

tABle 3-1: Common Attributes Used in Views and ViewGroups

AttriBute deScription

layout_width Specifies the width of the View or ViewGroup

layout_height Specifies the height of the View or ViewGroup

layout_marginTop Specifies extra space on the top side of the View or ViewGroup

layout_marginBottom Specifies extra space on the bottom side of the View or ViewGroup

layout_marginLeft Specifies extra space on the left side of the View or ViewGroup

layout_marginRight Specifies extra space on the right side of the View or ViewGroup

continues

http://schemas.android.com/apk/res/android

84 ❘ chApter 3 GettinG to Know the android USer interface

AttriBute deScription

layout_gravity Specifi es how child Views are positioned

layout_weight Specifi es how much of the extra space in the layout should be allocated

to the View

layout_x Specifi es the x-coordinate of the View or ViewGroup

layout_y Specifi es the y-coordinate of the View or ViewGroup

NOTE Some of these attributes are applicable only when a View is in a specifi c
ViewGroup. For example, the layout_weight and layout_gravity attributes are
applicable only when a View is in either a LinearLayout or a TableLayout.

For example, the width of the <TextView> element fi lls the entire width of its parent (which is the
screen in this case) using the fill_parent constant. Its height is indicated by the wrap_content con-
stant, which means that its height is the height of its content (in this case, the text contained within
it). If you don’t want to have the <TextView> view occupy the entire row, you can set its layout_width
attribute to wrap_content, like this:

<TextView
android:layout_width=”wrap_content
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>

This will set the width of the view to be equal to the width of the text contained within it.

Consider the following layout:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<TextView
android:layout_width=”105dp”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>
<Button
android:layout_width=”160dp”
android:layout_height=”wrap_content”
android:text=”Button”
/>
</LinearLayout>

tABle 3-1 (continued)

http://schemas.android.com/apk/res/android

Understanding the Components of a Screen ❘ 85

unitS oF meASurement

When specifying the size of an element on an Android UI, you should be aware of
the following units of measurement:

dp➤➤ — Density-independent pixel. 160dp is equivalent to one inch of physical
screen size. This is the recommended unit of measurement when specifying the
dimension of views in your layout. You can specify either “dp” or “dip” when
referring to a density-independent pixel.

sp➤➤ — Scale-independent pixel. This is similar to dpand is recommended for
specifying font sizes.

pt➤➤ — Point. A point is defi ned to be 1/72 of an inch, based on the physical
screen size.

px➤➤ — Pixel. Corresponds to actual pixels on the screen. Using this unit is not
recommended, as your UI may not render correctly on devices with different
screen sizes.

Here, you set the width of both the TextView and Button views to an absolute value. In this case, the
width for the TextView is set to 105 density-independent pixels wide, and the Button to 160 density-
independent pixels wide. Figure 3-1 shows how the views look when viewed on an emulator with a
resolution of 320×480.

Figure 3-2 shows how the views look when viewed on a high-resolution (480×800) emulator.

As you can see, in both emulators the widths of both views are the same with respect to the width of
the emulator. This demonstrates the usefulness of using the dp unit, which ensures that even if the reso-
lution of the target device is different, the size of the view relative to the device remains unchanged.

Figure 3-1 Figure 3-2

86 ❘ chApter 3 GettinG to Know the android USer interface

The preceding example also specifies that the orientation of the layout is vertical:

<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

The default orientation layout is horizontal, so if you omit the android:orientation attribute, the
views will appear as shown in Figure 3-3.

Figure 3-3

In LinearLayout, you can apply the layout_weight and layout_gravity attributes to views con-
tained within it, as the following modifications to main.xml show:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<TextView
android:layout_width=”105dp”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>
<Button
android:layout_width=”160dp”
android:layout_height=”wrap_content”
android:text=”Button”

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Understanding the Components of a Screen ❘ 87

 android:layout_gravity=”right”
 android:layout_weight=”0.2”
 />
<EditText
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:textSize=”18sp”
 android:layout_weight=”0.8”
 />
</LinearLayout>

Figure 3-4 shows that the button is aligned to the right of its parent (which is the LinearLayout)
using the layout_gravity attribute. At the same time, you use the layout_weight attribute to spec-
ify the ratio in which the Button and EditText views occupy the remaining space on the screen. The
total value for the layout_weight attribute must be equal to 1.

Figure 3-4

Absolutelayout
The AbsoluteLayout enables you to specify the exact location of its children. Consider the following
UI defined in main.xml:

<?xmlversion=”1.0”encoding=”utf-8”?>
<AbsoluteLayout
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”

http://schemas.android.com/apk/res/android

88 ❘ chApter 3 GettinG to Know the android USer interface

>
<Button
android:layout_width=”188dp”
android:layout_height=”wrap_content”
android:text=”Button”
android:layout_x=”126px”
android:layout_y=”361px”
/>
<Button
android:layout_width=”113dp”
android:layout_height=”wrap_content”
android:text=”Button”
android:layout_x=”12px”
android:layout_y=”361px”
/>
</AbsoluteLayout>

Figure 3-5 shows the two Button views located at their specified positions using the android_layout_x
and android_layout_y attributes.

Figure 3-5

However, there is a problem with the AbsoluteLayout when the activity is viewed on a high-resolu-
tion screen (see Figure 3-6). For this reason, the AbsoluteLayout has been deprecated since Android
1.5 (although it is still supported in the current version). You should avoid using the AbsoluteLayout
in your UI, as it is not guaranteed to be supported in future versions of Android. You should instead
use the other layouts described in this chapter.

Understanding the Components of a Screen ❘ 89

Figure 3-6

tablelayout
The TableLayout groups views into rows and columns. You use the <TableRow> element to designate
a row in the table. Each row can contain one or more views. Each view you place within a row forms
a cell. The width of each column is determined by the largest width of each cell in that column.

Consider the content of main.xml shown here:

<?xmlversion=”1.0”encoding=”utf-8”?>
<TableLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
android:layout_height=”fill_parent”
android:layout_width=”fill_parent”
>
<TableRow>
<TextView
android:text=”UserName:”
android:width=”120px”
/>
<EditText
android:id=”@+id/txtUserName”
android:width=”200px”/>
</TableRow>

http://schemas.android.com/apk/res/android

90 ❘ chApter 3 GettinG to Know the android USer interface

<TableRow>
<TextView
android:text=”Password:”
/>
<EditText
android:id=”@+id/txtPassword”
android:password=”true”
/>
</TableRow>
<TableRow>
<TextView/>
<CheckBoxandroid:id=”@+id/chkRememberPassword”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”RememberPassword”
/>
</TableRow>
<TableRow>
<Button
android:id=”@+id/buttonSignIn”
android:text=”LogIn”/>
</TableRow>
</TableLayout>

Figure 3-7 shows what the preceding looks like when rendered on the Android Emulator.

Figure 3-7

Note that in the preceding example, there are two columns and four rows in the TableLayout. The cell
directly under the Password TextView is populated with an <TextView/> empty element. If you don’t do
this, the Remember Password checkbox will appear under the Password TextView, as shown in Figure 3-8.

Understanding the Components of a Screen ❘ 91

Figure 3-8

relativelayout
The RelativeLayout enables you to specify how child views are positioned relative to each other.
Consider the following main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayout
android:id=”@+id/RLayout”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<TextView
android:id=”@+id/lblComments”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Comments”
 android:layout_alignParentTop=”true”
 android:layout_alignParentLeft=”true”
/>
<EditText
android:id=”@+id/txtComments”
android:layout_width=”fill_parent”
android:layout_height=”170px”
android:textSize=”18sp”
 android:layout_alignLeft=”@+id/lblComments”
 android:layout_below=”@+id/lblComments”
 android:layout_centerHorizontal=”true”
/>
<Button
android:id=”@+id/btnSave”

http://schemas.android.com/apk/res/android

92 ❘ chApter 3 GettinG to Know the android USer interface

android:layout_width=”125px”
android:layout_height=”wrap_content”
android:text=”Save”
 android:layout_below=”@+id/txtComments”
 android:layout_alignRight=”@+id/txtComments”
/>
<Button
android:id=”@+id/btnCancel”
android:layout_width=”124px”
android:layout_height=”wrap_content”
android:text=”Cancel”
 android:layout_below=”@+id/txtComments”
 android:layout_alignLeft=”@+id/txtComments”
/>
</RelativeLayout>

Notice that each view embedded within the RelativeLayout has attributes that enable it to align
with another view. These attributes are as follows:

layout_alignParentTop➤➤

layout_alignParentLeft➤➤

layout_alignLeft➤➤

layout_alignRight➤➤

layout_below➤➤

layout_centerHorizontal➤➤

The value for each of these attributes is the ID for the view that you are referencing. The preceding
XML UI creates the screen shown in Figure 3-9.

Figure 3-9

Understanding the Components of a Screen ❘ 93

Framelayout
The FrameLayout is a placeholder on screen that you can use to display a single view. Views that you
add to a FrameLayout are always anchored to the top left of the layout. Consider the following con-
tent in main.xml:

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayout
android:id=”@+id/RLayout”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<TextView
android:id=”@+id/lblComments”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Thisismylovelydog,Ookii”
android:layout_alignParentTop=”true”
android:layout_alignParentLeft=”true”
/>
<FrameLayout
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:layout_alignLeft=”@+id/lblComments”
android:layout_below=”@+id/lblComments”
android:layout_centerHorizontal=”true”
>
<ImageView
android:src=“@drawable/ookii”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
/>
</FrameLayout>
</RelativeLayout>

Here, you have a FrameLayout within a RelativeLayout. Within the FrameLayout, you embed an
ImageView. The UI is shown in Figure 3-10.

NOTE This example assumes that the res/drawable-mdpi folder has an image
named ookii.png.

If you add another view (such as a Button view) within the FrameLayout, the view will overlap the
previous view (see Figure 3-11):

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayout
android:id=”@+id/RLayout”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”

http://schemas.android.com/apk/res/android

94 ❘ chApter 3 GettinG to Know the android USer interface

xmlns:android=”http://schemas.android.com/apk/res/android”
>
<TextView
android:id=”@+id/lblComments”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Thisismylovelydog,Ookii”
android:layout_alignParentTop=”true”
android:layout_alignParentLeft=”true”
/>
<FrameLayout
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:layout_alignLeft=”@+id/lblComments”
android:layout_below=”@+id/lblComments”
android:layout_centerHorizontal=”true”
>
<ImageView
android:src=“@drawable/ookii”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
/>
<Button
 android:layout_width=”124dp”
 android:layout_height=”wrap_content”
 android:text=”Print Picture”
 />
</FrameLayout>
</RelativeLayout>

Figure 3-10

http://schemas.android.com/apk/res/android

Understanding the Components of a Screen ❘ 95

Figure 3-11

NOTE You can add multiple views to a FrameLayout, but each will be stacked on
top of the previous one. This is useful in cases where you want to animate series
of images, with only one visible at a time.

Scrollview
A ScrollView is a special type of FrameLayout in that it enables users to scroll through a list of views
that occupy more space than the physical display. The ScrollView can contain only one child view or
ViewGroup, which normally is a LinearLayout.

NOTE Do not use a ListView (discussed in Chapter 4) together with the
ScrollView. The ListView is designed for showing a list of related information
and is optimized for dealing with large lists.

The following main.xml content shows a ScrollView containing a LinearLayout, which in turn
contains some Button and EditText views:

<?xmlversion=”1.0”encoding=”utf-8”?>
<ScrollView
android:layout_width=”fill_parent”

96 ❘ chApter 3 GettinG to Know the android USer interface

android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<LinearLayout
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:orientation=”vertical”
>
<Button
android:id=”@+id/button1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Button1”
/>
<Button
android:id=”@+id/button2”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Button2”
/>
<Button
android:id=”@+id/button3”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Button3”
/>
<EditText
android:id=”@+id/txt”
android:layout_width=”fill_parent”
android:layout_height=”300px”
/>
<Button
android:id=”@+id/button4”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Button4”
/>
<Button
android:id=”@+id/button5”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Button5”
/>
</LinearLayout>
</ScrollView>

Figure 3-12 shows the ScrollView enabling the users to drag the screen upward to reveal the views
located at the bottom of the screen.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://schemas.android.com/apk/res/android

Adapting to Display Orientation ❘ 97

Figure 3-12

AdApting to diSplAy orientAtion

One of the key features of modern smartphones is their ability to switch screen orientation, and
Android is no exception. Android supports two screen orientations: portrait and landscape. By default,
when you change the display orientation of your Android device, the current activity that is displayed
will automatically redraw its content in the new orientation. This is because the onCreate() event of
the activity is fi red whenever there is a change in display orientation.

NOTE When you change the orientation of your Android device, your current
activity is actually destroyed and then re-created.

However, when the views are redrawn, they may be drawn in their original locations (depending on
the layout selected). Figure 3-13 shows one of the examples illustrated earlier displayed in both por-
trait and landscape mode.

As you can observe in landscape mode, a lot of empty space on the right of the screen could be used.
Furthermore, any additional views at the bottom of the screen would be hidden when the screen ori-
entation is set to landscape.

98 ❘ chApter 3 GettinG to Know the android USer interface

Figure 3-13

In general, you can employ two techniques to handle changes in screen orientation:

Anchoring➤➤ — The easiest way is to “anchor” your views to the four edges of the screen.
When the screen orientation changes, the views can anchor neatly to the edges.

Resizing and repositioning➤➤ — Whereas anchoring and centralizing are simple techniques to
ensure that views can handle changes in screen orientation, the ultimate technique is resizing
each and every view according to the current screen orientation.

Anchoring views
Anchoring could be easily achieved by using RelativeLayout. Consider the following main.xml
containing five Button views embedded within the <RelativeLayout> element:

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayout
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<Button
android:id=”@+id/button1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”TopLeftButton”
 android:layout_alignParentLeft=”true”
 android:layout_alignParentTop=”true”
/>

http://schemas.android.com/apk/res/android

Adapting to Display Orientation ❘ 99

<Button
android:id=”@+id/button2”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”TopRightButton”
 android:layout_alignParentTop=”true”
 android:layout_alignParentRight=”true”
/>
<Button
android:id=”@+id/button3”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”BottomLeftButton”
 android:layout_alignParentLeft=”true”
 android:layout_alignParentBottom=”true”
/>
<Button
android:id=”@+id/button4”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”BottomRightButton”
 android:layout_alignParentRight=”true”
 android:layout_alignParentBottom=”true”
/>
<Button
android:id=”@+id/button5”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”MiddleButton”
 android:layout_centerVertical=”true”
 android:layout_centerHorizontal=”true”
/>
</RelativeLayout>

Observe the following attributes found in the various Button views:

layout_alignParentLeft➤➤ — Aligns the view to the left of the parent view

layout_alignParentRight➤➤ — Aligns the view to the right of the parent view

layout_alignParentTop➤➤ — Aligns the view to the top of the parent view

layout_alignParentBottom➤➤ — Aligns the view to the bottom of the parent view

layout_centerVertical➤➤ — Centers the view vertically within its parent view

layout_centerHorizontal➤➤ — Centers the view horizontally within its parent view

Figure 3-14 shows the activity when viewed in portrait mode.

When the screen orientation changes to landscape mode, the four buttons are aligned to the four
edges of the screen, and the center button is centered in the middle of the screen with its width fully
stretched (see Figure 3-15).

100 ❘ chApter 3 GettinG to Know the android USer interface

Figure 3-14

Figure 3-15

Adapting to Display Orientation ❘ 101

resizing and repositioning
Apart from anchoring your views to the four edges of the screen, an easier way to
customize the UI based on screen orientation is to create a separate res/layout
folder containing the XML files for the UI of each orientation. To support land-
scape mode, you can create a new folder in the res folder and name it as
layout-land (representing landscape). Figure 3-16 shows the new folder
containing the file main.xml.

Basically, the main.xml file contained within the layout folder defines the UI
for the activity in portrait mode, whereas the main.xml file in the layout-land
folder defines the UI in landscape mode.

The following shows the content of main.xml under the layout folder:

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayout
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<Button
android:id=”@+id/button1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”TopLeftButton”
android:layout_alignParentLeft=”true”
android:layout_alignParentTop=”true”
/>
<Button
android:id=”@+id/button2”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”TopRightButton”
android:layout_alignParentTop=”true”
android:layout_alignParentRight=”true”
/>
<Button
android:id=”@+id/button3”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”BottomLeftButton”
android:layout_alignParentLeft=”true”
android:layout_alignParentBottom=”true”
/>
<Button
android:id=”@+id/button4”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”BottomRightButton”
android:layout_alignParentRight=”true”
android:layout_alignParentBottom=”true”
/>

Figure 3-16

http://schemas.android.com/apk/res/android

102 ❘ chApter 3 GettinG to Know the android USer interface

<Button
android:id=”@+id/button5”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”MiddleButton”
android:layout_centerVertical=”true”
android:layout_centerHorizontal=”true”
/>
</RelativeLayout>

The following shows the content of main.xml under the layout-land folder (the statements in bold
are the additional views to display in landscape mode):

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayout
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<Button
android:id=”@+id/button1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”TopLeftButton”
android:layout_alignParentLeft=”true”
android:layout_alignParentTop=”true”
/>
<Button
android:id=”@+id/button2”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”TopRightButton”
android:layout_alignParentTop=”true”
android:layout_alignParentRight=”true”
/>
<Button
android:id=”@+id/button3”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”BottomLeftButton”
android:layout_alignParentLeft=”true”
android:layout_alignParentBottom=”true”
/>
<Button
android:id=”@+id/button4”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”BottomRightButton”
android:layout_alignParentRight=”true”
android:layout_alignParentBottom=”true”
/>
<Button
android:id=”@+id/button5”
android:layout_width=”fill_parent”

http://schemas.android.com/apk/res/android

Adapting to Display Orientation ❘ 103

android:layout_height=”wrap_content”
android:text=”MiddleButton”
android:layout_centerVertical=”true”
android:layout_centerHorizontal=”true”
/>
<Button
 android:id=”@+id/button6”
 android:layout_width=”180px”
 android:layout_height=”wrap_content”
 android:text=”Top Middle Button”
 android:layout_centerVertical=”true”
 android:layout_centerHorizontal=”true”
 android:layout_alignParentTop=”true”
 />
 <Button
 android:id=”@+id/button7”
 android:layout_width=”180px”
 android:layout_height=”wrap_content”
 android:text=”Bottom Middle Button”
 android:layout_centerVertical=”true”
 android:layout_centerHorizontal=”true”
 android:layout_alignParentBottom=”true”
 />
</RelativeLayout>

When the activity is loaded in portrait mode, it will show five buttons, as shown in Figure 3-17.

Figure 3-17

104 ❘ chApter 3 GettinG to Know the android USer interface

When the activity is loaded in landscape mode, there are now seven buttons (see Figure 3-18), proving
that different XML files are loaded when the device is in a different orientation.

Figure 3-18

Using this method, when the orientation of the device changes, Android will automatically load the
appropriate XML file for your activity depending on the current screen orientation.

mAnAging chAngeS to Screen orientAtion

Now that you have looked at how to implement the two techniques for adapting to screen orienta-
tion changes, let’s explore what happens to an activity’s state when the device changes orientation.

The following Try It Out demonstrates the behavior of an activity when the device changes orientation.

Understanding Activity Behavior When Orientation Changestry it out

codefile Orientations.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Orientations.

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”

http://schemas.android.com/apk/res/android

Managing Changes to Screen Orientation ❘ 105

android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<EditText
 android:id=”@+id/txtField1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content” />
<EditText
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content” />
</LinearLayout>

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Orientations;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.util.Log;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
 Log.d(“StateInfo”, “onCreate”);
}

@Override
 public void onStart() {
 Log.d(“StateInfo”, “onStart”);
 super.onStart();
 }

 @Override
 public void onResume() {
 Log.d(“StateInfo”, “onResume”);
 super.onResume();
 }

 @Override
 public void onPause() {
 Log.d(“StateInfo”, “onPause”);
 super.onPause();
 }

 @Override
 public void onStop() {
 Log.d(“StateInfo”, “onStop”);
 super.onStop();
 }

106 ❘ chApter 3 GettinG to Know the android USer interface

 @Override
 public void onDestroy() {
 Log.d(“StateInfo”, “onDestroy”);
 super.onDestroy();
 }

 @Override
 public void onRestart() {
 Log.d(“StateInfo”, “onRestart”);
 super.onRestart();
 }
}

 4 . Press F11 to debug the application on the Android Emulator.

 5 . Enter some text into the two EditText views (see Figure 3-19).

 6 . Change the orientation of the Android Emulator by pressing Ctrl+F11. Figure 3-20 shows the emu-
lator in landscape mode. Note that the text in the first EditText view is still visible, while the second
EditText view is now empty.

 7 . Observe the output in the LogCat window (you need to switch to the Debug perspective in
Eclipse). You should see something like this:

01-0513:32:30.266:DEBUG/StateInfo(5477):onCreate
01-0513:32:30.296:DEBUG/StateInfo(5477):onStart
01-0513:32:30.296:DEBUG/StateInfo(5477):onResume
...
01-0513:35:20.106:DEBUG/StateInfo(5477):onPause
01-0513:35:20.106:DEBUG/StateInfo(5477):onStop
01-0513:35:20.106:DEBUG/StateInfo(5477):onDestroy
01-0513:35:20.246:DEBUG/StateInfo(5477):onCreate
01-0513:35:20.256:DEBUG/StateInfo(5477):onStart
01-0513:35:20.256:DEBUG/StateInfo(5477):onResume

How It Works

From the output shown in the LogCat window, it is apparent that when the device changes orientation,
the activity is destroyed:

01-0513:35:20.106:DEBUG/StateInfo(5477):onPause
01-0513:35:20.106:DEBUG/StateInfo(5477):onStop
01-0513:35:20.106:DEBUG/StateInfo(5477):onDestroy

It is then re-created:

01-0513:35:20.246:DEBUG/StateInfo(5477):onCreate
01-0513:35:20.256:DEBUG/StateInfo(5477):onStart
01-0513:35:20.256:DEBUG/StateInfo(5477):onResume

It is important that you understand this behavior because you need to ensure that you take the neces-
sary steps to preserve the state of your activity before it changes orientation. For example, you may have
variables containing values needed for some calculations in the activity. For any activity, you should save
whatever state you need to save in the onPause() event, which is fired every time the activity changes ori-
entation. The following section demonstrates the different ways to save this state information.

Managing Changes to Screen Orientation ❘ 107

Figure 3-19

Figure 3-20

108 ❘ chApter 3 GettinG to Know the android USer interface

Another important behavior to understand is that only views that are named (via the android:id attri-
bute) in an activity will have their state persisted when the activity they are contained in is destroyed.
For example, the user may change orientation while entering some text into an EditText view. When
this happens, any text inside the EditText view will be persisted and restored automatically when the
activity is re-created. In contrast, if you do not name the EditText view using the android:id attribute,
the activity will not be able to persist the text currently contained within it.

persisting State information during changes in configuration
So far, you have learned that changing screen orientation destroys an activity and re-creates it. Keep in
mind that when an activity is re-created, the current state of the activity may be lost. When an activity
is killed, it will fire one or more of the following two events:

onPause()➤➤ — This event is always fired whenever an activity is killed or pushed into the
background.

onSaveInstanceState()➤➤ — This event is also fired whenever an activity is about to be killed
or put into the background (just like the onPause() event). However, unlike the onPause()
event, the onSaveInstanceState event is not fired when an activity is being unloaded from
the stack (for example, when the user pressed the Back button), because there is no need to
restore its state later.

In short, to preserve the state of an activity, you could always implement the onPause() event, and
then use your own ways to preserve the state of your activity, such as using a database, internal or
external file storage, etc.

If you simply want to preserve the state of an activity so that it can be restored later when the activity
is re-created (such as when the device changes orientation), a much simpler way would be to imple-
ment the onSaveInstanceState() method, as it provides a Bundle object as an argument so that you
can use it to save your activity’s state. The following code shows that you can save the string ID into
the Bundle object during the onSaveInstanceState event:

@Override
publicvoidonSaveInstanceState(BundleoutState){
//---savewhateveryouneedtopersist---
outState.putString(“ID”,“1234567890”);
super.onSaveInstanceState(outState);
}

When an activity is re-created, the onCreate() event is first fired, followed by the
onRestoreInstanceState() event, which enables you to retrieve the state that you saved
previously in the onSaveInstanceState event through the Bundle object in its argument:

@Override
publicvoidonRestoreInstanceState(BundlesavedInstanceState){
super.onRestoreInstanceState(savedInstanceState);
//---retrievetheinformationpersistedearlier---
StringID=savedInstanceState.getString(“ID”);
}

Managing Changes to Screen Orientation ❘ 109

Although you can use the onSaveInstanceState() event to save state information, note the limitation
that you can only save your state information into a Bundle object. If you need to save more complex
data structures, then this is not an adequate solution.

Another event handler that you can use is the onRetainNonConfigurationInstance() event. This
event is fi red when an activity is about to be destroyed due to a confi guration change. You can save
your current data by returning it in this event, like this:

@Override
publicObjectonRetainNonConfigurationInstance(){
//---savewhateveryouwanthere;ittakesinanObjecttype---
return(“Sometexttopreserve”);
}

NOTE When screen orientation changes, this change is part of what is known
as a confi guration change. A confi guration change will cause your current activ-
ity to be destroyed.

Note that this event returns an Object type, which pretty much allows you to return any data type.
To extract the saved data, you can extract it in the onCreate() event, using the
getLastNonConfigurationInstance() method, like this:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Log.d(“StateInfo”,“onCreate”);
 String str = (String) getLastNonConfigurationInstance();
}

detecting orientation changes
Sometimes you need to know the device’s current orientation during run time. To determine that,
you can use the WindowManager class. The following code snippet demonstrates how you can pro-
grammatically detect the current orientation of your activity:

import android.util.Log;
import android.view.Display;
import android.view.WindowManager;
//...
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---getthecurrentdisplayinfo---
 WindowManager wm = getWindowManager();
 Display d = wm.getDefaultDisplay();

 if (d.getWidth() > d.getHeight())

110 ❘ chApter 3 GettinG to Know the android USer interface

 {
 //---landscape mode---
 Log.d(“Orientation”, “Landscape mode”);
 }
 else
 {
 //---portrait mode---
 Log.d(“Orientation”, “Portrait mode”);
 }
}

The getDefaultDisplay()method returns a Display object representing the screen of the device.
You can then get its width and height and deduce the current orientation.

controlling the orientation of the Activity
Occasionally you might want to ensure that your application is only displayed in a certain orienta-
tion. For example, you may be writing a game that should only be viewed in landscape mode. In this
case, you can programmatically force a change in orientation using the setRequestOrientation()
method of the Activity class:

import android.content.pm.ActivityInfo;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
//---changetolandscapemode---
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
}

To change to portrait mode, use the ActivityInfo.SCREEN_ORIENTATION_PORTRAIT constant:

 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

Besides using the setRequestOrientation() method, you can also use the android:screenOrientation
attribute on the <activity> element in AndroidManifest.xml as follows to constrain the activity to a
certain orientation:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Orientations”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”
 android:screenOrientation=”landscape” >
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>

http://schemas.android.com/apk/res/android

Creating the User interface Programmatically ❘ 111

</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

The preceding example constrains the activity to a certain orientation (landscape in this case) and pre-
vents the activity from being destroyed; that is, the activity will not be destroyed and the onCreate()
event will not be fired again when the orientation of the device changes.

Following are two other values that you can specify in the android:screenOrientation attribute:

portrait➤➤ — Portrait mode

sensor➤➤ — Based on the accelerometer

creAting the uSer interFAce progrAmmAticAlly

So far, all the UIs you have seen in this chapter are created using XML. As mentioned earlier, besides
using XML you can also create the UI using code. This approach is useful if your UI needs to be dynami-
cally generated during run time. For example, suppose you are building a cinema ticket reservation sys-
tem and your application will display the seats of each cinema using buttons. In this case, you would need
to dynamically generate the UI based on the cinema selected by the user.

The following Try It Out demonstrates the code needed to dynamically build the UI in your activity.

Creating the Ui via Codetry it out

codefile UICode.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it UICode.

 2 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.UICode;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.view.ViewGroup.LayoutParams;
import android.widget.Button;
import android.widget.LinearLayout;
import android.widget.TextView;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
//setContentView(R.layout.main);

//---paramforviews---
 LayoutParams params =

112 ❘ chApter 3 GettinG to Know the android USer interface

 new LinearLayout.LayoutParams(
 LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT);

 //---create a layout---
 LinearLayout layout = new LinearLayout(this);
 layout.setOrientation(LinearLayout.VERTICAL);

 //---create a textview---
 TextView tv = new TextView(this);
 tv.setText(“This is a TextView”);
 tv.setLayoutParams(params);

 //---create a button---
 Button btn = new Button(this);
 btn.setText(“This is a Button”);
 btn.setLayoutParams(params);

 //---adds the textview---
 layout.addView(tv);

 //---adds the button---
 layout.addView(btn);

 //---create a layout param for the layout---
 LinearLayout.LayoutParams layoutParam =
 new LinearLayout.LayoutParams(
 LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT);

 this.addContentView(layout, layoutParam);
}
}

 3 . Press F11 to debug the application on the Android Emulator. Figure 3-21 shows the activity created.

How It Works

In this example, you first commented out the setContentView() statement so that it does not load the
UI from the main.xml file.

You then created a LayoutParams object to specify the layout parameter that can be used by other views
(which you will create next):

//---paramforviews---
LayoutParamsparams=
newLinearLayout.LayoutParams(
LayoutParams.FILL_PARENT,
LayoutParams.WRAP_CONTENT);

You also created a LinearLayout object to contain all the views in your activity:

//---createalayout---
LinearLayoutlayout=newLinearLayout(this);
layout.setOrientation(LinearLayout.VERTICAL);

Creating the User interface Programmatically ❘ 113

Figure 3-21

Next, you created a TextView and a Button view:

//---createatextview---
TextViewtv=newTextView(this);
tv.setText(“ThisisaTextView”);
tv.setLayoutParams(params);

//---createabutton---
Buttonbtn=newButton(this);
btn.setText(“ThisisaButton”);
btn.setLayoutParams(params);

You then added them to the LinearLayout object:

//---addsthetextview---
layout.addView(tv);

//---addsthebutton---
layout.addView(btn);

You also created a LayoutParams object to be used by the LinearLayout object:

//---createalayoutparamforthelayout---
LinearLayout.LayoutParamslayoutParam=
newLinearLayout.LayoutParams(
LayoutParams.FILL_PARENT,
LayoutParams.WRAP_CONTENT);

114 ❘ chApter 3 GettinG to Know the android USer interface

Finally, you added the LinearLayout object to the activity:

this.addContentView(layout,layoutParam);

As you can see, using code to create the UI is quite a laborious affair. Hence, dynamically generate your
UI using code only when necessary.

liStening For ui notiFicAtionS

Users interact with your UI at two levels: the activity level and the views level. At the activity level,
the Activity class exposes methods that you can override. Some common methods that you can
override in your activities include the following:

onKeyDown➤➤ — Called when a key was pressed and not handled by any of the views contained
within the activity

onKeyUp➤➤ — Called when a key was released and not handled by any of the views contained
within the activity

onMenuItemSelected➤➤ — Called when a panel’s menu item has been selected by the user (cov-
ered in Chapter 5)

onMenuOpened➤➤ — Called when a panel’s menu is opened by the user (covered in Chapter 5)

overriding methods defined in an Activity
To understand how activities interact with the user, let’s start off by overriding some of the methods
defined in the activity’s base class and learn how they are handled when the user interacts with the
activity.

Overriding Activity Methodstry it out

codefile UIActivity.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it UIActivity.

 2 . Add the following statements in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayout
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:orientation=”vertical”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
 <TextView
 android:layout_width=”214dp”

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://schemas.android.com/apk/res/android

Listening for Ui notifications ❘ 115

 android:layout_height=”wrap_content”
 android:text=”Your Name”
 />
 <EditText
 android:id=”@+id/txt1”
 android:layout_width=”214dp”
 android:layout_height=”wrap_content”
 />
 <Button
 android:id=”@+id/btn1”
 android:layout_width=”106dp”
 android:layout_height=”wrap_content”
 android:text=”OK”
 />
 <Button
 android:id=”@+id/btn2”
 android:layout_width=”106dp”
 android:layout_height=”wrap_content”
 android:text=”Cancel”
 />
</LinearLayout>

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.UIActivity;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.view.KeyEvent;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

@Override
 public boolean onKeyDown(int keyCode, KeyEvent event)
 {
 switch (keyCode)
 {
 case KeyEvent.KEYCODE_DPAD_CENTER:
 Toast.makeText(getBaseContext(),
 “Center was clicked”,
 Toast.LENGTH_LONG).show();
 break;
 case KeyEvent.KEYCODE_DPAD_LEFT:
 Toast.makeText(getBaseContext(),
 “Left arrow was clicked”,

116 ❘ chApter 3 GettinG to Know the android USer interface

 Toast.LENGTH_LONG).show();
 break;
 case KeyEvent.KEYCODE_DPAD_RIGHT:
 Toast.makeText(getBaseContext(),
 “Right arrow was clicked”,
 Toast.LENGTH_LONG).show();
 break;
 case KeyEvent.KEYCODE_DPAD_UP:
 Toast.makeText(getBaseContext(),
 “Up arrow was clicked”,
 Toast.LENGTH_LONG).show();

 break;
 case KeyEvent.KEYCODE_DPAD_DOWN:
 Toast.makeText(getBaseContext(),
 “Down arrow was clicked”,
 Toast.LENGTH_LONG).show();
 break;
 }
 return false;
 }
}

 4 . Press F11 to debug the application on the Android Emulator.

 5 . When the activity is loaded, type some text into it, as shown on the left of Figure 3-22. Next, click
the down arrow key on the directional pad. Observe the message shown on the screen, as shown in
the black area on the right of Figure 3-22.

Figure 3-22

How It Works

When the activity is loaded, the cursor will be blinking in the EditText view, as it has the focus.

Listening for Ui notifications ❘ 117

In the MainActivitiy class, you override the onKeyDown() method of the base Activity class, like this:

@Override
publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
switch(keyCode)
{
caseKeyEvent.KEYCODE_DPAD_CENTER:
//...
break;
caseKeyEvent.KEYCODE_DPAD_LEFT:
//...
break;
caseKeyEvent.KEYCODE_DPAD_RIGHT:
//...
break;
caseKeyEvent.KEYCODE_DPAD_UP:
//...
break;
caseKeyEvent.KEYCODE_DPAD_DOWN:
//...
break;
}
returnfalse;
}

In Android, whenever you press any keys on your device, the view that currently has the focus will
try to handle the event generated. In this case, when the EditText has the focus and you press a key,
the EditText view will handle the event and display the character you have just pressed in the view.
However, if you press the up or down directional arrow key, the EditText view does not handle this,
and instead passes the event to the activity. In this case, the onKeyDown() method is called. In this case,
you checked the key that was pressed and displayed a message indicating the key pressed. Observe that
the focus is now also transferred to the next view, which is the OK button.

Interestingly, if the EditText view already has some text in it and the cursor
is at the end of the text (see Figure 3-23), then clicking the left arrow key
does not fire the onKeyDown() event; it simply moves the cursor one character
to the left. This is because the EditText view has already handled the event.
If you press the right arrow key instead, then the onKeyDown() method will
be called (because now the EditText view will not be handling the event).
The same applies when the cursor is at the beginning of the EditText view.
Clicking the left arrow will fire the onKeyDown() event, whereas clicking the
right arrow will simply move the cursor one character to the right.

With the OK button in focus, press the center button in the directional pad. Observe that the message
“Center was clicked” is not displayed. This is because the Button view itself is handling the click event.
Hence the event is not caught by the onKeyDown() method. However, if none of the views is in focus at
the moment (you can achieve this by clicking on the background of the screen), then pressing the center
key will show the “Center was clicked” message (see Figure 3-24).

Figure 3-23

118 ❘ chApter 3 GettinG to Know the android USer interface

Figure 3-24

Note that the onKeyDown() method returns a boolean result. You should return true when you want to
tell the system that you are done with the event and that the system should not proceed further with it.
For example, consider the case when you return true after each key has been matched:

@Override
publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
switch(keyCode)
{
caseKeyEvent.KEYCODE_DPAD_CENTER:
Toast.makeText(getBaseContext(),
“Centerwasclicked”,
Toast.LENGTH_LONG).show();
 return true;
caseKeyEvent.KEYCODE_DPAD_LEFT:
Toast.makeText(getBaseContext(),
“Leftarrowwasclicked”,
Toast.LENGTH_LONG).show();
 return true;
caseKeyEvent.KEYCODE_DPAD_RIGHT:
Toast.makeText(getBaseContext(),
“Rightarrowwasclicked”,
Toast.LENGTH_LONG).show();
 return true;
caseKeyEvent.KEYCODE_DPAD_UP:
Toast.makeText(getBaseContext(),
“Uparrowwasclicked”,
Toast.LENGTH_LONG).show();

Listening for Ui notifications ❘ 119

 return true;
caseKeyEvent.KEYCODE_DPAD_DOWN:
Toast.makeText(getBaseContext(),
“Downarrowwasclicked”,
Toast.LENGTH_LONG).show();
 return true;
}
returnfalse;
}

If you test this, you will see that now you cannot navigate between the views using the arrow keys.

registering events for views
Views can fire events when users interact with them. For example, when a user touches a Button
view, you need to service the event so that the appropriate action can be performed. To do so, you
need to explicitly register events for views.

Using the same example discussed in the previous section, recall that the activity has two Button
views; therefore, you can register the button click events using an anonymous class as shown here:

packagenet.learn2develop.UIActivity;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.view.KeyEvent;
importandroid.view.View;
importandroid.widget.Toast;

import android.view.View.OnClickListener;
import android.widget.Button;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

 //---the two buttons are wired to the same event handler---
 Button btn1 = (Button)findViewById(R.id.btn1);
 btn1.setOnClickListener(btnListener);

 Button btn2 = (Button)findViewById(R.id.btn2);
 btn2.setOnClickListener(btnListener);
 }

 //---create an anonymous class to act as a button click listener---
 private OnClickListener btnListener = new OnClickListener()
 {
 public void onClick(View v)

120 ❘ chApter 3 GettinG to Know the android USer interface

 {
 Toast.makeText(getBaseContext(),
 ((Button) v).getText() + “ was clicked”,
 Toast.LENGTH_LONG).show();
 }
 };

@Override
publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
switch(keyCode)
{
//...
//...
}
returnfalse;
}
}

If you now press either the OK button or the Cancel button, the appropriate message will be dis-
played (see Figure 3-25), proving that the event is wired up properly.

Figure 3-25

Besides defining an anonymous class for the event handler, you can also define an anonymous inner
class to handle an event. The following example shows how you can handle the onFocusChange()
event for the EditText view:

importandroid.widget.EditText;

publicclassMainActivityextendsActivity{

Listening for Ui notifications ❘ 121

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---thetwobuttonsarewiredtothesameeventhandler---
Buttonbtn1=(Button)findViewById(R.id.btn1);
btn1.setOnClickListener(btnListener);

Buttonbtn2=(Button)findViewById(R.id.btn2);
btn2.setOnClickListener(btnListener);

 EditText txt1 = (EditText)findViewById(R.id.txt1);

 //---create an anonymous inner class to act as an onfocus listener---
 txt1.setOnFocusChangeListener(new View.OnFocusChangeListener()
 {
 @Override
 public void onFocusChange(View v, boolean hasFocus) {
 Toast.makeText(getBaseContext(),
 ((EditText) v).getId() + “ has focus - “ + hasFocus,
 Toast.LENGTH_LONG).show();
 }
 });
}

As shown in Figure 3-26, when the EditText view receives the focus, a message is printed on the screen.

Figure 3-26

122 ❘ chApter 3 GettinG to Know the android USer interface

SummAry

In this chapter, you have learned how user interfaces are created in Android. You have also learned
about the different layouts that you can use to position the views in your Android UI. Because Android
devices support more than one screen orientation, you need to take special care to ensure that your UI
can adapt to changes in screen orientation.

exerciSeS

 1 . What is the difference between the dp unit and the px unit? Which one should you use to specify

the dimension of a view?

 2 . Why is the AbsoluteLayout not recommended for use?

 3 . What is the difference between the onPause()event and the onSaveInstanceState() event?

 4 . Name the three events you can override to save an activity’s state .

Answers to Exercises can be found in Appendix C.

Summary ❘ 123

WhAt you leArned in thiS chApter ⊲

topic key conceptS

LinearLayout Arranges views in a single column or single row

AbsoluteLayout Enables you to specify the exact location of its children

TableLayout Groups views into rows and columns

RelativeLayout Enables you to specify how child views are positioned relative to each other

FrameLayout A placeholder on screen that you can use to display a single view

ScrollView A special type of FrameLayout in that it enables users to scroll through a list

of views that occupy more space than the physical display allows

unit of measure Use the dp for specifying the dimension of views and sp for font size

two ways to adapt
to changes in
orientation

Anchoring, and resizing and repositioning

using different
xml files for dif-
ferent orientations

Use the layout folder for portrait UI, and layout-land for landscape UI .

three ways to per-
sist activity state

Use the onPause() event .

Use the onSaveInstanceState() event .

Use the onRetainNonConfigurationInstance() event .

getting the dimen-
sion of the current
device

Use the WindowManager class’s getDefaultDisplay() method .

constraining
the activity’s
orientation

Use the setRequestOrientation() method, or the

android:screenOrientation attribute in the AndroidManifest.xml file .

Designing Your User interface
Using Views

WhAt you Will leArn in thiS chApter

How to use the basic views in Android to design your user interface➤➤

How to use the picker views to display lists of items➤➤

How to use the list views to display lists of items ➤➤

In the previous chapter, you learned about the various layouts that you can use to position
your views in an activity. You also learned about the techniques you can use to adapt to differ-
ent screen resolutions and sizes. In this chapter, you will take a look at the various views that
you can use to design the user interface for your applications.

In particular, you will learn about the following view groups:

Basic views➤➤ — Commonly used views such as the TextView, EditText, and Button
views

Picker views➤➤ — Views that enable users to select from a list, such as the TimePicker
and DatePicker views

List views➤➤ — Views that display a long list of items, such as the ListView and the
SpinnerView views

Subsequent chapters will cover the other views not covered in this chapter, such as the date
and time picker views and other views for displaying graphics, etc.

4

126 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

BASic vieWS

To get started, let’s explore some of the basic views that you can use to design the UI of your
Android applications:

TextView➤➤

EditText➤➤

Button➤➤

ImageButton➤➤

CheckBox➤➤

ToggleButton➤➤

RadioButton➤➤

RadioGroup➤➤

These basic views enable you to display text information, as well as perform some basic selection.
The following sections explore all these views in more detail.

textview view
When you create a new Android project, Eclipse always creates the main.xml fi le (located in the res/
layout folder), which contains a <TextView> element:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>
</LinearLayout>

The TextView view is used to display text to the user. This is the most basic view and one that you
will frequently use when you develop Android applications. If you need to allow users to edit the text
displayed, you should use the subclass of TextView, EditText, which is discussed in the next section.

NOTE In some other platforms, the TextView is commonly known as the label
view. Its sole purpose is to display text on the screen.

http://schemas.android.com/apk/res/android

Basic Views ❘ 127

Button, imageButton, edittext, checkBox, toggleButton,
radioButton, and radiogroup views

Besides the TextView view, which you will likely use the most often, there are some other basic controls
that you will fi nd yourself frequently using: Button, ImageButton, EditText, CheckBox, ToggleButton,
RadioButton, and RadioGroup:

Button➤➤ — Represents a push-button widget

ImageButton➤➤ — Similar to the Button view, except that it also displays an image

EditText➤➤ — A subclass of the TextView view, except that it allows users to edit its text content

CheckBox➤➤ — A special type of button that has two states: checked or unchecked

RadioGroup➤➤ and RadioButton — The RadioButton has two states: either checked or unchecked.
Once a RadioButton is checked, it cannot be unchecked. A RadioGroup is used to group together
one or more RadioButton views, thereby allowing only one RadioButton to be checked within
the RadioGroup.

ToggleButton➤➤ — Displays checked/unchecked states using a light indicator

The following Try It Out provides details about how these views work.

Using the Basic Viewstry it out

codefi le BasicViews1.zip available for download at Wrox.com

1 . Using Eclipse, create an Android project and name it as shown in Figure 4-1.

NOTE For subsequent projects that you will create in this book, the various fi elds
for the project will adopt the following values:

Application Name:➤➤ <project name>

Package name:➤➤ net.learn2develop.<project name>

Create Activity:➤➤ MainActivity

Min SDK Version:➤➤ 9

2 . Modify the main.xml fi le located in the res/layout folder by adding the following elements shown
in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”

http://schemas.android.com/apk/res/android

128 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

android:layout_height=”fill_parent”>

<Button android:id=”@+id/btnSave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Save” />

<Button android:id=”@+id/btnOpen”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Open” />

<ImageButton android:id=”@+id/btnImg1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:src=”@drawable/icon” />

<EditText android:id=”@+id/txtName”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

<CheckBox android:id=”@+id/chkAutosave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Autosave” />

<CheckBox android:id=”@+id/star”
style=”?android:attr/starStyle”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

<RadioGroup android:id=”@+id/rdbGp1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:orientation=”vertical” >
<RadioButton android:id=”@+id/rdb1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option 1” />
<RadioButton android:id=”@+id/rdb2”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option 2” />
</RadioGroup>

<ToggleButton android:id=”@+id/toggle1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

</LinearLayout>

 3 . To see the views in action, debug the project in Eclipse by selecting the project name and pressing F11.

Figure 4-2 shows the various views displayed in the Android Emulator.

Basic Views ❘ 129

Figure 4-1

Figure 4-2

130 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

 4 . Click on the various views and note how they vary in their look and feel. Figure 4-3 shows the fol-
lowing changes to the view:

The first ➤➤ CheckBox view (Autosave) is checked.

The second ➤➤ CheckBox View (star) is checked.

The second ➤➤ RadioButton (Option 2) is selected.

The ➤➤ ToggleButton is turned on.

Figure 4-3

How It Works

So far, all the views are relatively straightforward — they are listed using the <LinearLayout> element,
so they are stacked on top of each other when they are displayed in the activity.

For the first Button, the layout_width attribute is set to fill_parent so that its width occupies the entire
width of the screen:

<Buttonandroid:id=”@+id/btnSave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Save”/>

For the second Button, the layout_width attribute is set to wrap_content so that its width will be the
width of its content — specifically, the text that it is displaying (i.e.,“Open”):

<Buttonandroid:id=”@+id/btnOpen”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Open”/>

Basic Views ❘ 131

The ImageButton displays a button with an image. The image is set through the src attribute. In this
case, you simply use the image used for the application icon:

<ImageButtonandroid:id=”@+id/btnImg1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:src=”@drawable/icon”/>

The EditText view displays a rectangular region where the user can enter some text. You set the layout
_height to wrap_content so that if the user enters a long string of text, its height will automatically be
adjusted to fit the content (see Figure 4-4).

<EditTextandroid:id=”@+id/txtName”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”/>

Figure 4-4

The CheckBox displays a checkbox that users can tap to check or uncheck it:

<CheckBoxandroid:id=”@+id/chkAutosave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Autosave”/>

If you do not like the default look of the CheckBox, you can apply a style attribute to it to display it as
some other image, such as a star:

<CheckBoxandroid:id=”@+id/star”
style=”?android:attr/starStyle”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

The format for the value of the style attribute is as follows:

?[package:][type:]name.

The RadioGroup encloses two RadioButtons. This is important because radio buttons are usually used
to present multiple options to the user for selection. When a RadioButton in a RadioGroup is selected, all
other RadioButtons are automatically unselected:

<RadioGroupandroid:id=”@+id/rdbGp1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:orientation=”vertical”>
<RadioButtonandroid:id=”@+id/rdb1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option 1”/>

132 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

<RadioButtonandroid:id=”@+id/rdb2”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option 2”/>
</RadioGroup>

Notice that theRadioButtons are listed vertically, one on top of another. If you want to list them hori-
zontally, you need to change the orientation attribute to horizontal. You would also need to ensure
that the layout_width attribute of the RadioButtons are set to wrap_content:

<RadioGroupandroid:id=”@+id/rdbGp1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:orientation=”horizontal”>
<RadioButtonandroid:id=”@+id/rdb1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Option 1”/>
<RadioButtonandroid:id=”@+id/rdb2”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Option 2”/>
</RadioGroup>

Figure 4-5 shows the RadioButtons displayed horizontally.

Figure 4-5

The ToogleButton displays a rectangular button that users can toggle on and off by clicking it:

<ToggleButtonandroid:id=”@+id/toggle1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

One thing that has been consistent throughout this example is that each view has the id attribute set to
a particular value, such as in the case of the Button:

<Buttonandroid:id=”@+id/btnSave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Save”/>

The id attribute is an identifier for a view so that it may later be retrieved using the View.findViewById()
or Activity.findViewById() methods.

Basic Views ❘ 133

Now that you have seen how the various views look for an activity, the following Try It Out demon-
strates how you can programmatically control them

Handling View eventstry it out

 1 . Using the same project created in the previous Try It Out, modify the MainActivity.java file by
adding the following statements in bold:

packagenet.learn2develop.BasicViews1;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.view.View;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.Toast;
import android.widget.ToggleButton;
import android.widget.RadioGroup.OnCheckedChangeListener;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---Button view---
Button btnOpen = (Button) findViewById(R.id.btnOpen);
btnOpen.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
DisplayToast(“You have clicked the Open button”);
}
});

//---Button view---
Button btnSave = (Button) findViewById(R.id.btnSave);
btnSave.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v) {
DisplayToast(“You have clicked the Save button”);
}
});

//---CheckBox---
CheckBox checkBox = (CheckBox) findViewById(R.id.chkAutosave);
checkBox.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v) {
if (((CheckBox)v).isChecked())
DisplayToast(“CheckBox is checked”);
else

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

134 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

DisplayToast(“CheckBox is unchecked”);
}
});

//---RadioButton---
RadioGroup radioGroup = (RadioGroup) findViewById(R.id.rdbGp1);
radioGroup.setOnCheckedChangeListener(new OnCheckedChangeListener()
{
public void onCheckedChanged(RadioGroup group, int checkedId) {
RadioButton rb1 = (RadioButton) findViewById(R.id.rdb1);
if (rb1.isChecked()) {
DisplayToast(“Option 1 checked!”);
} else {
DisplayToast(“Option 2 checked!”);
}
}
});

//---ToggleButton---
ToggleButton toggleButton =
(ToggleButton) findViewById(R.id.toggle1);
toggleButton.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v) {
 if (((ToggleButton)v).isChecked())
DisplayToast(“Toggle button is On”);
 else
 DisplayToast(“Toggle button is Off”);
}
});
}

private void DisplayToast(String msg)
{
 Toast.makeText(getBaseContext(), msg,
 Toast.LENGTH_SHORT).show();
}
}

 2 . Press F11 to debug the project on the Android Emulator.

 3 . Click on the various views and observe the message displayed in the Toast window.

How It Works

To handle the events fired by each view, you first have to programmatically locate the view that you cre-
ated during the onCreate() event. You do so using the Activity.findViewById() method, supplying it
with the ID of the view:

//---Buttonview---
ButtonbtnOpen=(Button)findViewById(R.id.btnOpen);

The setOnClickListener() method registers a callback to be invoked later when the view is clicked:

btnOpen.setOnClickListener(newView.OnClickListener(){

Basic Views ❘ 135

publicvoidonClick(Viewv){
DisplayToast(“YouhaveclickedtheOpenbutton”);
}
});

The onClick() method is called when the view is clicked.

For the CheckBox, to determine its state you have to typecast the argument of the onClick() method to
a CheckBox and then check its isChecked() method to see if it is checked:

//---CheckBox---
CheckBoxcheckBox=(CheckBox)findViewById(R.id.chkAutosave);
checkBox.setOnClickListener(newView.OnClickListener()
{
public void onClick(View v) {
if (((CheckBox)v).isChecked())
DisplayToast(“CheckBox is checked”);
else
DisplayToast(“CheckBox is unchecked”);
}
});

For RadioButton, you need to use the setOnCheckedChangeListener() method on the RadioGroup to
register a callback to be invoked when the checked RadioButton changes in this group:

//---RadioButton---
RadioGroupradioGroup=(RadioGroup)findViewById(R.id.rdbGp1);
radioGroup.setOnCheckedChangeListener(new OnCheckedChangeListener()
{
publicvoidonCheckedChanged(RadioGroupgroup,intcheckedId){
RadioButtonrb1=(RadioButton)findViewById(R.id.rdb1);
if(rb1.isChecked()){
DisplayToast(“Option1checked!”);
}else{
DisplayToast(“Option2checked!”);
}
}
});

When a RadioButton is selected, the onCheckedChanged() method is fired. Within it, you locate individ-
ual RadioButtons and then call their isChecked() method to determine which RadioButton is selected.
Alternatively, the onCheckedChanged() method contains a second argument that contains a unique iden-
tifier of the RadioButton selected.

progressBar view
The ProgressBar view provides visual feedback of some ongoing tasks, such as when you are per-
forming a task in the background. For example, you might be downloading some data from the Web
and need to update the user about the status of the download. In this case, the ProgressBar view is a
good choice for this task.

136 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

Using the ProgressBar Viewtry it out

codefile BasicViews2.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project and name it as BasicViews2.

 2 . Modify the main.xml file located in the res/layout folder by adding the following code in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<ProgressBar android:id=”@+id/progressbar”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

</LinearLayout>

 3 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.BasicViews2;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.os.Handler;
import android.widget.ProgressBar;

publicclassMainActivityextendsActivity{

private static int progress;
private ProgressBar progressBar;
private int progressStatus = 0;
private Handler handler = new Handler();

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

progress = 0;
progressBar = (ProgressBar) findViewById(R.id.progressbar);

//---do some work in background thread---
new Thread(new Runnable()
{
public void run()
{
//---do some work here---
while (progressStatus < 10)
{
progressStatus = doSomeWork();

http://schemas.android.com/apk/res/android

Basic Views ❘ 137

}

//---hides the progress bar---
handler.post(new Runnable()
{
public void run()
{
//---0 - VISIBLE; 4 - INVISIBLE; 8 - GONE---
progressBar.setVisibility(8);
}
});
}

//---do some long lasting work here---
private int doSomeWork()
{
try {
//---simulate doing some work---
Thread.sleep(500);
} catch (InterruptedException e)
{
e.printStackTrace();
}
return ++progress;
}
}).start();
}
}

 4 . Press F11 to debug the project on the Android Emulator. Figure 4-6 shows the ProgressBar animating.
After about five seconds, it will disappear.

Figure 4-6

138 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

How It Works

The default mode of the ProgressBar view is indeterminate — that is, it shows a cyclic animation. This
mode is useful for tasks that do not have a clear indication of when they will be completed, such as when
you are sending some data to a web service and waiting for the server to respond. If you simply put
the <ProgressBar> element in your main.xml file, it will display a spinning icon continuously. It is your
responsibility to stop it when your background task has completed.

The code that you have added in the Java file shows how you can spin off a background thread to simu-
late performing some long-running tasks. To do so, you use the Thread class together with a Runnable
object. The run() method starts the execution of the thread, which in this case calls the doSomeWork()
method to simulate doing some work. When the simulated work is done (after about five seconds), you
use a Handler object to send a message to the thread to dismiss the ProgressBar:

//---dosomeworkinbackgroundthread---
newThread(newRunnable()
{
publicvoidrun()
{
//---dosomeworkhere---
while(progressStatus<10)
{
progressStatus=doSomeWork();
}

//---hidestheprogressbar---
handler.post(newRunnable()
{
publicvoidrun()
{
//---0-VISIBLE;4-INVISIBLE;8-GONE---
progressBar.setVisibility(8);
}
});
}

//---dosomelonglastingworkhere---
privateintdoSomeWork()
{
try{
//---simulatedoingsomework---
Thread.sleep(500);
}catch(InterruptedExceptione)
{
e.printStackTrace();
}
return++progress;
}
}).start();

When the task is completed, you hide the ProgressBar by setting its Visibility property to GONE (value 8).
The difference between the INVISIBLE and GONE constants is that the INVISIBLE constant simply hides the
ProgressBar (the region occupied by the ProgressBar is still taking up space in the activity). The GONE con-
stant removes the ProgressBar view from the activity and does not take up any space on it.

Basic Views ❘ 139

The next Try It Out shows how you can change the look of the ProgressBar.

Customizing the ProgressBar Viewtry it out

 1 . Using the same project created in the previous Try It Out, modify the main.xml file as shown here:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<ProgressBarandroid:id=”@+id/progressbar”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
style=”?android:attr/progressBarStyleHorizontal”/>

</LinearLayout>

 2 . Modify the MainActivity.java file by adding the following statements in bold:

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

progress=0;
progressBar=(ProgressBar)findViewById(R.id.progressbar);
progressBar.setMax(200);

//---dosomeworkinbackgroundthread---
newThread(newRunnable()
{
publicvoidrun()
{
//---dosomeworkhere---
while (progressStatus < 100)
{
progressStatus=doSomeWork();

//---Update the progress bar---
handler.post(new Runnable()
{
public void run() {
progressBar.setProgress(progressStatus);
}
});
}

//---hidestheprogressbar---
handler.post(newRunnable()
{
publicvoidrun()

http://schemas.android.com/apk/res/android

140 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

{
//---0-VISIBLE;4-INVISIBLE;8-GONE---
progressBar.setVisibility(8);
}
});
}

//---dosomelonglastingworkhere---
privateintdoSomeWork()
{
try{
//---simulatedoingsomework---
Thread.sleep(50);
}catch(InterruptedExceptione)
{
e.printStackTrace();
}
return++progress;
}
}).start();
}

 3 . Press F11 to debug the project on the Android Emulator.

 4 . Figure 4-7 shows the ProgressBar displaying the progress. The ProgressBar disappears when the
progress reaches 50%.

Figure 4-7

Basic Views ❘ 141

How It Works

To make the ProgressBar display horizontally, simply set its style attribute to ?android:attr/progress
BarStyleHorizontal:

<ProgressBarandroid:id=”@+id/progressbar”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
style=”?android:attr/progressBarStyleHorizontal”/>

To display the progress, call its setProgress() method, passing in an integer indicating its progress:

//---Update the progress bar---
handler.post(new Runnable()
{
public void run() {
progressBar.setProgress(progressStatus);
}
});

In this example, you set the range of the ProgressBar from 0 to 200 (via the setMax() method). Hence,
the ProgressBar will stop and then disappear when it is halfway through (since you only continue to call
the doSomeWork() method as long as the progressStatus is less than 100). To ensure that the ProgressBar
disappears only when the progress reaches 100%, either set the maximum value to 100, or modify the
while loop to stop when the progressStatus reaches 200, like this:

//---dosomeworkhere---
while(progressStatus<200)

Autocompletetextview view
The AutoCompleteTextView is a view that is similar to EditText (in fact it is a subclass of EditText),
except that it shows a list of completion suggestions automatically while the user is typing. The fol-
lowing Try It Out shows how to use the AutoCompleteTextView to automatically help users complete
the text entry.

Using the AutoCompleteTextViewtry it out

codefile BasicViews3.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project and name it BasicViews3.

 2 . Modify the main.xml file located in the res/layout folder as shown here in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”

http://schemas.android.com/apk/res/android

142 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

android:layout_height=”fill_parent”>

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Name of President”/>

<AutoCompleteTextView android:id=”@+id/txtCountries”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

</LinearLayout>

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.BasicViews3;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;

publicclassMainActivityextendsActivity{
String[] presidents = {
“Dwight D. Eisenhower”,
“John F. Kennedy”,
“Lyndon B. Johnson”,
“Richard Nixon”,
“Gerald Ford”,
“Jimmy Carter”,
“Ronald Reagan”,
“George H. W. Bush”,
“Bill Clinton”,
“George W. Bush”,
“Barack Obama”
};

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line, presidents);

AutoCompleteTextView textView = (AutoCompleteTextView)
findViewById(R.id.txtCountries);

textView.setThreshold(3);
textView.setAdapter(adapter);
}
}

Basic Views ❘ 143

 4 . Press F11 to debug the application on the Android Emulator. As shown in Figure 4-8, a list of
matching names appears as you type into the AutoCompleteTextView.

Figure 4-8

How It Works

In the MainActivity class, you first create a String array containing a list of presidents’ names:

String[]presidents={
“DwightD.Eisenhower”,
“JohnF.Kennedy”,
“LyndonB.Johnson”,
“RichardNixon”,
“GeraldFord”,
“JimmyCarter”,
“RonaldReagan”,
“GeorgeH.W.Bush”,
“BillClinton”,
“GeorgeW.Bush”,
“BarackObama”
};

The ArrayAdapter object manages the array of strings that will be displayed by the AutoCompleteTextView.
In the preceding example, you set the AutoCompleteTextView to display in the simple_dropdown_item_
1linemode:

ArrayAdapter<String>adapter=newArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,presidents);

144 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

The setThreshold() method sets the minimum number of characters the user must type before the sug-
gestions appear as a drop-down menu:

textView.setThreshold(3);

The list of suggestions to display for the AutoCompleteTextView is obtained from the ArrayAdapter object:

textView.setAdapter(adapter);

picker vieWS

Selecting the date and time is one of the common tasks you need to perform in a mobile application.
Android supports this functionality through the TimePicker and DatePicker views. The following
sections show how to make use of these views in your activity.

timepicker view
The TimePicker view enables users to select a time of the day, in either 24-hour mode or AM/PM
mode. The following Try It Out shows you how to use it.

Using the TimePicker Wiewtry it out

codefile BasicViews4.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project and name it BasicViews4.

 2 . Modify the main.xml file located in the res/layout folder by adding the following lines in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<TimePicker android:id=”@+id/timePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

<Button android:id=”@+id/btnSet”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”I am all set!” />

</LinearLayout>

 3 . Press F11 to debug the application on the Android Emulator. Figure 4-9 shows the TimePicker in
action. Besides clicking on the plus (+) and minus (-) buttons, you can use the numeric keypad on
the device to change the hour and minute, and click the AM button to toggle between AM and PM.

http://schemas.android.com/apk/res/android

Picker Views ❘ 145

Figure 4-9

 4 . Back in Eclipse, add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.BasicViews4;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.view.View;
import android.widget.Button;
import android.widget.TimePicker;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
TimePicker timePicker;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

timePicker = (TimePicker) findViewById(R.id.timePicker);
timePicker.setIs24HourView(true);

//---Button view---
Button btnOpen = (Button) findViewById(R.id.btnSet);
btnOpen.setOnClickListener(new View.OnClickListener() {

146 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

public void onClick(View v) {
Toast.makeText(getBaseContext(),
“Time selected:” +
timePicker.getCurrentHour() +
“:” + timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT).show();
}
});
}
}

 5 . Press F11 to debug the application on the Android Emulator. This time, the TimePicker will be
displayed in the 24-hour format. Clicking the Button will display the time that you have set in the
TimePicker (see Figure 4-10).

Figure 4-10

How It Works

The TimePicker displays a standard UI to enable users to set a time. By default, it displays the time
in the AM/PM format. If you wish to display the time in the 24-hour format, you can use the
setIs24HourView() method.

To programmatically get the time set by the user, use the getCurrentHour() and getCurrentMinute()
methods:

Toast.makeText(getBaseContext(),
“Timeselected:”+
timePicker.getCurrentHour() +
“:”+timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT).show();

Picker Views ❘ 147

NOTE The getCurrentHour() method always returns the hour in 24-hour format,
i.e., a value from 0 to 23.

Displaying the TimePicker in a Dialog Window
While you can display the TimePicker in an activity, a better way is to display it in a dialog window,
so that once the time is set, it disappears and doesn’t take up any space in an activity. The following
Try It Out shows how to do just that.

Using a Dialog to Display the TimePicker View try it out

1 . Using the same project created in the previous Try It Out, modify the MainActivity.java fi le as
shown here:

packagenet.learn2develop.BasicViews4;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.view.View;
importandroid.widget.Button;
importandroid.widget.TimePicker;
importandroid.widget.Toast;

import android.app.Dialog;
import android.app.TimePickerDialog;

publicclassMainActivityextendsActivity{
TimePickertimePicker;

int hour, minute;
static final int TIME_DIALOG_ID = 0;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

showDialog(TIME_DIALOG_ID);

timePicker=(TimePicker)findViewById(R.id.timePicker);
timePicker.setIs24HourView(true);

//---Buttonview---
ButtonbtnOpen=(Button)findViewById(R.id.btnSet);
btnOpen.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
Toast.makeText(getBaseContext(),
“Timeselected:”+
timePicker.getCurrentHour().toString()+

148 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

“:”+timePicker.getCurrentMinute().toString(),
Toast.LENGTH_SHORT).show();
}
});
}

@Override
protected Dialog onCreateDialog(int id)
{
switch (id) {
case TIME_DIALOG_ID:
return new TimePickerDialog(
this, mTimeSetListener, hour, minute, false);
}
return null;
}

private TimePickerDialog.OnTimeSetListener mTimeSetListener =
new TimePickerDialog.OnTimeSetListener()
{
public void onTimeSet(
TimePicker view, int hourOfDay, int minuteOfHour)
{
hour = hourOfDay;
minute = minuteOfHour;
Toast.makeText(getBaseContext(),
“You have selected : “ + hour + “:” + minute,
Toast.LENGTH_SHORT).show();
}
};
}

 2 . Press F11 to debug the application on the Android Emulator. When the activity is loaded, you can
see the TimePicker displayed in a dialog window (see Figure 4-11). Set a time and then click the Set
button. You will see the Toast window displaying the time that you just set.

How It Works

To display a dialog window, you use the showDialog() method, passing it an ID to identify the source
of the dialog:

showDialog(TIME_DIALOG_ID);

When the showDialog() method is called, the onCreateDialog() method will be called:

@Override
protectedDialogonCreateDialog(intid)
{
switch(id){
caseTIME_DIALOG_ID:
returnnewTimePickerDialog(
this,mTimeSetListener,hour,minute,false);
}
returnnull;
}

Picker Views ❘ 149

Figure 4-11

Here, you create a new instance of the TimePickerDialog class, passing it the current context, the callback,
the initial hour and minute, as well as whether the TimePicker should be displayed in 24-hour format.

When the user clicks the Set button in the TimePicker dialog window, the onTimeSet() method will
be called:

privateTimePickerDialog.OnTimeSetListenermTimeSetListener=
newTimePickerDialog.OnTimeSetListener()
{
publicvoidonTimeSet(
TimePickerview,inthourOfDay,intminuteOfHour)
{
hour=hourOfDay;
minute=minuteOfHour;
Toast.makeText(getBaseContext(),
“Youhaveselected:“+hour+“:”+minute,
Toast.LENGTH_SHORT).show();
}
};

Here, the onTimeSet() method will contain the hour and minute set by the user via the hourOfDay and
minuteOfHour arguments, respectively.

datepicker view
Another view that is similar to the TimePicker is the DatePicker. Using the DatePicker, you can
enable users to select a particular date on the activity. The following Try It Out shows you how to
use the DatePicker.

150 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

Using the DatePicker Viewtry it out

 1 . Using the same project created in the previous Try It Out, modify the main.xml file as shown here:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<DatePicker android:id=”@+id/datePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

<TimePickerandroid:id=”@+id/timePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

<Buttonandroid:id=”@+id/btnSet”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Iamallset!”/>

</LinearLayout>

 2 . Press F11 to debug the application on the Android Emulator. Figure 4-12 shows the DatePicker
and TimePicker views.

Figure 4-12

http://schemas.android.com/apk/res/android

Picker Views ❘ 151

 3 . Back in Eclipse, add in the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.BasicViews4;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.view.View;
importandroid.widget.Button;

importandroid.widget.Toast;

importandroid.app.Dialog;
importandroid.app.TimePickerDialog;

importandroid.widget.TimePicker;

import android.widget.DatePicker;

publicclassMainActivityextendsActivity{
TimePickertimePicker;
DatePicker datePicker;

inthour,minute;
staticfinalintTIME_DIALOG_ID=0;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//showDialog(TIME_DIALOG_ID);

timePicker=(TimePicker)findViewById(R.id.timePicker);
timePicker.setIs24HourView(true);

datePicker = (DatePicker) findViewById(R.id.datePicker);

//---Buttonview---
ButtonbtnOpen=(Button)findViewById(R.id.btnSet);
btnOpen.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
Toast.makeText(getBaseContext(),
“Date selected:” + datePicker.getMonth() + 1 +
“/” + datePicker.getDayOfMonth() +
“/” + datePicker.getYear() + “\n” +
“Timeselected:”+timePicker.getCurrentHour()+
“:”+timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT).show();
}
});
}

@Override

152 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

protectedDialogonCreateDialog(intid)
{
switch(id){
caseTIME_DIALOG_ID:
returnnewTimePickerDialog(
this,mTimeSetListener,hour,minute,false);
}
returnnull;
}

privateTimePickerDialog.OnTimeSetListenermTimeSetListener=
newTimePickerDialog.OnTimeSetListener()
{
publicvoidonTimeSet(
TimePickerview,inthourOfDay,intminuteOfHour)
{
hour=hourOfDay;
minute=minuteOfHour;
Toast.makeText(getBaseContext(),
“Youhaveselected:“+hour+“:”+minute,
Toast.LENGTH_SHORT).show();
}
};
}

 4 . Press F11 to debug the application on the Android Emulator. Once the date is set, clicking the
Button will display the date set (see Figure 4-13).

Figure 4-13

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Picker Views ❘ 153

How It Works

Like the TimePicker, you call the getMonth(), getDayOfMonth(), and getYear() methods to get the
month, day, and year, respectively:

“Dateselected:”+datePicker.getMonth()+1+
“/”+datePicker.getDayOfMonth()+
“/”+datePicker.getYear()+“\n”+

Note that the getMonth()method returns 0 for January, 1 for February, and so on. Hence, you need to
add a one to the result of this method to get the month number.

Displaying the DatePicker View in a Dialog Window
Like the TimePicker, you can also display the DatePicker in a dialog window. The following Try It Out
shows you how.

Using a Dialog to Display the DatePicker Viewtry it out

 1 . Using the same project created in the previous Try It Out, add the following statements in bold to
the MainActivity.java file:

packagenet.learn2develop.BasicViews4;

importandroid.app.Activity;
importandroid.os.Bundle;

importandroid.view.View;
importandroid.widget.Button;

importandroid.widget.Toast;

importandroid.app.Dialog;
importandroid.app.TimePickerDialog;

importandroid.widget.TimePicker;
importandroid.widget.DatePicker;

import android.app.DatePickerDialog;
import java.util.Calendar;

publicclassMainActivityextendsActivity{
TimePickertimePicker;
DatePickerdatePicker;

inthour,minute;
int yr, month, day;

staticfinalintTIME_DIALOG_ID=0;
static final int DATE_DIALOG_ID = 1;

/**Calledwhentheactivityisfirstcreated.*/

154 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//showDialog(TIME_DIALOG_ID);

//---get the current date---
Calendar today = Calendar.getInstance();
yr = today.get(Calendar.YEAR);
month = today.get(Calendar.MONTH);
day = today.get(Calendar.DAY_OF_MONTH);
showDialog(DATE_DIALOG_ID);

timePicker=(TimePicker)findViewById(R.id.timePicker);
timePicker.setIs24HourView(true);

datePicker=(DatePicker)findViewById(R.id.datePicker);

//---Buttonview---
ButtonbtnOpen=(Button)findViewById(R.id.btnSet);
btnOpen.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
Toast.makeText(getBaseContext(),
“Dateselected:”+datePicker.getMonth()+
“/”+datePicker.getDayOfMonth()+
“/”+datePicker.getYear()+“\n”+
“Timeselected:”+timePicker.getCurrentHour()+
“:”+timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT).show();
}
});
}

@Override
protectedDialogonCreateDialog(intid)
{
switch(id){
caseTIME_DIALOG_ID:
returnnewTimePickerDialog(
this,mTimeSetListener,hour,minute,false);
case DATE_DIALOG_ID:
return new DatePickerDialog(
this, mDateSetListener, yr, month, day);
}
returnnull;
}

private DatePickerDialog.OnDateSetListener mDateSetListener =
new DatePickerDialog.OnDateSetListener()
{
public void onDateSet(
DatePicker view, int year, int monthOfYear, int dayOfMonth)
{

Picker Views ❘ 155

yr = year;
month = monthOfYear;
day = dayOfMonth;
Toast.makeText(getBaseContext(),
“You have selected : “ + (month + 1) +
“/” + day + “/” + year,
Toast.LENGTH_SHORT).show();
}
};

privateTimePickerDialog.OnTimeSetListenermTimeSetListener=
newTimePickerDialog.OnTimeSetListener()
{
publicvoidonTimeSet(
TimePickerview,inthourOfDay,intminuteOfHour)
{
hour=hourOfDay;
minute=minuteOfHour;
Toast.makeText(getBaseContext(),
“Youhaveselected:“+hour+“:”+minute,
Toast.LENGTH_SHORT).show();

}
};
}

 2 . Press F11 to debug the application on the Android Emulator. When the activity is loaded, you can
see the DatePicker displayed in a dialog window (see Figure 4-14). Set a date and then click the Set
button. The Toast window will display the date you have just set.

Figure 4-14

156 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

How It Works

The DatePicker works exactly like the TimePicker. When a date is set, it fires the onDateSet() method,
where you can obtain the date set by the user:

publicvoidonDateSet(
DatePickerview,intyear,intmonthOfYear,intdayOfMonth)
{
yr=year;
month=monthOfYear;
day=dayOfMonth;
Toast.makeText(getBaseContext(),
“Youhaveselected:“+(month+1)+
“/”+day+“/”+year,
Toast.LENGTH_SHORT).show();
}

Note that you have to initialize the three variables — yr, month, and day — before showing the dialog:

//---getthecurrentdate---
Calendartoday=Calendar.getInstance();
yr=today.get(Calendar.YEAR);
month=today.get(Calendar.MONTH);
day=today.get(Calendar.DAY_OF_MONTH);
showDialog(DATE_DIALOG_ID);

If you don’t, you will get an illegal argument exception error during run time
(“current should be >= start and <= end”) when you create an instance of the DatePickerDialog class.

liSt vieWS

List views are views that enable you to display a long list of items. In Android, there are two types
of list views: ListView and SpinnerView. Both are useful for displaying long lists of items. The fol-
lowing Try It Outs show them in action.

listview view
The ListView displays a list of items in a vertically scrolling list. The following Try It Out demon-
strates how to display a list of items using the ListView.

Displaying a Long List of items Using the ListViewtry it out

 1 . Using Eclipse, create an Android project and name it BasicView5.

codefile BasicViews5.zip available for download at Wrox.com

List Views ❘ 157

 2 . Modify the MainActivity.java file by inserting the statements shown here in bold:

packagenet.learn2develop.BasicViews5;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.app.ListActivity;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;

publicclassMainActivityextendsListActivity{

String[] presidents = {
“Dwight D. Eisenhower”,
“John F. Kennedy”,
“Lyndon B. Johnson”,
“Richard Nixon”,
“Gerald Ford”,
“Jimmy Carter”,
“Ronald Reagan”,
“George H. W. Bush”,
“Bill Clinton”,
“George W. Bush”,
“Barack Obama”
};

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
//setContentView(R.layout.main);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, presidents));
}

public void onListItemClick(
ListView parent, View v, int position, long id)
{
Toast.makeText(this,
“You have selected “ + presidents[position],
Toast.LENGTH_SHORT).show();
}
}

 3 . Press F11 to debug the application on the Android Emulator. Figure 4-15 shows the activity dis-
playing the list of presidents’ names.

158 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

Figure 4-15

 4 . Click on an item. A message containing the item selected will be displayed.

How It Works

The first thing to notice in this example is that the MainActivity class extends the ListActivity
class. The ListActivity class extends the Activity class and it displays a list of items by binding to a
data source. Also, note that there is no need to modify the main.xml file to include the ListView; the
ListActivity class itself contains a ListView. Hence, in the onCreate() method, there is no need to
call the setContentView() method to load the UI from the main.xml file:

//---noneedtocallthis---
//setContentView(R.layout.main);

In the onCreate() method, you use the setListAdapter() method to programmatically fill the entire
screen of the activity with a ListView. The ArrayAdapter object manages the array of strings that will
be displayed by the ListView. In the preceding example, you set the ListView to display in the simple_
list_item_1mode:

setListAdapter(newArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,presidents));

The onListItemClick() method is fired whenever an item in the ListView has been clicked:

publicvoidonListItemClick(
ListViewparent,Viewv,intposition,longid)

List Views ❘ 159

{
Toast.makeText(this,
“Youhaveselected“+presidents[position],
Toast.LENGTH_SHORT).show();
}

Here, you simply display the name of the president selected using the Toast class.

Customizing the ListView
The ListView is a versatile control that you can further customize. The following Try It Out shows
how you can allow multiple items in the ListView to be selected and how you can enable filtering
support.

Customizing the ListViewtry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ListView lstView = getListView();
//lstView.setChoiceMode(0); //CHOICE_MODE_NONE
//lstView.setChoiceMode(1); //CHOICE_MODE_SINGLE
lstView.setChoiceMode(2); //CHOICE_MODE_MULTIPLE
lstView.setTextFilterEnabled(true);

setListAdapter(newArrayAdapter<String>(this,
android.R.layout.simple_list_item_checked,presidents));
}

publicvoidonListItemClick(
ListViewparent,Viewv,intposition,longid)
{
//---toggle the check displayed next to the item---
parent.setItemChecked(position, parent.isItemChecked(position));
Toast.makeText(this,
“Youhaveselected“+presidents[position],
Toast.LENGTH_SHORT).show();
}

 2 . Press F11 to debug the application on the Android Emulator. You can now click on each item to
display the check icon next to it (see Figure 4-16).

160 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

Figure 4-16

How It Works

To programmatically get a reference to the ListView object, you use the getListView() method, which
fetches the ListActivity’s list view. You need to do this so that you can programmatically modify the
behavior of the ListView. In this case, you used the setChoiceMode() method to tell the ListView how
it should handle a user’s click. For this example, you set it to 2, which means that the user can select
multiple items:

//lstView.setChoiceMode(0);//CHOICE_MODE_NONE
//lstView.setChoiceMode(1);//CHOICE_MODE_SINGLE
lstView.setChoiceMode(2);//CHOICE_MODE_MULTIPLE

A very cool feature of the ListView is its support for filtering. When you enable filtering through the
setTextFilterEnabled() method, users will be able to type on the keypad and the ListView will auto-
matically filter to match what you have typed:

lstView.setTextFilterEnabled(true);

Figure 4-17 shows the list filtering in action. Here, all items in the list that contain the word “john” will
appear in the result list.

To display the check icon displayed next to each item, use the setItemChecked() method:

//---toggle the check displayed next to the item---
parent.setItemChecked(position, parent.isItemChecked(position));

The preceding statement will toggle the check icon for each item when you click on it.

List Views ❘ 161

Figure 4-17

While this example shows that the list of presidents’ names is stored in an array, in a real-life appli-
cation it is recommended that you either retrieve them from a database or at least store them in the
strings.xml file. The following Try It Out shows you how.

Storing items in the strings.xml Filetry it out

 1 . Using the same project created in the previous section, add the following lines in bold to the
strings.xml file located in the res/values folder:

<?xmlversion=”1.0”encoding=”utf-8”?>
<resources>
<stringname=”hello”>HelloWorld,MainActivity!</string>
<stringname=”app_name”>BasicViews5</string>
<string-array name=”presidents_array”>
<item>Dwight D. Eisenhower</item>
<item>John F. Kennedy</item>
<item>Lyndon B. Johnson</item>
<item>Richard Nixon</item>
<item>Gerald Ford</item>
<item>Jimmy Carter</item>
<item>Ronald Reagan</item>
<item>George H. W. Bush</item>
<item>Bill Clinton</item>
<item>George W. Bush</item>
<item>Barack Obama</item>
</string-array>
</resources>

162 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

 2 . Modify the MainActivity.java file as shown in bold:

publicclassMainActivityextendsListActivity{

String[] presidents;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ListViewlstView=getListView();
//lstView.setChoiceMode(0);//CHOICE_MODE_NONE
//lstView.setChoiceMode(1);//CHOICE_MODE_SINGLE
lstView.setChoiceMode(2);//CHOICE_MODE_MULTIPLE
lstView.setTextFilterEnabled(true);

presidents =
getResources().getStringArray(R.array.presidents_array);

setListAdapter(newArrayAdapter<String>(this,
android.R.layout.simple_list_item_checked,presidents));
}

publicvoidonListItemClick(
ListViewparent,Viewv,intposition,longid)
{
//...
//...
}
};

 3 . Press F11 to debug the application on the Android Emulator. You should see the same list of
names that appeared in the previous Try It Out.

How It Works

With the names now stored in the strings.xml file, you can retrieve it programmatically in this
MainActivity.java file using the getResources() method:

presidents=
getResources().getStringArray(R.array.presidents_array);

In general, you can programmatically retrieve resources bundled with your application using the
getResources() method.

using the Spinner view
The ListView displays a long list of items in an activity, but sometimes you may want your user
interface to display other views, and hence you do not have the additional space for a full-screen view

List Views ❘ 163

like the ListView. In such cases, you should use the SpinnerView. The SpinnerView displays one item
at a time from a list and enables users to choose among them.

The following Try It Out shows how you can use the SpinnerView in your activity.

Using the SpinnerView to Display an item at a Timetry it out

 1 . Using Eclipse, create an Android project and name it as BasicViews6.

codefile BasicViews6.zip available for download at Wrox.com

 2 . Modify the main.xml file located in the res/layout folder as shown here:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<Spinner
android:id=”@+id/spinner1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:drawSelectorOnTop=”true” />

</LinearLayout>

 3 . Add the following lines in bold to the strings.xml file located in the res/values folder:

<?xmlversion=”1.0”encoding=”utf-8”?>
<resources>
<stringname=”hello”>HelloWorld,MainActivity!</string>
<stringname=”app_name”>BasicViews6</string>
<string-array name=”presidents_array”>
<item>Dwight D. Eisenhower</item>
<item>John F. Kennedy</item>
<item>Lyndon B. Johnson</item>
<item>Richard Nixon</item>
<item>Gerald Ford</item>
<item>Jimmy Carter</item>
<item>Ronald Reagan</item>
<item>George H. W. Bush</item>
<item>Bill Clinton</item>
<item>George W. Bush</item>
<item>Barack Obama</item>
</string-array>
</resources>

 4 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.BasicViews6;

importandroid.app.Activity;

http://schemas.android.com/apk/res/android

164 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

importandroid.os.Bundle;

import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.Toast;

publicclassMainActivityextendsActivity{

String[] presidents;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

presidents =
getResources().getStringArray(R.array.presidents_array);
Spinner s1 = (Spinner) findViewById(R.id.spinner1);

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item, presidents);

s1.setAdapter(adapter);
s1.setOnItemSelectedListener(new OnItemSelectedListener()
{
@Override
public void onItemSelected(AdapterView<?> arg0, View arg1,
int arg2, long arg3)
{
int index = arg0.getSelectedItemPosition();
Toast.makeText(getBaseContext(),
“You have selected item : “ + presidents[index],
Toast.LENGTH_SHORT).show();
}

@Override
public void onNothingSelected(AdapterView<?> arg0) {}
});
}
}

 5 . Press F11 to debug the application on the Android Emulator. Click on the SpinnerView and you
will see a pop-up displaying the list of presidents’ names (see Figure 4-18). Clicking on an item will
display a message showing you the item selected.

How It Works

The preceding example works very much like the ListView. One additional method you need to implement
is the onNothingSelected() method. This method is fired when the user presses the Back button, which
dismisses the list of items displayed. In this case, nothing is selected and you do not need to do anything.

List Views ❘ 165

Figure 4-18

Instead of displaying the items in the ArrayAdapter as a simple list, you can also display them using
radio buttons. To do so, modify the second parameter in the constructor of the ArrayAdapter class:

ArrayAdapter<String>adapter=newArrayAdapter<String>(this,
android.R.layout.simple_spinner_dropdown_item,presidents);

This will cause the items to be displayed as a list of radio buttons (see Figure 4-19).

Figure 4-19

166 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

SummAry

This chapter provided a brief look at some of the commonly used views in an Android application.
While it is not possible to exhaustively examine each view in detail, the views you learned about
here should provide a good foundation for designing your Android application’s user interface,
regardless of its requirements.

exerciSeS

 1 . How do you programmatically determine whether a RadioButton is checked?

 2 . How do you access the string resource stored in the strings.xml file?

 3 . Write the code snippet to obtain the current date .

Answers to the Exercises can be found in Appendix C.

Summary ❘ 167

WhAt you leArned in thiS chApter ⊲

topic key conceptS

textview <TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>

Button <Buttonandroid:id=”@+id/btnSave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Save”/>

imageButton <ImageButtonandroid:id=”@+id/btnImg1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:src=”@drawable/icon”/>

edittext <EditTextandroid:id=”@+id/txtName”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”/>

checkBox <CheckBoxandroid:id=”@+id/chkAutosave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Autosave”/>

radiogroup and radioButton <RadioGroupandroid:id=”@+id/rdbGp1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:orientation=”vertical”>
<RadioButtonandroid:id=”@+id/rdb1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option1”/>
<RadioButtonandroid:id=”@+id/rdb2”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option2”/>
</RadioGroup>

toggleButton <ToggleButtonandroid:id=”@+id/toggle1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

progressBar <ProgressBarandroid:id=”@+id/progressbar”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

AutocompletetextBox <AutoCompleteTextViewandroid:id=”@+id/txtCountries”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”/>

continues

168 ❘ chApter 4 deSiGninG YoUr USer interface USinG viewS

topic key conceptS

timepicker <TimePickerandroid:id=”@+id/timePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

datepicker <DatePickerandroid:id=”@+id/datePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

Spinner <Spinnerandroid:id=”@+id/spinner1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:drawSelectorOnTop=”true”/>

(continued)

Displaying Pictures and
Menus with Views

WhAt you Will leArn in thiS chApter

How to use the ➤➤ Gallery, ImageSwitcher, GridView, and ImageView

views to display images

How to display options and context menus➤➤

How to display time using the ➤➤ AnalogClock and DigitalClock views

How to display Web content using the ➤➤ WebView

In the previous chapter, you learned about the various views that you can use to build the user
interface of your Android application. In this chapter, you continue your exploration of the
other views that you can use to create robust and compelling applications.

In particular, you shall turn your attention to views that enable you to display images. In addition,
you will also learn how to create option and context menus in your Android application. This chap-
ter ends with a discussion of some nice views that enable you to display the current time and Web
content.

uSing imAge vieWS to diSplAy pictureS

So far, all the views you have seen until this point are used to display text information. For
displaying images, you can use the ImageView, Gallery, ImageSwitcher, and GridView views.

The following sections discuss each view in more detail.

5

170 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

gallery and imageview views
The Gallery is a view that shows items (such as images) in a center-locked, horizontal scrolling list.
Figure 5-1 shows how the Gallery view looks when it is displaying some images.

Figure 5-1

The following Try It Out shows you how to use the Gallery view to display a set of images.

Using the gallery Viewtry it out

codefile Gallery.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project as shown in Figure 5-2.

Figure 5-2

Using image Views to Display Pictures ❘ 171

2 . Modify the main.xml fi le as shown in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Images of San Francisco” />

<Gallery
android:id=”@+id/gallery1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

<ImageView
android:id=”@+id/image1”
android:layout_width=”320px”
android:layout_height=”250px”
android:scaleType=”fitXY” />

</LinearLayout>

3 . Right-click on the res/values folder and select New ➪ File. Name the fi le attrs.xml.

 4 . Populate the attrs.xml fi le as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
<declare-styleable name=”Gallery1”>
<attr name=”android:galleryItemBackground” />
</declare-styleable>
</resources>

 5 . Prepare a series of images and name them pic1.png, pic2.png, and so on for each subsequent
image (see Figure 5-3).

NOTE You can download the series of images from this book’s support website
at www.wrox.com.

 6 . Drag and drop all the images into the res/drawable-mdpi folder (see Figure 5-4). When a dialog is
displayed, check the copy option and click OK.

NOTE This example assumes that this project will be tested on an AVD with
medium DPI screen resolution. For a real-life project, you need to ensure that
each drawable folder has a set of images (of di� erent resolutions).

http://schemas.android.com/apk/res/android
http://www.wrox.com

172 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

 7 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Gallery;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Context;
import android.content.res.TypedArray;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.BaseAdapter;
import android.widget.Gallery;
import android.widget.ImageView;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
//---the images to display---
Integer[] imageIDs = {
R.drawable.pic1,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic7
};

/**Calledwhentheactivityisfirstcreated.*/
@Override

Figure 5-3 Figure 5-4

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Using image Views to Display Pictures ❘ 173

publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Gallery gallery = (Gallery) findViewById(R.id.gallery1);

gallery.setAdapter(new ImageAdapter(this));
gallery.setOnItemClickListener(new OnItemClickListener()
{
public void onItemClick(AdapterView<?> parent, View v,
int position, long id)
{
Toast.makeText(getBaseContext(),
“pic” + (position + 1) + “ selected”,
Toast.LENGTH_SHORT).show();
}
});
}

public class ImageAdapter extends BaseAdapter
{
private Context context;
private int itemBackground;

public ImageAdapter(Context c)
{
context = c;
//---setting the style---
TypedArray a = obtainStyledAttributes(R.styleable.Gallery1);
itemBackground = a.getResourceId(
R.styleable.Gallery1_android_galleryItemBackground, 0);
a.recycle();
}

//---returns the number of images---
public int getCount() {
return imageIDs.length;
}

//---returns the ID of an item---
public Object getItem(int position) {
return position;
}

//---returns the ID of an item---
public long getItemId(int position) {
return position;
}

//---returns an ImageView view---
public View getView(int position, View convertView, ViewGroup parent) {
ImageView imageView = new ImageView(context);
imageView.setImageResource(imageIDs[position]);
imageView.setScaleType(ImageView.ScaleType.FIT_XY);
imageView.setLayoutParams(new Gallery.LayoutParams(150, 120));
imageView.setBackgroundResource(itemBackground);

174 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

return imageView;
}
}
}

 8 . Press F11 to debug the application on the Android Emulator. Figure 5-5 shows the Gallery view
displaying the series of images.

 9 . You can swipe the images to view the entire series of images. Observe that as you click on an image,
the Toast class will display its name (see Figure 5-6).

Figure 5-5

Figure 5-6

Using image Views to Display Pictures ❘ 175

 10 . To display the selected image in the ImageView, add the following statements in bold to the
MainActivity.java file:

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Gallerygallery=(Gallery)findViewById(R.id.gallery1);

gallery.setAdapter(newImageAdapter(this));
gallery.setOnItemClickListener(newOnItemClickListener()
{
publicvoidonItemClick(AdapterView<?>parent,Viewv,
intposition,longid)
{
Toast.makeText(getBaseContext(),
“pic”+(position+1)+“selected”,
Toast.LENGTH_SHORT).show();

//---display the images selected---
ImageView imageView = (ImageView) findViewById(R.id.image1);
imageView.setImageResource(imageIDs[position]);
}
});
}

 11 . Press F11 to debug the application again. This time, you will see the image selected in the ImageView
(see Figure 5-7).

Figure 5-7

176 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

How It Works

You first add the Gallery and ImageView views to main.xml:

<Gallery
android:id=”@+id/gallery1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”/>

<ImageView
android:id=”@+id/image1”
android:layout_width=”320px”
android:layout_height=”250px”
android:scaleType=”fitXY”/>

As mentioned earlier, the Gallery view is used to display the series of images in a horizontal scrolling
list. The ImageView is used to display the image selected by the user.

The list of images to be displayed is stored in the imageIDs array:

//---theimagestodisplay---
Integer[]imageIDs={
R.drawable.pic1,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic7
};

You create the ImageAdapter class (which extends the BaseAdapter class) so that it can bind to the
Gallery view with a series of ImageView views:

Gallerygallery=(Gallery)findViewById(R.id.gallery1);
gallery.setAdapter(newImageAdapter(this));
gallery.setOnItemClickListener(newOnItemClickListener()
{
publicvoidonItemClick(AdapterView<?>parent,Viewv,
intposition,longid)
{
Toast.makeText(getBaseContext(),
“pic”+(position+1)+“selected”,
Toast.LENGTH_SHORT).show();

//---displaytheimagesselected---
ImageViewimageView=(ImageView)findViewById(R.id.image1);
imageView.setImageResource(imageIDs[position]);
}
});

When an image in the Gallery view is selected (i.e., clicked), the position (0 for the first image, 1 for the
second image, and so on) of the selected image is displayed and the image is displayed in the ImageView.

Using image Views to Display Pictures ❘ 177

imageSwitcher
The previous section demonstrated how to use the Gallery view together with an ImageView to dis-
play a series of thumbnail images so that when one is selected, the selected image is displayed in the
ImageView. However, sometimes you don’t want an image to appear abruptly when the user selects
it in the Gallery view — you might, for example, want to apply some animation to the image when
it transits from one image to another. In this case, you need to use the ImageSwitcher together with
the Gallery view. The following Try It Out shows you how.

Using the imageSwitcher Viewtry it out

codefile ImageSwitcher.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as ImageSwitcher.

 2 . Modify the main.xml file by adding the following statements in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<RelativeLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:background=”#ff000000”>

<Gallery
android:id=”@+id/gallery1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

<ImageSwitcher
android:id=”@+id/switcher1”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:layout_alignParentLeft=”true”
android:layout_alignParentRight=”true”
android:layout_alignParentBottom=”true” />

</RelativeLayout>

 3 . Right-click on the res/values folder and select New ➪ File. Name the file attrs.xml.

 4 . Populate the attrs.xml file as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
<declare-styleable name=”Gallery1”>
<attr name=”android:galleryItemBackground” />
</declare-styleable>
</resources>

 5 . Drag and drop a series of images into the res/drawable-mdpi folder When a dialog is displayed,
check the copy option and click OK.

http://schemas.android.com/apk/res/android

178 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

 6 . Add the following bold statements to the MainActivity.java file:

packagenet.learn2develop.ImageSwitcher;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Context;
import android.content.res.TypedArray;
import android.view.View;
import android.view.ViewGroup;
import android.view.ViewGroup.LayoutParams;
import android.view.animation.AnimationUtils;
import android.widget.BaseAdapter;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.Gallery;
import android.widget.ViewSwitcher.ViewFactory;
import android.widget.ImageSwitcher;
import android.widget.ImageView;

publicclassMainActivityextendsActivityimplements ViewFactory {
//---the images to display---
Integer[] imageIDs = {
R.drawable.pic1,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic7
};

private ImageSwitcher imageSwitcher;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

imageSwitcher = (ImageSwitcher) findViewById(R.id.switcher1);
imageSwitcher.setFactory(this);
imageSwitcher.setInAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.fade_in));
imageSwitcher.setOutAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.fade_out));

Gallery gallery = (Gallery) findViewById(R.id.gallery1);
gallery.setAdapter(new ImageAdapter(this));
gallery.setOnItemClickListener(new OnItemClickListener()
{
public void onItemClick(AdapterView<?> parent,
View v, int position, long id)
{
imageSwitcher.setImageResource(imageIDs[position]);

Using image Views to Display Pictures ❘ 179

}
});
}

public View makeView()
{
ImageView imageView = new ImageView(this);
imageView.setBackgroundColor(0xFF000000);
imageView.setScaleType(ImageView.ScaleType.FIT_CENTER);
imageView.setLayoutParams(new
ImageSwitcher.LayoutParams(
LayoutParams.FILL_PARENT,
LayoutParams.FILL_PARENT));
return imageView;
}

public class ImageAdapter extends BaseAdapter
{
private Context context;
private int itemBackground;

public ImageAdapter(Context c)
{
context = c;

//---setting the style---
TypedArray a = obtainStyledAttributes(R.styleable.Gallery1);
itemBackground = a.getResourceId(
R.styleable.Gallery1_android_galleryItemBackground, 0);
a.recycle();
}

//---returns the number of images---
public int getCount()
{
return imageIDs.length;
}

//---returns the ID of an item---
public Object getItem(int position)
{
return position;
}

public long getItemId(int position)
{
return position;
}

//---returns an ImageView view---
public View getView(int position, View convertView, ViewGroup parent)
{
ImageView imageView = new ImageView(context);

imageView.setImageResource(imageIDs[position]);

180 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

imageView.setScaleType(ImageView.ScaleType.FIT_XY);
imageView.setLayoutParams(new Gallery.LayoutParams(150, 120));
imageView.setBackgroundResource(itemBackground);

return imageView;
}
}
}

 7 . Press F11 to debug the application on the Android Emulator. Figure 5-8 shows the Gallery and
ImageSwitcher views, with both the collection of images as well as the image selected.

Figure 5-8

How It Works

The first thing you notice in this example is that the MainActivity not only extends Activity, but also
implements ViewFactory. To use the ImageSwitcher view, you need to implement the ViewFactory inter-
face, which creates the views for use with the ImageSwitcher view. For this, you need to implement the
makeView() method:

publicViewmakeView()
{
ImageViewimageView=newImageView(this);
imageView.setBackgroundColor(0xFF000000);
imageView.setScaleType(ImageView.ScaleType.FIT_CENTER);
imageView.setLayoutParams(new
ImageSwitcher.LayoutParams(
LayoutParams.FILL_PARENT,
LayoutParams.FILL_PARENT));
returnimageView;
}

Using image Views to Display Pictures ❘ 181

This method creates a new View to be added in the ImageSwitcher view.

Like the Gallery example in the previous section, you also implemented an ImageAdapter class so that
it can bind to the Gallery view with a series of ImageView views.

In the onCreate() method, you get a reference to the ImageSwitcher view and set the animation, specify-
ing how images should “fly” in and out of the view. Finally, when an image is selected from the Gallery
view, the image is displayed in the ImageSwitcher view:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

imageSwitcher=(ImageSwitcher)findViewById(R.id.switcher1);
imageSwitcher.setFactory(this);
imageSwitcher.setInAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.fade_in));
imageSwitcher.setOutAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.fade_out));

Gallerygallery=(Gallery)findViewById(R.id.gallery1);
gallery.setAdapter(newImageAdapter(this));
gallery.setOnItemClickListener(newOnItemClickListener()
{
publicvoidonItemClick(AdapterView<?>parent,
Viewv,intposition,longid)
{
imageSwitcher.setImageResource(imageIDs[position]);
}
});
}

In this example, when an image is selected in the Gallery view, it will appear by “fading” in. When the
next image is selected, the current image will fade out. If you want the image to slide in from the left and
slide out to the right when another image is selected, try the following animation:

imageSwitcher.setInAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.slide_in_left));
imageSwitcher.setOutAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.slide_out_right));

Like the previous Try It Out, you also created the ImageAdapter class (which extends the BaseAdapter
class) so that it can bind to the Gallery view with a series of ImageView views.

gridview
The GridView shows items in a two-dimensional scrolling grid. You can use the GridView together
with an ImageView to display a series of images. The following Try It Out demonstrates how.

182 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

Using the gridView Viewtry it out

codefile Grid.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Grid.

 2 . Drag and drop a series of images into the res/drawable-mdpi folder (see Figure 5-9). When a dia-
log is displayed, check the copy option and click OK.

Figure 5-9

 3 . Populate the main.xml file with the following content:

<?xmlversion=”1.0”encoding=”utf-8”?>
<GridView xmlns:android=”http://schemas.android.com/apk/res/android”
android:id=”@+id/gridview”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:numColumns=”auto_fit”
android:verticalSpacing=”10dp”
android:horizontalSpacing=”10dp”
android:columnWidth=”90dp”
android:stretchMode=”columnWidth”
android:gravity=”center”
/>

 4 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Grid;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Context;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.BaseAdapter;
import android.widget.GridView;
import android.widget.ImageView;
import android.widget.Toast;

publicclassMainActivityextendsActivity{

http://schemas.android.com/apk/res/android

Using image Views to Display Pictures ❘ 183

//---the images to display---
Integer[] imageIDs = {
R.drawable.pic1,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic7
};

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

GridView gridView = (GridView) findViewById(R.id.gridview);
gridView.setAdapter(new ImageAdapter(this));

gridView.setOnItemClickListener(new OnItemClickListener()
{
public void onItemClick(AdapterView<?> parent,
View v, int position, long id)
{
Toast.makeText(getBaseContext(),
“pic” + (position + 1) + “ selected”,
Toast.LENGTH_SHORT).show();
}
});
}

public class ImageAdapter extends BaseAdapter
{
private Context context;

public ImageAdapter(Context c)
{
context = c;
}

//---returns the number of images---
public int getCount() {
return imageIDs.length;
}

//---returns the ID of an item---
public Object getItem(int position) {
return position;
}

//---returns the ID of an item---
public long getItemId(int position) {
return position;
}

//---returns an ImageView view---
public View getView(int position, View convertView,

184 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

ViewGroup parent)
{
ImageView imageView;
if (convertView == null) {
imageView = new ImageView(context);
imageView.setLayoutParams(new
GridView.LayoutParams(85, 85));
imageView.setScaleType(
ImageView.ScaleType.CENTER_CROP);
imageView.setPadding(5, 5, 5, 5);
} else {
imageView = (ImageView) convertView;
}
imageView.setImageResource(imageIDs[position]);
return imageView;
}
}
}

 5 . Press F11 to debug the application on the Android Emulator. Figure 5-10 shows the GridView
displaying all the images.

Figure 5-10

How It Works

Like the Gallery and ImageSwitcher example, you implement the ImageAdapter class and then bind it
to the GridView:

GridViewgridView=(GridView)findViewById(R.id.gridview);
gridView.setAdapter(newImageAdapter(this));

gridView.setOnItemClickListener(newOnItemClickListener()

Using Menus with Views ❘ 185

{
publicvoidonItemClick(AdapterView<?>parent,
Viewv,intposition,longid)
{
Toast.makeText(getBaseContext(),
“pic”+(position+1)+“selected”,
Toast.LENGTH_SHORT).show();
}
});

When an image is selected, you display a Toast message indicating the image selected.

Within the GridView, you can specify the size of the images and how images are spaced out in the
GridView by setting the padding for each image:

//---returnsanImageViewview---
publicViewgetView(intposition,ViewconvertView,
ViewGroupparent)
{
ImageViewimageView;
if(convertView==null){
imageView=newImageView(context);
imageView.setLayoutParams(new
GridView.LayoutParams(85, 85));
imageView.setScaleType(
ImageView.ScaleType.CENTER_CROP);
imageView.setPadding(5, 5, 5, 5);
}else{
imageView=(ImageView)convertView;
}
imageView.setImageResource(imageIDs[position]);
returnimageView;
}

uSing menuS With vieWS

Menus are useful for displaying additional options that are not directly visible on the main UI of an
application. There are two main types of menus in Android:

Options menu➤➤ — Displays information related to the current activity. In Android, you activate
the options menu by pressing the MENU key.

Context menu➤➤ — Displays information related to a particular view on an activity. In Android,
to activate a context menu you tap and hold on to it.

Figure 5-11 shows an example of an options menu in the browser application. The option menu is
displayed whenever the user presses the MENU button. The menu items displayed vary according to
the current activity that is running.

Figure 5-12 shows a context menu that is displayed when the user presses and holds on a hyperlink
displayed on the page. The menu items displayed vary according to the component or view currently
selected. To activate the context menu, the user selects an item on the screen and either taps and
holds it or simply presses the center button on the directional keypad.

186 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

creating the helper methods
Before you go ahead and create your options and context menus, you need to create two helper meth-
ods. One creates a list of items to show inside a menu, while the other handles the event that is fired
when the user selects an item inside the menu.

Creating the Menu Helper Methodstry it out

codefile Menus.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as Menus.

 2 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.Menus;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.view.Menu;
import android.view.MenuItem;
import android.widget.Button;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Figure 5-11 Figure 5-12

Using Menus with Views ❘ 187

}

private void CreateMenu(Menu menu)
{
MenuItem mnu1 = menu.add(0, 0, 0, “Item 1”);
{
mnu1.setAlphabeticShortcut(‘a’);
mnu1.setIcon(R.drawable.icon);
}
MenuItem mnu2 = menu.add(0, 1, 1, “Item 2”);
{
mnu2.setAlphabeticShortcut(‘b’);
mnu2.setIcon(R.drawable.icon);
}
MenuItem mnu3 = menu.add(0, 2, 2, “Item 3”);
{
mnu3.setAlphabeticShortcut(‘c’);
mnu3.setIcon(R.drawable.icon);
}
MenuItem mnu4 = menu.add(0, 3, 3, “Item 4”);
{
mnu4.setAlphabeticShortcut(‘d’);
}
menu.add(0, 3, 3, “Item 5”);
menu.add(0, 3, 3, “Item 6”);
menu.add(0, 3, 3, “Item 7”);
}

private boolean MenuChoice(MenuItem item)
{
switch (item.getItemId()) {
case 0:
Toast.makeText(this, “You clicked on Item 1”,
Toast.LENGTH_LONG).show();
return true;
case 1:
Toast.makeText(this, “You clicked on Item 2”,
Toast.LENGTH_LONG).show();
return true;
case 2:
Toast.makeText(this, “You clicked on Item 3”,
Toast.LENGTH_LONG).show();
return true;
case 3:
Toast.makeText(this, “You clicked on Item 4”,
Toast.LENGTH_LONG).show();
return true;
case 4:
Toast.makeText(this, “You clicked on Item 5”,
Toast.LENGTH_LONG).show();
return true;
case 5:
Toast.makeText(this, “You clicked on Item 6”,
Toast.LENGTH_LONG).show();
return true;

188 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

case 6:
Toast.makeText(this, “You clicked on Item 7”,
Toast.LENGTH_LONG).show();
return true;
}
return false;
}
}

How It Works

The preceding example creates two methods: CreateMenu() and MenuChoice(). The CreateMenu() method
takes a Menu argument and adds a series of menu items to it.

To add a menu item to the menu, you create an instance of the MenuItem class and use the add() method
of the Menu object.

MenuItemmnu1=menu.add(0,0,0,“Item1”);
{
mnu1.setAlphabeticShortcut(‘a’);
mnu1.setIcon(R.drawable.icon);
}

The four arguments of the add() method are as follows:

groupId➤➤ — The group identifier that the menu item should be part of. Use 0 if an item is not in
a group.

itemId➤➤ — Unique item ID

order➤➤ — The order in which the item should be displayed

title➤➤ — The text to display for the menu item

You can use the setAlphabeticShortcut() method to assign a shortcut key to the menu item so that
users can select an item by pressing a key on the keyboard. The setIcon() method sets an image to be
displayed on the menu item.

The MenuChoice() method takes a MenuItem argument and checks its ID to determine the menu item that
is clicked. It then displays a Toast message to let the user know which menu item was clicked.

options menu
You are now ready to modify the application to display the options menu when the user presses the
MENU button on the Android device.

Displaying an Options Menutry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.Menus;

importandroid.app.Activity;

Using Menus with Views ❘ 189

importandroid.os.Bundle;
importandroid.view.Menu;
importandroid.view.MenuItem;
importandroid.widget.Button;
importandroid.widget.Toast;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu(menu);
CreateMenu(menu);
return true;
}

@Override
public boolean onOptionsItemSelected(MenuItem item)
{
return MenuChoice(item);
}

privatevoidCreateMenu(Menumenu)
{
//...
}

privatebooleanMenuChoice(MenuItemitem)
{
//...
}
}

 2 . Press F11 to debug the application on the Android Emulator. Figure 5-13 shows the options menu
that pops up when you click the MENU button. To select a menu item, either click on an individ-
ual item or use its shortcut key (A to D; applicable only to the first four items).

How It Works

To display the options menu for your activity, you need to override two methods in your activity:
onCreateOptionsMenu() and onOptionsItemSelected(). The onCreateOptionsMenu() method is called
when the MENU button is pressed. In this event, you call the CreateMenu() helper method to display the
options menu. When a menu item is selected, the onOptionsItemSelected() method is called. In this case,
you call the MenuChoice() method to display the menu item selected (and do whatever you want to do).

Observe the icons displayed for menu items 1, 2, and 3. Also, if the options menu has more than six items,
a “More” menu item will be displayed to indicate the additional options. Figure 5-14 shows the additional
menu items displayed as a list, after the user has pressed the More menu item.

190 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

Figure 5-13

Figure 5-14

context menu
The previous section showed how the options menu is displayed when the user presses the MENU but-
ton. Besides the options menu, you can also display a context menu. A context menu is usually associ-
ated with a view on an activity, and it is displayed when the user long clicks an item. For example, if
the user taps on a Button view and hold it for a few seconds, a context menu can be displayed.

Using Menus with Views ❘ 191

If you want to associate a context menu with a view on an activity, you need to call the
setOnCreateContextMenuListener() method of that particular view. The following Try It Out
shows how you can associate a context menu with a Button view.

Displaying a Context Menutry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.Menus;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.view.Menu;
importandroid.view.MenuItem;
importandroid.widget.Button;
importandroid.widget.Toast;

import android.view.View;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn = (Button) findViewById(R.id.btn1);
btn.setOnCreateContextMenuListener(this);
}

@Override
publicbooleanonCreateOptionsMenu(Menumenu){
super.onCreateOptionsMenu(menu);
CreateMenu(menu);
returntrue;
}

@Override
publicbooleanonOptionsItemSelected(MenuItemitem)
{
returnMenuChoice(item);
}

@Override
public void onCreateContextMenu(ContextMenu menu, View view,
ContextMenuInfo menuInfo)
{
super.onCreateContextMenu(menu, view, menuInfo);
CreateMenu(menu);
}

@Override

192 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

public boolean onContextItemSelected(MenuItem item)
{
return MenuChoice(item);
}

privatevoidCreateMenu(Menumenu)
{
//...
}

privatebooleanMenuChoice(MenuItemitem)
{
//...
}
}

 2 . Press F11 to debug the application on the Android Emulator. Figure 5-15 shows the context menu
that is displayed when you long-click the Button view.

Figure 5-15

How It Works

In the preceding example, you call the setOnCreateContextMenuListener() method of the Button view
to associate it with a context menu.

When the user long-clicks the Button view, the onCreateContextMenu() method is called. In this
method, you call the CreateMenu() method to display the context menu. Similarly, when an item

Some Additional Views ❘ 193

inside the context menu is selected, the onContextItemSelected() method is called, where you call the
MenuChoice() method to display a message to the user.

Notice that the shortcut keys for the menu items do not work. To enable the shortcuts keys, you need to
call the setQuertyMode() method of the Menu object, like this:

privatevoidCreateMenu(Menumenu)
{
menu.setQwertyMode(true);
MenuItemmnu1=menu.add(0,0,0,“Item1”);
{
mnu1.setAlphabeticShortcut(‘d’);
mnu1.setIcon(R.drawable.icon);
}
//...
}

Doing so will enable the shortcut key (see Figure 5-16).

Figure 5-16

Some AdditionAl vieWS

Besides the standard views that you have seen up to this point, the Android SDK provides some
additional views that make your applications much more interesting. In this section, you will learn
more about the following views: AnalogClock, DigitalClock, and WebView.

194 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

Analogclock and digitalclock views
The AnalogClock view displays an analog clock with two hands — one for minutes and one for
hours. Its counterpart, the DigitalClock view, displays the time digitally. Both display the system
time, and do not allow you to display a particular time. Hence, if you want to display the time for a
particular region, you have to build your own custom views.

NOTE Creating your own custom views in Android is beyond the scope of this
book. However, if you are interested in this area, take a look at Google’s Android
documentation on this topic at: http://developer.android.com/guide/topics/
ui/custom-components.html.

Using the AnalogClock and DigitalClock views are straightforward; simply declare them in your
XML fi le (such as main.xml), like this:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<AnalogClock
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

<DigitalClock
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

</LinearLayout>

Figure 5-17 shows the AnalogClock and DigitalClock views in action.

Webview
The WebView enables you to embed a web browser in your activity. This is very useful if your appli-
cation needs to embed some web content, such as maps from some other providers, and so on. The
following Try It Out shows how you can programmatically load the content of a web page and dis-
play it in your activity.

Using the WebView Viewtry it out

codefi le WebView.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as WebView.

http://developer.android.com/guide/topics/ui/custom-components.html
http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/ui/custom-components.html

Some Additional Views ❘ 195

Figure 5-17

 2 . Add the following statements to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<WebView android:id=”@+id/webview1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

</LinearLayout>

 3 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.WebView;

importandroid.app.Activity;
importandroid.os.Bundle;
import android.webkit.WebSettings;
import android.webkit.WebView;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

http://schemas.android.com/apk/res/android

196 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

setContentView(R.layout.main);

WebView wv = (WebView) findViewById(R.id.webview1);
WebSettings webSettings = wv.getSettings();
webSettings.setBuiltInZoomControls(true);
wv.loadUrl(
“http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg”);
}
}

 4 . Press F11 to debug the application on the Android Emulator. Figure 5-18 shows the content of the
WebView.

Figure 5-18

How It Works

To use the WebView to load a web page, you use the loadUrl() method, like this:

wv.loadUrl(
“http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg”);

To display the built-in zoom controls, you need to first get the WebSettings property from the WebView
and then call its setBuiltInZoomControls() method:

WebSettingswebSettings=wv.getSettings();
webSettings.setBuiltInZoomControls(true);

Figure 5-19 shows the built-in zoom controls that appear when you use the mouse to click and drag the
content of the WebView on the Android Emulator.

http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg
http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg

Some Additional Views ❘ 197

NOTE While most Android devices support multi-touch screens, the built-in zoom
controls are useful for zooming your web content when testing your application
on the Android Emulator.

Sometimes when you load a page that redirects you (such as load-
ing www.wrox.com redirects you to www.wrox.com/wileyCDA), WebView
will cause your application to launch the device’s browser applica-
tion to load the desired page. For example, if you ask the WebView
to load www.wrox.com, Wrox.com will automatically redirect you to
www.wrox.com/WileyCDA/. In this case, your application will auto-
matically launch the device’s browser application to load your page.
In Figure 5-20, note the URL bar at the top of the screen.

To prevent this from happening, you need to implement the
WebViewClient class and override the shouldOverrideUrlLoading()
method, as shown in the following example:

packagenet.learn2develop.WebView;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.webkit.WebSettings;
importandroid.webkit.WebView;
import android.webkit.WebViewClient;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

WebViewwv=(WebView)findViewById(R.id.webview1);
wv.setWebViewClient(new Callback());
WebSettingswebSettings=wv.getSettings();
webSettings.setBuiltInZoomControls(true);
wv.loadUrl(“http://www.wrox.com”);
}

private class Callback extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {
return(false);
}
}
}

Figure 5-21 shows the Wrox.com home page now loading correctly in the WebView.

Figure 5-19

http://www.wrox.com
http://www.wrox.com/wileyCDA
http://www.wrox.com
http://www.wrox.com/WileyCDA/

198 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

Figure 5-20

Figure 5-21

You can also dynamically formulate an HTML string and load it into the WebView, using the
loadDataWithBaseURL() method:

WebViewwv=(WebView)findViewById(R.id.webview1);
finalStringmimeType=“text/html”;
finalStringencoding=“UTF-8”;

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Some Additional Views ❘ 199

Stringhtml=“<H1>AsimpleHTMLpage</H1><body>”+
“<p>Thequickbrownfoxjumpsoverthelazydog</p>”;
wv.loadDataWithBaseURL(“”,html,mimeType,encoding,“”);

Figure 5-22 shows the content displayed by the WebView.

Figure 5-22

Alternatively, if you have an HTML file located in the assets folder (see Figure 5-23), you can also load
it into the WebView using the loadUrl() method:

WebViewwv=(WebView)findViewById(R.id.webview1);
wv.loadUrl(“file:///android_asset/Index.html”);

Figure 5-23

200 ❘ chApter 5 diSPlaYinG PictUreS and menUS with viewS

Figure 5-24 shows the content of the WebView.

Figure 5-24

SummAry

In this chapter, you have taken a look at the various views that enable you to display images:
Gallery, ImageView, ImageSwitcher, and GridView. In addition, you learned about the difference
between options menus and context menus, and how to display them in your application. Finally,
you learned about the AnalogClock and DigitalClock views, which display the current time graphi-
cally, as well as the WebView, which displays the content of a web page.

exerciSeS

 1 . What is the purpose of the ImageSwitcher?

 2 . Name the two methods you need to override when implementing an options menu in your activity .

 3 . Name the two methods you need to override when implementing a context menu in your activity .

 4 . How do you prevent the WebView from invoking the device’s web browser when a redirection

occurs in the WebView?

Answers to the Exercises can be found in Appendix C.

Summary ❘ 201

WhAt you leArned in thiS chApter ⊲

topic key conceptS

use of the
Gallery view

Displays a series of images in a horizontal scrolling list

Gallery <Gallery
android:id=”@+id/gallery1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”/>

ImageView <ImageView
android:id=”@+id/image1”
android:layout_width=”320px”
android:layout_height=”250px”
android:scaleType=”fitXY”/>

use of the
ImageSwitcher

view

Performs animation when switching between images

ImageSwitcher <ImageSwitcher
android:id=”@+id/switcher1”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:layout_alignParentLeft=”true”
android:layout_alignParentRight=”true”
android:layout_alignParentBottom=”true”/>

use of the
GridView

Shows items in a two-dimensional scrolling grid

GridView <GridViewxmlns:android=”http://schemas.android.com/apk/res/android”
android:id=”@+id/gridview”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:numColumns=”auto_fit”
android:verticalSpacing=”10dp”
android:horizontalSpacing=”10dp”
android:columnWidth=”90dp”
android:stretchMode=”columnWidth”
android:gravity=”center”/>

AnalogClock <AnalogClock
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

DigitalClock <DigitalClock
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

WebView <WebViewandroid:id=”@+id/webview1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”/>

http://schemas.android.com/apk/res/android

Data Persistence

WhAt you Will leArn in thiS chApter

How to save simple data using the ➤➤ SharedPreferences object

How to write and read fi les in internal and external storage➤➤

How to create and use a SQLite database➤➤

In this chapter, you will learn how to persist data in your Android applications. Persisting data
is an important topic in application development, as users expect to reuse the data sometime at
a later stage. For Android, there are primarily three basic ways of persisting data:

A lightweight mechanism known as shared preferences to save small chunks of data

Traditional fi le systems➤➤

A relational database management system through the support of SQLite databases➤➤

The techniques discussed in this chapter enable applications to create and access their own pri-
vate data. In the next chapter you’ll learn how you can share data across applications.

SAving And loAding uSer preFerenceS

Android provides the SharedPreferences object to help you save simple application data. For
example, your application may have an option to allow users to specify the font size of the text
displayed in your application. In this case, your application needs to remember the size set by the
user so that the next time he or she uses the application again, your application can set the size
appropriately. In order to do so, you have several options. You can save the data to a fi le, but you
have to perform some fi le management routines, such as writing the data to the fi le, indicating
how many characters to read from it, and so on. Also, if you have several pieces of information to
save, such as text size, font name, preferred background color, and so on, then the task of writing
to a fi le becomes more onerous.

6

204 ❘ chApter 6 data PerSiStence

An alternative to writing to a text file is to use a database, but saving simple data to a database is over-
kill, both from a developer’s point of view and in terms of the application’s run-time performance.

Using the SharedPreferences object, however, you save the data you want through the use of key/
value pairs — specify a key for the data you want to save, and then both it and its value will be
saved automatically to an XML file for you.

using getSharedpreferences()
To see how the SharedPreferences object works, the following Try It Out demonstrates how easy it
is to save user data to an XML file, and then retrieve it easily via the same object.

Saving Data Using the SharedPreferences Objecttry it out

codefile SharedPreferences.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project and name it as shown in Figure 6-1.

Figure 6-1

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”

http://schemas.android.com/apk/res/android

Saving and Loading User Preferences ❘ 205

android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<SeekBar
android:id=”@+id/SeekBar01”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />
<TextView
android:id=”@+id/TextView01”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello” />
<EditText
android:id=”@+id/EditText01”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />
<Button
android:id=”@+id/btnSave”
android:text=”Save”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />
</LinearLayout>

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.SharedPreferences;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.SharedPreferences;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.SeekBar;
import android.widget.SeekBar.OnSeekBarChangeListener;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
private SharedPreferences prefs;
private String prefName = “MyPref”;
private EditText editText;
private SeekBar seekBar;
private Button btn;

private static final String FONT_SIZE_KEY = “fontsize”;
private static final String TEXT_VALUE_KEY = “textvalue”;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

editText = (EditText) findViewById(R.id.EditText01);
seekBar = (SeekBar) findViewById(R.id.SeekBar01);

206 ❘ chApter 6 data PerSiStence

btn = (Button) findViewById(R.id.btnSave);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
//---get the SharedPreferences object---
prefs = getSharedPreferences(prefName, MODE_PRIVATE);
SharedPreferences.Editor editor = prefs.edit();

//---save the values in the EditText view to preferences---
editor.putFloat(FONT_SIZE_KEY, editText.getTextSize());
editor.putString(TEXT_VALUE_KEY, editText.getText().toString());

//---saves the values---
editor.commit();

//---display file saved message---
Toast.makeText(getBaseContext(),
“Font size saved successfully!”,
Toast.LENGTH_SHORT).show();
}
});

//---load the SharedPreferences object---
SharedPreferences prefs = getSharedPreferences(prefName, MODE_PRIVATE);

//---set the TextView font size to the previously saved values---
float fontSize = prefs.getFloat(FONT_SIZE_KEY, 12);

//---init the SeekBar and EditText---
seekBar.setProgress((int) fontSize);
editText.setText(prefs.getString(TEXT_VALUE_KEY, “”));
editText.setTextSize(seekBar.getProgress());

seekBar.setOnSeekBarChangeListener(new OnSeekBarChangeListener() {
@Override
public void onStopTrackingTouch(SeekBar seekBar) {
}

@Override
public void onStartTrackingTouch(SeekBar seekBar) {
}

@Override
public void onProgressChanged(SeekBar seekBar, int progress,
boolean fromUser) {
//---change the font size of the EditText---
editText.setTextSize(progress);
}
});
}
}

 4 . Press F11 to debug the application on the Android Emulator.

Saving and Loading User Preferences ❘ 207

 5 . Enter some text into the EditText view and then change its font size by adjusting the SeekBar view
(see Figure 6-2). Click Save.

Figure 6-2

 6 . Return to Eclipse and press F11 to debug the application on the Android Emulator again. The
application now displays the same text that you entered earlier using the same font size set earlier.

How It Works

To use the SharedPreferences object, you use the getSharedPreferences() method, passing it the name
of the shared preferences file (in which all the data will be saved), as well as the mode in which it should
be opened:

privateSharedPreferencesprefs;
...
//---gettheSharedPreferencesobject---
prefs=getSharedPreferences(prefName,MODE_PRIVATE);
SharedPreferences.Editoreditor=prefs.edit();

The MODE_PRIVATE constant indicates that the shared preference file can only be opened by the applica-
tion that created it. The Editor class allows you to save key/value pairs to the preferences file by exposing
methods such as the following:

putString()➤➤

putBoolean()➤➤

putLong()➤➤

208 ❘ chApter 6 data PerSiStence

putInt()➤➤

putFloat()➤➤

When you are done saving the values, call the commit() method to save the changes:

//---savethevaluesintheEditTextviewtopreferences---
editor.putFloat(FONT_SIZE_KEY,editText.getTextSize());
editor.putString(TEXT_VALUE_KEY,editText.getText().toString());

//---savesthevalues---
editor.commit();

When the activity is loaded, you first obtain the SharedPreferences object and then retrieve all the val-
ues saved earlier:

//---loadtheSharedPreferencesobject---
SharedPreferencesprefs=getSharedPreferences(prefName,MODE_PRIVATE);

//---settheTextViewfontsizetothepreviouslysavedvalues---
floatfontSize=prefs.getFloat(FONT_SIZE_KEY,12);

//---inittheSeekBarandEditText---
seekBar.setProgress((int)fontSize);
editText.setText(prefs.getString(TEXT_VALUE_KEY,“”));
editText.setTextSize(seekBar.getProgress());

The shared preferences file is saved as an XML file in the /data/
data/<package_name>/shared_prefs folder (see Figure 6-3).

Its content is shown here (formatted for clarity):

<?xmlversion=’1.0’encoding=’utf-8’standalone=’yes’?>
<map>
<stringname=”textvalue”>Thisissocool!</string>
<floatname=”fontsize”value=”75.0”/>
</map>

using getpreferences()
In the previous section, you used the used the SharedPreferences object by supplying it with a
name, like this:

//---gettheSharedPreferencesobject---
prefs=getSharedPreferences(prefName,MODE_PRIVATE);

In this case, the information saved inside the SharedPreferences object is visible to all the activities
within the same application. However, if you don’t need to share the data between activities, you
can use the getPreferences() method, like this:

//---gettheSharedPreferencesobject---
prefs = getPreferences(MODE_PRIVATE);

Figure 6-3

Persisting Data to Files ❘ 209

The getPreferences() method does not require a name, and the data
saved is restricted to the activity that created it. In this case, the file-
name used for the preferences file will be named after the activity that
created it (see Figure 6-4).

perSiSting dAtA to FileS

The SharedPreferences object allows you to store data that could best be stored as key/value pairs,
for example, data such as user ID, birthdate, gender, driving license number, etc. However, some-
times you might prefer to use the traditional file system to store your data. For example, you might
want to store text of poems that you want to display in your applications. In Android, you can use
the classes in the java.io namespace to do so.

Saving to internal Storage
The first way to save files in your Android application is to write to the device’s internal storage. The fol-
lowing Try It Out demonstrates how to save a string entered by the user to the device’s internal storage.

Saving Data to internal Storagetry it out

codefile Files.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project and name it as shown in Figure 6-5.

 2 . In the main.xml file, add the following statements in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Please enter some text”
/>
<EditText
android:id=”@+id/txtText1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />
<Button
android:id=”@+id/btnSave”
android:text=”Save”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />
<Button
android:id=”@+id/btnLoad”
android:text=”Load”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />
</LinearLayout>

Figure 6-4

http://schemas.android.com/apk/res/android

210 ❘ chApter 6 data PerSiStence

Figure 6-5

 3 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.Files;

importandroid.app.Activity;
importandroid.view.View;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import android.os.Bundle;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

publicclassMainActivityextendsActivity{
private EditText textBox;
private static final int READ_BLOCK_SIZE = 100;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

textBox = (EditText) findViewById(R.id.txtText1);

Persisting Data to Files ❘ 211

Button saveBtn = (Button) findViewById(R.id.btnSave);
Button loadBtn = (Button) findViewById(R.id.btnLoad);

saveBtn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
String str = textBox.getText().toString();
try
{
FileOutputStream fOut =
openFileOutput(“textfile.txt”,
MODE_WORLD_READABLE);
OutputStreamWriter osw = new
OutputStreamWriter(fOut);

//---write the string to the file---
osw.write(str);
osw.flush();
osw.close();

//---display file saved message---
Toast.makeText(getBaseContext(),
“File saved successfully!”,
Toast.LENGTH_SHORT).show();

//---clears the EditText---
textBox.setText(“”);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
}
});

loadBtn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
try
{
FileInputStream fIn =
openFileInput(“textfile.txt”);
InputStreamReader isr = new
InputStreamReader(fIn);

char[] inputBuffer = new char[READ_BLOCK_SIZE];
String s = “”;

int charRead;
while ((charRead = isr.read(inputBuffer))>0)
{
//---convert the chars to a String---
String readString =
String.copyValueOf(inputBuffer, 0,
charRead);
s += readString;

 inputBuffer = new char[READ_BLOCK_SIZE];

212 ❘ chApter 6 data PerSiStence

}
//---set the EditText to the text that has been
// read---
textBox.setText(s);

Toast.makeText(getBaseContext(),
“File loaded successfully!”,
Toast.LENGTH_SHORT).show();
}
catch (IOException ioe) {
ioe.printStackTrace();
}
}
});
}
}

 4 . Press F11 to debug the application on the Android Emulator.

 5 . Type some text into the EditText view (see Figure 6-6) and then click the Save button.

Figure 6-6

 6 . If the file is saved successfully, you will see the Toast class displaying the “File saved successfully!”
message. The text in the EditText view should disappear.

 7 . Click the Load button and you should see the string appearing in the EditText view again. This
confirms that the text is saved correctly.

Persisting Data to Files ❘ 213

How It Works

To save text into a file, you use the FileOutputStream class. The openFileOutput() method opens a
named file for writing, with the mode specified. In this example, you use the MODE_WORLD_READABLE
constant to indicate that the file is readable by all other applications:

FileOutputStreamfOut=
openFileOutput(“textfile.txt”,
MODE_WORLD_READABLE);

Apart from the MODE_WORLD_READABLE constant, you can select from the following: MODE_PRIVATE (file
can only be accessed by the application that created it), MODE_APPEND (for appending to an existing file),
and MODE_WORLD_WRITEABLE (all other applications have write access to the file).

To convert a character stream into a byte stream, you use an instance of the OutputStreamWriter class,
by passing it an instance of the FileOutputStream object:

OutputStreamWriterosw=new
OutputStreamWriter(fOut);

You then use its write() method to write the string to the file. To ensure that all the bytes are written
to the file, use the flush() method. Finally, use the close() method to close the file:

osw.write(str);
osw.flush();
osw.close();

To read the content of a file, you use the FileInputStream class, together with the InputStreamReader class:

FileInputStreamfIn=
openFileInput(“textfile.txt”);
InputStreamReaderisr=new
InputStreamReader(fIn);

As you do not know the size of the file to read, the content is read in blocks of 100 characters into a
buffer (character array). The characters read are then copied into a String object:

char[]inputBuffer=newchar[READ_BLOCK_SIZE];
Strings=“”;

intcharRead;
while((charRead=isr.read(inputBuffer))>0)
{
//---convertthecharstoaString---
StringreadString=
String.copyValueOf(inputBuffer,0,
charRead);
s+=readString;

inputBuffer=newchar[READ_BLOCK_SIZE];
}

The read() method of the InputStreamReader object reads the number of characters read and returns -1
if the end of the file is reached.

214 ❘ chApter 6 data PerSiStence

When testing this application on the Android Emulator, you can use the DDMS to verify that the appli-
cation did indeed save the file into the application’s files directory (see Figure 6-7; the actual directory
is /data/data/net.learn2develop.Files/files)

Figure 6-7

Saving to external Storage (Sd card)
The previous section showed how you can save your files to the internal storage of your Android
device. Sometimes, it would be useful to save them to external storage (such as an SD card) because
of its larger capacity, as well as the capability to share the files easily with other users (by removing
the SD card and passing it to somebody else).

Using the project created in the previous section as the example, to save the text entered by the user
in the SD card, modify the onClick() method of the Save button as shown in bold here:

saveBtn.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){

Stringstr=textBox.getText().toString();
try
{
//---SD Card Storage---
File sdCard = Environment.getExternalStorageDirectory();
File directory = new File (sdCard.getAbsolutePath() +
“/MyFiles”);
directory.mkdirs();
File file = new File(directory, “textfile.txt”);
FileOutputStream fOut = new FileOutputStream(file);

OutputStreamWriterosw=new
OutputStreamWriter(fOut);

//---writethestringtothefile---
osw.write(str);
osw.flush();

Persisting Data to Files ❘ 215

osw.close();

//---displayfilesavedmessage---
Toast.makeText(getBaseContext(),
“Filesavedsuccessfully!”,
Toast.LENGTH_SHORT).show();

//---clearstheEditText---
textBox.setText(“”);
}
catch(IOExceptionioe)
{
ioe.printStackTrace();
}
}
});

The preceding code uses the getExternalStorageDirectory() method to return the full path to the
external storage. Typically, it should return the “/sdcard” path for a real device, and “/mnt/sdcard”
for an Android Emulator. However, you should never try to hardcode the path to the SD card, as
manufacturers may choose to assign a different path name to the SD card. Hence, be sure to use the
getExternalStorageDirectory() method to return the full path to the SD card.

You then create a directory called MyFiles in the SD card. Finally, you save the file into this
directory.

To load the file from the external storage, modify the onClick() method for the Load button:

loadBtn.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
try
{
//---SD Storage---
File sdCard = Environment.getExternalStorageDirectory();
File directory = new File (sdCard.getAbsolutePath() +
“/MyFiles”);
File file = new File(directory, “textfile.txt”);
FileInputStream fIn = new FileInputStream(file);
InputStreamReader isr = new InputStreamReader(fIn);

char[]inputBuffer=newchar[READ_BLOCK_SIZE];
Strings=“”;

intcharRead;
while((charRead=isr.read(inputBuffer))>0)
{
//---convertthecharstoaString---
StringreadString=
String.copyValueOf(inputBuffer,0,charRead);
s+=readString;

inputBuffer=newchar[READ_BLOCK_SIZE];
}
//---settheEditTexttothetextthathasbeen
//read---

216 ❘ chApter 6 data PerSiStence

textBox.setText(s);

Toast.makeText(getBaseContext(),
“Fileloadedsuccessfully!”,
Toast.LENGTH_SHORT).show();
}
catch(IOExceptionioe){
ioe.printStackTrace();
}
}
});

Note that in order to write to the external storage, you need to add the WRITE_EXTERNAL_STORAGE
permission in your AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Files”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
<uses-permission android:name=”android.permission.WRITE_EXTERNAL_STORAGE”>
</uses-permission>
</manifest>

choosing the Best Storage option
And so, you have seen the few ways of saving data in your Android applications — SharedPreferences,
internal storage, and external storage. Which one should you use in your applications? Here are some
suggestions:

If you have data that can be represented using key/value pairs, then use the ➤➤ SharedPreferences
object. For example, if you want to store user preference data such as user name, background
color, date of birth, last login date, then the SharedPreferences object is the ideal way to store
these data. Moreover, you don’t really have to get your hands dirty on how these data are stored;
all you need is to use the SharedPreferences object to store and retrieve them.

If you need to store ad-hoc data, then using the internal storage is a good option. For exam-➤➤

ple, your application (such as an RSS reader) may need to download images from the Web
for display. In this scenario, saving the images to internal storage is a good solution. You
may also need to persist data created by the user, such as when you have a note-taking appli-
cation where users can take notes and save them for later use. In all these scenarios, using the
internal storage is a good choice.

http://schemas.android.com/apk/res/android

Persisting Data to Files ❘ 217

There are times when you need to share your application data with other users. For example, ➤➤

you may create an Android application that logs the coordinates of the locations that a user
has been to, and you want to share all these data with other users. In this scenario, you can
store your files on the SD card of the device so that users can easily transfer the data to other
devices (and computers) for use later.

using Static resources
Besides creating and using files dynamically during run time, it is also possible to
add files to your package during design time so that you can use it during run time.
For example, you may want to bundle some help files with your package so that
you can display some help messages when users need it. In this case, you can add
the files to the res/raw folder (you need to create this folder yourself) of your pack-
age. Figure 6-8 shows the res/raw folder containing a file named textfile.txt.

To make use of the file in code, use the getResources() method to return a
Resources object and then use its openRawResource() method to open the file
contained in the res/raw folder:

import java.io.InputStream;
import java.io.BufferedReader;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

InputStream is = this.getResources().openRawResource(R.raw.textfile);
BufferedReader br = new BufferedReader(new InputStreamReader(is));
String str = null;
try {
while ((str = br.readLine()) != null) {
Toast.makeText(getBaseContext(),
str, Toast.LENGTH_SHORT).show();
}
is.close();
br.close();
} catch (IOException e) {
e.printStackTrace();
}

textBox=(EditText)findViewById(R.id.txtText1);
ButtonsaveBtn=(Button)findViewById(R.id.btnSave);
ButtonloadBtn=(Button)findViewById(R.id.btnLoad);

saveBtn.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
}
});

loadBtn.setOnClickListener(newView.OnClickListener(){

Figure 6-8

218 ❘ chApter 6 data PerSiStence

publicvoidonClick(Viewv){
}
});
}

The resource ID of the resource stored in the res/raw folder is named after its filename without its
extension. For example, if the text file is textfile.txt, then its resource ID is R.raw.textfile.

creAting And uSing dAtABASeS

So far, all the techniques you have seen are useful for saving simple sets of data. For saving relational
data, using a database is much more efficient. For example, if you want to store the results of all the
students in a school, it is much more efficient to use a database to represent them because you can use
database querying to retrieve the results of the specific students. Moreover, using databases enables
you to enforce data integrity by specifying the relationships between different sets of data.

Android uses the SQLite database system. The database that you create for an application is only acces-
sible to itself; other applications will not be able to access it.

In this section, you will learn how to programmatically create a SQLite database in your Android
application. For Android, the SQLite database that you create programmatically in an application is
always stored in the /data/data/<package_name>/databases folder.

creating the dBAdapter helper class
A good practice for dealing with databases is to create a helper class to encapsulate all the complexi-
ties of accessing the data so that it is transparent to the calling code. Hence, for this section, you
will create a helper class called DBAdapter that creates, opens, closes,
and uses a SQLite database.

In this example, you are going to create a database named MyDB contain-
ing one table named contacts. This table will have three columns: _id,
name, and email (see Figure 6-9).

Creating the Database Helper Classtry it out

codefile Databases.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project and name it Databases.

 2 . Add a new class file to the project and name it DBAdapter.java (see
Figure 6-10).

 3 . Add the following statements in bold to the DBAdapter.java file:

packagenet.learn2develop.Databases;

import android.content.ContentValues;
import android.content.Context;

Figure 6-9

Figure 6-10

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating and Using Databases ❘ 219

import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

publicclassDBAdapter{
public static final String KEY_ROWID = “_id”;
public static final String KEY_NAME = “name”;
public static final String KEY_EMAIL = “email”;
private static final String TAG = “DBAdapter”;

private static final String DATABASE_NAME = “MyDB”;
private static final String DATABASE_TABLE = “contacts”;
private static final int DATABASE_VERSION = 1;

private static final String DATABASE_CREATE =
“create table contacts (_id integer primary key autoincrement, “
+ “name text not null, email text not null);”;

private final Context context;

private DatabaseHelper DBHelper;
private SQLiteDatabase db;

public DBAdapter(Context ctx)
{
this.context = ctx;
DBHelper = new DatabaseHelper(context);
}

private static class DatabaseHelper extends SQLiteOpenHelper
{
DatabaseHelper(Context context)
{
super(context, DATABASE_NAME, null, DATABASE_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db)
{
try {
db.execSQL(DATABASE_CREATE);
} catch (SQLException e) {
e.printStackTrace();
}
}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
{
Log.w(TAG, “Upgrading database from version “ + oldVersion + “ to “
+ newVersion + “, which will destroy all old data”);
db.execSQL(“DROP TABLE IF EXISTS contacts”);

220 ❘ chApter 6 data PerSiStence

onCreate(db);
}
}

//---opens the database---
public DBAdapter open() throws SQLException
{
db = DBHelper.getWritableDatabase();
return this;
}

//---closes the database---
public void close()
{
DBHelper.close();
}

//---insert a contact into the database---
public long insertContact(String name, String email)
{
ContentValues initialValues = new ContentValues();
initialValues.put(KEY_NAME, name);
initialValues.put(KEY_EMAIL, email);
return db.insert(DATABASE_TABLE, null, initialValues);
}

//---deletes a particular contact---
public boolean deleteContact(long rowId)
{
return db.delete(DATABASE_TABLE, KEY_ROWID + “=” + rowId, null) > 0;
}

//---retrieves all the contacts---
public Cursor getAllContacts()
{
return db.query(DATABASE_TABLE, new String[] {KEY_ROWID, KEY_NAME,
KEY_EMAIL}, null, null, null, null, null);
}

//---retrieves a particular contact---
public Cursor getContact(long rowId) throws SQLException
{
Cursor mCursor =
db.query(true, DATABASE_TABLE, new String[] {KEY_ROWID,
KEY_NAME, KEY_EMAIL}, KEY_ROWID + “=” + rowId, null,
null, null, null, null);
if (mCursor != null) {
mCursor.moveToFirst();
}
return mCursor;
}

//---updates a contact---
public boolean updateContact(long rowId, String name, String email)

Creating and Using Databases ❘ 221

{
ContentValues args = new ContentValues();
args.put(KEY_NAME, name);
args.put(KEY_EMAIL, email);
return db.update(DATABASE_TABLE, args, KEY_ROWID + “=” + rowId, null) > 0;
}
}

How It Works

You first defined several constants to contain the various fields for the table that you are going to create
in your database:

public static final String KEY_ROWID = “_id”;
public static final String KEY_NAME = “name”;
public static final String KEY_EMAIL = “email”;
private static final String TAG = “DBAdapter”;

private static final String DATABASE_NAME = “MyDB”;
private static final String DATABASE_TABLE = “contacts”;
private static final int DATABASE_VERSION = 1;

private static final String DATABASE_CREATE =
“create table contacts (_id integer primary key autoincrement, “
+ “name text not null, email text not null);”;

In particular, the DATABASE_CREATE constant contains the SQL statement for creating the contacts table
within the MyDB database.

Within the DBAdapter class, you also extend the SQLiteOpenHelper class, which is a helper class in Android
to manage database creation and version management. In particular, you override the onCreate() and
onUpgrade() methods:

publicclassDBAdapter{
publicstaticfinalStringKEY_ROWID=“_id”;
publicstaticfinalStringKEY_NAME=“name”;
publicstaticfinalStringKEY_EMAIL=“email”;
privatestaticfinalStringTAG=“DBAdapter”;

privatestaticfinalStringDATABASE_NAME=“MyDB”;
privatestaticfinalStringDATABASE_TABLE=“contacts”;
privatestaticfinalintDATABASE_VERSION=1;

privatestaticfinalStringDATABASE_CREATE=
“createtablecontacts(_idintegerprimarykeyautoincrement,“
+“nametextnotnull,emailtextnotnull);”;

privatefinalContextcontext;

private DatabaseHelper DBHelper;
private SQLiteDatabase db;

public DBAdapter(Context ctx)
{

222 ❘ chApter 6 data PerSiStence

this.context = ctx;
DBHelper = new DatabaseHelper(context);
}

private static class DatabaseHelper extends SQLiteOpenHelper
{
DatabaseHelper(Context context)
{
super(context, DATABASE_NAME, null, DATABASE_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db)
{
try {
db.execSQL(DATABASE_CREATE);
} catch (SQLException e) {
e.printStackTrace();
}
}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)
{
Log.w(TAG, “Upgrading database from version “ + oldVersion + “ to “
+ newVersion + “, which will destroy all old data”);
db.execSQL(“DROP TABLE IF EXISTS contacts”);
onCreate(db);
}
}

The onCreate() method creates a new database if the required database is not present. The
onUpgrade() method is called when the database needs to be upgraded. This is achieved by checking the
value defined in the DATABASE_VERSION constant. For this implementation of the onUpgrade() method,
you simply drop the table and create it again.

You can then define the various methods for opening and closing the database, as well as the methods
for adding/editing/deleting rows in the table:

publicclassDBAdapter{
//...
//...

//---opens the database---
public DBAdapter open() throws SQLException
{
db = DBHelper.getWritableDatabase();
return this;
}

//---closes the database---
public void close()
{

Creating and Using Databases ❘ 223

DBHelper.close();
}

//---insert a contact into the database---
public long insertContact(String name, String email)
{
ContentValues initialValues = new ContentValues();
initialValues.put(KEY_NAME, name);
initialValues.put(KEY_EMAIL, email);
return db.insert(DATABASE_TABLE, null, initialValues);
}

//---deletes a particular contact---
public boolean deleteContact(long rowId)
{
return db.delete(DATABASE_TABLE, KEY_ROWID + “=” + rowId, null) > 0;
}

//---retrieves all the contacts---
public Cursor getAllContacts()
{
return db.query(DATABASE_TABLE, new String[] {KEY_ROWID, KEY_NAME,
KEY_EMAIL}, null, null, null, null, null);
}

//---retrieves a particular contact---
public Cursor getContact(long rowId) throws SQLException
{
Cursor mCursor =
db.query(true, DATABASE_TABLE, new String[] {KEY_ROWID,
KEY_NAME, KEY_EMAIL}, KEY_ROWID + “=” + rowId, null,
null, null, null, null);
if (mCursor != null) {
mCursor.moveToFirst();
}
return mCursor;
}

//---updates a contact---
public boolean updateContact(long rowId, String name, String email)
{
ContentValues args = new ContentValues();
args.put(KEY_NAME, name);
args.put(KEY_EMAIL, email);
return db.update(DATABASE_TABLE, args, KEY_ROWID + “=” + rowId, null) > 0;
}
}

Notice that Android uses the Cursor class as a return value for queries. Think of the Cursor as a pointer
to the result set from a database query. Using Cursor enables Android to more efficiently manage rows
and columns as needed.

You use a ContentValues object to store key/value pairs. Its put() method enables you to insert keys
with values of different data types.

224 ❘ chApter 6 data PerSiStence

using the database programmatically
You are now ready to use the database using the helper class created in the previous section.

Adding Contacts
The following Try It Out demonstrates how you can add a contact to the table.

Adding Contacts to a Tabletry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

packagenet.learn2develop.Databases;

importandroid.app.Activity;
importandroid.os.Bundle;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

DBAdapterdb=newDBAdapter(this);

//---add a contact---
db.open();
long id = db.insertContact(“Wei-Meng Lee”, “weimenglee@learn2develop.net”);
id = db.insertContact(“Mary Jackson”, “mary@jackson.com”);
db.close();
}
}

 2 . Press F11 to debug the application on the Android Emulator.

How It Works

In this example, you first created an instance of the DBAdapter class:

DBAdapterdb=newDBAdapter(this);

The insertContact() method returns the ID of the inserted row. If an error
occurs during the operation, it returns -1.

If you examine the file system of the Android device/emulator using DDMS,
you can see that the MyDB database is created under the databases folder (see
Figure 6-11). Figure 6-11

Creating and Using Databases ❘ 225

Retrieving All the Contacts
To retrieve all the contacts in the contacts table, use the getAllContacts() method of the DBAdapter
class, as the following Try It Out shows.

Retrieving All Contacts from a Tabletry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

packagenet.learn2develop.Databases;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.widget.Toast;

import android.database.Cursor;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

DBAdapterdb=newDBAdapter(this);

/*
//---addacontact---
db.open();
longid=db.insertContact(“Wei-MengLee”,“weimenglee@learn2develop.net”);
id=db.insertContact(“MaryJackson”,“mary@jackson.com”);
db.close();
*/

//---get all contacts---
db.open();
Cursor c = db.getAllContacts();
if (c.moveToFirst())
{
do {
DisplayContact(c);
} while (c.moveToNext());
}
db.close();
}

public void DisplayContact(Cursor c)
{
Toast.makeText(this,
“id: “ + c.getString(0) + “\n” +

226 ❘ chApter 6 data PerSiStence

“Name: “ + c.getString(1) + “\n” +
“Email: “ + c.getString(2),
Toast.LENGTH_LONG).show();
}
}

 2 . Press F11 to debug the application on the Android Emulator. Figure 6-12 shows the Toast class
displaying the contacts retrieved from the database.

Figure 6-12

How It Works

The getAllContacts() method of the DBAdapter class retrieves all the contacts stored in the database. The
result is returned as a Cursor object. To display all the contacts, you first need to call the moveToFirst()
method of the Cursor object. If it succeeds (which means at least one row is available), display the details
of the contact using the DisplayContact() method. To move to the next contact, call the moveToNext()
method of the Cursor object.

Retrieving a Single Contact
To retrieve a single contact using its ID, call the getContact() method of the DBAdapter class, as the
following Try It Out shows.

Creating and Using Databases ❘ 227

Retrieving a Contact from a Tabletry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

DBAdapterdb=newDBAdapter(this);

/*
//---addacontact---
//...
*/

/*
//---getallcontacts---
//...
*/

//---get a contact---
db.open();
Cursor c = db.getContact(2);
if (c.moveToFirst())
DisplayContact(c);
else
Toast.makeText(this, “No contact found”, Toast.LENGTH_LONG).show();
db.close();
}

 2 . Press F11 to debug the application on the Android Emulator. The details of the second contact will
be displayed using the Toast class.

How It Works

The getContact() method of the DBAdapter class retrieves a single contact using its ID. You passed in
the ID of the contact; in this case, you passed in an ID of 2 to indicate that you want to retrieve the
second contact:

Cursorc=db.getContact(2);

The result is returned as a Cursor object. If a row is returned, you display the details of the contact using
the DisplayContact()method; otherwise, you display a message using the Toast class.

Updating a Contact
To update a particular contact, call the updateContact() method in the DBAdapter class by passing
the ID of the contact you want to update, as the following Try It Out shows.

228 ❘ chApter 6 data PerSiStence

Updating a Contact in a Tabletry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

DBAdapterdb=newDBAdapter(this);

/*
//---addacontact---
//...
*/

/*
//---getallcontacts---
//...
*/

/*
//...
*/

//---update contact---
db.open();
if (db.updateContact(1, “Wei-Meng Lee”, “weimenglee@gmail.com”))
Toast.makeText(this, “Update successful.”, Toast.LENGTH_LONG).show();
else
Toast.makeText(this, “Update failed.”, Toast.LENGTH_LONG).show();
db.close();
}

 2 . Press F11 to debug the application on the Android Emulator. A message will be displayed if the
update is successful.

How It Works

The updateContact() method in the DBAdapter class updates a contact’s details by using the ID of the
contact you want to update. It returns a Boolean value, indicating whether the update was successful.

Deleting a Contact
To delete a contact, use the deleteContact() method in the DBAdapter class by passing the ID of the
contact you want to update, as the following Try It Out shows.

Creating and Using Databases ❘ 229

Deleting a Contact from a Tabletry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

DBAdapterdb=newDBAdapter(this);

/*
//---addacontact---
//...
*/

/*
//---getallcontacts---
//...
*/

/*
//---getacontact---
//...
*/

/*
//---updatecontact---
//...
*/

//---delete a contact---
db.open();
if (db.deleteContact(1))
Toast.makeText(this, “Delete successful.”, Toast.LENGTH_LONG).show();
else
Toast.makeText(this, “Delete failed.”, Toast.LENGTH_LONG).show();
db.close();
}

 2 . Press F11 to debug the application on the Android Emulator. A message will be displayed if the
deletion was successful.

How It Works

The deleteContact() method in the DBAdapter class deletes a contact using the ID of the contact you
want to update. It returns a Boolean value, indicating whether the deletion was successful.

230 ❘ chApter 6 data PerSiStence

Upgrading the Database
Sometimes, after creating and using the database, you may need to add additional tables, change the
schema of the database, or add columns to your tables. In this case, you need to migrate your exist-
ing data from the old database to a newer one.

To upgrade the database, change the DATABASE_VERSION constant to a value higher than the previous
one. For example, if its previous value was 1, change it to 2:

publicclassDBAdapter{
publicstaticfinalStringKEY_ROWID=“_id”;
publicstaticfinalStringKEY_NAME=“name”;
publicstaticfinalStringKEY_EMAIL=“email”;
privatestaticfinalStringTAG=“DBAdapter”;

privatestaticfinalStringDATABASE_NAME=“MyDB”;
privatestaticfinalStringDATABASE_TABLE=“contacts”;
private static final int DATABASE_VERSION = 2;

When you run the application one more time, you will see the following message in the LogCat win-
dow of Eclipse:

DBAdapter(24096):Upgradingdatabasefromversion1to2,whichwilldestroyall
olddata

In this example, for simplicity you simply drop the existing table and create a new one. In real-life,
you usually back up your existing table and then copy them over to the new table.

pre-creating the database
In real-life applications, sometimes it would be more efficient to pre-create the database at design
time rather than run time. To pre-create a SQLite database, you can use many of the free tools avail-
able on the Internet. One such tool is the SQLite Database Browser, which is available free for the
different platforms (http://sourceforge.net/projects/sqlitebrowser/).

Once you have installed the SQLite Database Browser, you can create a database visually. Figure 6-13
shows that I have created a contacts table with the fields indicated.

Figure 6-13

http://sourceforge.net/projects/sqlitebrowser/

Creating and Using Databases ❘ 231

Populating the table with rows is also straightforward. Figure 6-14 shows how you can fi ll the table
with data using the Browse Data tab.

Figure 6-14

Bundling the Database with an Application
With the database created at design time, the next thing you should do is bundle it together with
your application so that you can use it in your application. The following Try It Out shows you how.

Bundling a Databasetry it out

1 . Using the same project created earlier, drag and drop the SQLite database fi le that you have created
in the previous section into the assets folder in your Android project in Eclipse (see Figure 6-15).

Figure 6-15

NOTE Note that a fi lename for fi les added to the assets folder must be in lower-
case letters. As such, a fi lename such as MyDB is invalid, whereas mydb is fi ne.

2 . Add the following statements in bold to the MainActivity.java fi le:

@OverridePrepared for RICHARD SALDANA/ email0 richard32@comcast.net Order number0 82951548 This PDF is for the purchaser’s personal use in accordance with the Wrox
Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own
copy.

232 ❘ chApter 6 data PerSiStence

publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
try {
String destPath = “/data/data/” + getPackageName() +
“/databases/MyDB”;
File f = new File(destPath);
if (!f.exists()) {
CopyDB(getBaseContext().getAssets().open(“mydb”),
new FileOutputStream(destPath));
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}

DBAdapter db = new DBAdapter(this);

//---get all contacts---
db.open();
Cursor c = db.getAllContacts();
if (c.moveToFirst())
{
do {
DisplayContact(c);
} while (c.moveToNext());
}
db.close();
}

public void CopyDB(InputStream inputStream,
OutputStream outputStream)
throws IOException {
//---copy 1K bytes at a time---
byte[] buffer = new byte[1024];
int length;
while ((length = inputStream.read(buffer)) > 0) {
outputStream.write(buffer, 0, length);
}
inputStream.close();
outputStream.close();
}

 3 . Press F11 to debug the application on the Android Emulator. When the application runs, it will
copy the mydb database file into the /data/data/net.learn2develop.Databases/databases/ folder
with the name MyDB.

How It Works

You first defined the CopyDB() method to copy the database file from one location to another:

publicvoidCopyDB(InputStreaminputStream,

Creating and Using Databases ❘ 233

OutputStreamoutputStream)
throwsIOException{
//---copy1Kbytesatatime---
byte[]buffer=newbyte[1024];
intlength;
while((length=inputStream.read(buffer))>0){
outputStream.write(buffer,0,length);
}
inputStream.close();
outputStream.close();
}

Note that in this case you used the InputStream object to read from the source file, and then wrote it to
the destination file using the OutputStream object.

When the activity is created, you copy the database file located in the assets folder into the /data/data/
net.learn2develop.Databases/databases/ folder on the Android device (or emulator):

try{
StringdestPath=“/data/data/”+getPackageName()+
“/databases/MyDB”;
Filef=newFile(destPath);
if(!f.exists()){
CopyDB(getBaseContext().getAssets().open(“mydb”),
newFileOutputStream(destPath));
}
}catch(FileNotFoundExceptione){
e.printStackTrace();
}catch(IOExceptione){
e.printStackTrace();
}

You copy the database file only if it does not exist in the destination folder. If you don’t perform this
check, every time the activity is created you will overwrite the database file with the one in the assets
folder. This may not be desirable, as your application may make changes to the database file during
run time, and this will wipe out all the changes you have made so far.

To ensure that the database file is indeed copied, be sure to delete the database file in your emulator (if it
already existed) prior to testing the application. You can delete the database using DDMS (see Figure 6-16).

Figure 6-16

234 ❘ chApter 6 data PerSiStence

SummAry

In this chapter, you learned the different ways to save persistent data to your Android device. For sim-
ple unstructured data, using the SharedPreferences object is the ideal solution. If you need to store
bulk data, then consider using the traditional file system. Finally, for structured data, it is more efficient
to store it in a relational database management system. For this, Android provides the SQLite database,
which you can access easily using the APIs exposed.

Note that for the SharedPreferences object and the SQLite database, the data is accessible only by
the application that creates it. In other words, it is not shareable. If you need to share data among
different applications, you need to create a content provider. Content providers are discussed in more
detail in the next chapter.

exerciSeS

 1 . What is the difference between the getSharedPreferences() and getPreferences() methods?

 2 . Name the method that enables you to obtain the path of the external storage of an Android device .

 3 . What is the permission you need to declare when writing files to external storage?

Answers to Exercises can be found in Appendix C.

Summary ❘ 235

WhAt you leArned in thiS chApter ⊲

topic key conceptS

Save simple user data Use the SharedPreferences object .

Sharing data among activities
in the same application

Use the getSharedPreferences() method .

Saving data visible only to the
activity that created it

Use the getPreferences() method .

Saving to file Use the FileOutputStream and OutputStreamReader classes .

reading from file Use the FileInputStream and InputStreamReader classes .

Saving to external storage Use the getExternalStorageDirectory() method to return the

path to the external storage .

Accessing files in the res/raw
folder

Use the openRawResource() method in the Resources object

(obtained via the getResources() method) .

creating a database helper
class

Extend the SQLiteOpenHelper class .

Content Providers

WhAt you Will leArn in thiS chApter

What are content providers?➤➤

How to use a content provider in Android➤➤

How to create your own content provider➤➤

How to use your own content provider➤➤

In the previous chapter, you learned about the various ways to persist data — using shared
preferences, fi les, as well as SQLite databases. While using the database approach is the recom-
mended way to save structured and complex data, sharing data is a challenge because the data-
base is accessible to only the package that created it.

In this chapter, you will learn Android’s way of sharing data through the use of content pro-
viders. You will learn how to use the built-in content providers, as well as implement your
own content providers to share data across packages.

ShAring dAtA in Android

In Android, using a content provider is the recommended way to share data across packages.
Think of a content provider as a data store. How it stores its data is not relevant to the appli-
cation using it; what is important is how packages can access the data stored in it using a con-
sistent programming interface. A content provider behaves very much like a database — you
can query it, edit its content, as well as add or delete its content. However, unlike a database, a
content provider can use different ways to store its data. The data can be stored in a database,
in fi les, or even over a network.

Android ships with many useful content providers, including the following:

Browser➤➤ — Stores data such as browser bookmarks, browser history, and so on

CallLog➤➤ — Stores data such as missed calls, call details, and so on

7

238 ❘ chApter 7 content ProviderS

Contacts➤➤ — Stores contact details

MediaStore➤➤ — Stores media files such as audio, video and images

Settings➤➤ — Stores the device’s settings and preferences

Besides the many built-in content providers, you can also create your own content providers.

To query a content provider, you specify the query string in the form of a URI, with an optional
specifier for a particular row. The format of the query URI is as follows:

<standard_prefix>://<authority>/<data_path>/<id>

The various parts of the URI are as follows:

The ➤➤ standard prefix for content providers is always content://.

The ➤➤ authority specifies the name of the content provider. An example would be contacts for
the built-in Contacts content provider. For third-party content providers, this could be the
fully qualified name, such as com.wrox.provider or net.learn2develop.provider.

The ➤➤ data path specifies the kind of data requested. For example, if you are getting all the con-
tacts from the Contacts content provider, then the data path would be people, and the URI
would look like this: content://contacts/people.

The ➤➤ id specifies the specific record requested. For example, if you are looking for contact
number 2 in the Contacts content provider, the URI would look like this: content://
contacts/people/2.

Table 7-1 shows some examples of query strings.

tABle 7-1: Example Query Strings

Query String deScription

content://media/internal/images Returns a list of all the internal images on the device

content://media/external/images Returns a list of all the images stored on the external

storage (e .g ., SD card) on the device

content://call_log/calls Returns a list of all calls registered in the Call Log

content://browser/bookmarks Returns a list of bookmarks stored in the browser

uSing A content provider

The best way to understand content providers is to actually use one. The following Try It Out shows
how you can use a content provider from within your Android application.

Using a Content Provider ❘ 239

Using the Contacts Content Providertry it out

codefile Provider.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as shown in Figure 7-1.

Figure 7-1

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<ListView
android:id=”@+id/android:list”

http://schemas.android.com/apk/res/android

240 ❘ chApter 7 content ProviderS

android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:layout_weight=”1”
android:stackFromBottom=”false”
android:transcriptMode=”normal”
/>
<TextView
android:id=”@+id/contactName”
android:textStyle=”bold”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
/>
<TextView
android:id=”@+id/contactID”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
 />

</LinearLayout>

 3 . In the MainActivity.java class, code the following:

packagenet.learn2develop.Provider;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.app.ListActivity;
import android.database.Cursor;
import android.net.Uri;
import android.provider.ContactsContract;
import android.widget.SimpleCursorAdapter;

publicclassMainActivityextendsListActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Uri allContacts = Uri.parse(“content://contacts/people”);

Cursor c = managedQuery(allContacts, null, null, null, null);

String[] columns = new String[] {
ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.Contacts._ID};
int[] views = new int[] {R.id.contactName, R.id.contactID};

SimpleCursorAdapter adapter =
new SimpleCursorAdapter(this, R.layout.main, c, columns, views);
this.setListAdapter(adapter);
}
}

Using a Content Provider ❘ 241

 4 . Add the following statements in bold to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Provider”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”7”/>
<uses-permission android:name=”android.permission.READ_CONTACTS”>
</uses-permission>
</manifest>

 5 . Launch an AVD and create a few contacts in the Android Emulator (see Figure 7-2).

Figure 7-2

 6 . Press F11 to debug the application on the Android Emulator. Figure 7-3 shows the activity displaying
the list of contacts you just created.

http://schemas.android.com/apk/res/android

242 ❘ chApter 7 content ProviderS

Figure 7-3

How It Works

In this example, you retrieved all the contacts stored in the Contacts application and displayed them in
the ListView.

The managedQuery() method of the Activity class retrieves a managed cursor. A managed cursor
handles all the work of unloading itself when the application pauses and requerying itself when the
application restarts.

The statement

Cursorc=managedQuery(allContacts,null,null,null,null);

is equivalent to

Cursorc=getContentResolver().query(allContacts,null,null,null,null);
startManagingCursor(c);//---allowstheactivitytomanagetheCursor’s
//lifecylebasedontheactivity’slifecycle---

The getContentResolver() method returns a ContentResolver object, which helps to resolve a content
URI with the appropriate content provider.

The SimpleCursorAdapter object maps a cursor to TextViews (or ImageViews) defined in your XML file
(main.xml). It maps the data (as represented by columns) to views (as represented by views):

String[]columns=newString[]{
ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.Contacts._ID};

Using a Content Provider ❘ 243

int[]views=newint[]{R.id.contactName,R.id.contactID};

SimpleCursorAdapteradapter=
newSimpleCursorAdapter(this,R.layout.main,c,columns,views);
this.setListAdapter(adapter);

Note that in order for your application to access the Contacts application, you need to have the READ_
CONTACTS permission in your AndroidManifest.xml fi le.

predefi ned Query String constants
Besides using the query URI, you can use a list of predefi ned query string constants in Android to specify
the URI for the different data types. For example, besides using the query content://contacts/people,
you can rewrite the following statement

UriallContacts=Uri.parse(“content://contacts/people”);

using one of the predefi ned constants in Android, as

UriallContacts=ContactsContract.Contacts.CONTENT_URI;

NOTE For Android 2.0 and later, to query the base Contacts records you need
to use the ContactsContract.Contacts.CONTENT_URI URI.

Some examples of predefi ned query string constants are as follows:

Browser.BOOKMARKS_URI➤➤

Browser.SEARCHES_URI➤➤

CallLog.CONTENT_URI➤➤

MediaStore.Images.Media.INTERNAL_CONTENT_URI➤➤

MediaStore.Images.Media.EXTERNAL_CONTENT_URI➤➤

Settings.CONTENT_URI➤➤

If you want to retrieve the fi rst contact, specify the ID of that contact, like this:

UrioneContact=Uri.parse(“content://contacts/people/1”);

Alternatively, use the predefi ned constant together with the withAppendedId() method of the
ContentUris class:

importandroid.content.ContentUris;
//...
UrioneContact=ContentUris.withAppendedId(
ContactsContract.Contacts.CONTENT_URI,1);

244 ❘ chApter 7 content ProviderS

Besides binding to a ListView, you can also print out the results using the Cursor object, as shown here:

packagenet.learn2develop.Provider;

importandroid.app.Activity;
importandroid.os.Bundle;

importandroid.app.ListActivity;
importandroid.database.Cursor;
importandroid.net.Uri;
importandroid.provider.ContactsContract;
importandroid.widget.SimpleCursorAdapter;

import android.util.Log;

publicclassMainActivityextendsListActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

UriallContacts=ContactsContract.Contacts.CONTENT_URI;
Cursorc=managedQuery(
allContacts,null,null,null,null);
String[]columns=newString[]{
ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.Contacts._ID};
int[]views=newint[]{R.id.contactName,R.id.contactID};

SimpleCursorAdapteradapter=
newSimpleCursorAdapter(this,R.layout.main,
c,columns,views);
this.setListAdapter(adapter);
PrintContacts(c);
}

private void PrintContacts(Cursor c)
{
if (c.moveToFirst()) {
do{
String contactID = c.getString(c.getColumnIndex(
 ContactsContract.Contacts._ID));
String contactDisplayName =
 c.getString(c.getColumnIndex(
 ContactsContract.Contacts.DISPLAY_NAME));
Log.v(“Content Providers”, contactID + “, “ +
contactDisplayName);
} while (c.moveToNext());
}
}
}

Using a Content Provider ❘ 245

NOTE If you are not familiar with how to view the LogCat window, refer to
Appendix A for an quick tour of the Eclipse IDE.

The PrintContacts() method will print out the following in the LogCat window:

12-1302:40:36.825:VERBOSE/ContentProviders(497):
1,Wei-MengLee
12-1302:40:36.825:VERBOSE/ContentProviders(497):
2,SallyJackson

It prints out the ID and name of each contact stored in the Contacts application. In this case, you
access the ContactsContract.Contacts._ID fi eld to obtain the ID of a contact, and ContactsContract
.Contacts.DISPLAY_NAME for the name of a contact. If you want to display the phone number of a
contact, you need to query the content provider again, as the information is stored in another table:

privatevoidPrintContacts(Cursorc)
{
if(c.moveToFirst()){
do{
StringcontactID=c.getString(c.getColumnIndex(
ContactsContract.Contacts._ID));
StringcontactDisplayName=
c.getString(c.getColumnIndex(
ContactsContract.Contacts.DISPLAY_NAME));
Log.v(“ContentProviders”,contactID+“,“+
contactDisplayName);
//---get phone number---
int hasPhone =
c.getInt(c.getColumnIndex(
ContactsContract.Contacts.HAS_PHONE_NUMBER));
if (hasPhone == 1) {
Cursor phoneCursor =
getContentResolver().query(
 ContactsContract.CommonDataKinds.Phone.CONTENT_URI, null,
 ContactsContract.CommonDataKinds.Phone.CONTACT_ID + “ = “ +
 contactID, null, null);
 while (phoneCursor.moveToNext()) {
 Log.v(“Content Providers”,
phoneCursor.getString(
phoneCursor.getColumnIndex(
ContactsContract.CommonDataKinds.Phone.NUMBER)));
 }
 phoneCursor.close();
 }
}while(c.moveToNext());
}
}
}

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

246 ❘ chApter 7 content ProviderS

NOTE To access the phone number of a contact, you need to query against the
URI stored in ContactsContract.CommonDataKinds.Phone.CONTENT_URI.

In the preceding code snippet, you fi rst check whether a contact has a phone number using the
ContactsContract.Contacts.HAS_PHONE_NUMBER fi eld. If the contact has at least a phone number,
you then query the content provider again based on the ID of the contact. Once the phone number(s)
are retrieved, you then iterate through them and print out the numbers. You should see something
like this:

12-1302:41:09.541:VERBOSE/ContentProviders(546):
1,Wei-MengLee
12-1302:41:09.541:VERBOSE/ContentProviders(546):
969-240-65
12-1302:41:09.541:VERBOSE/ContentProviders(546):
2,SallyJackson
12-1302:41:09.541:VERBOSE/ContentProviders(546):
345-668-43

projections
The second parameter of the managedQuery() method controls how many columns are returned by
the query; this parameter is known as the projection. Earlier, you specifi ed null:

Cursorc=managedQuery(allContacts,
null,null,null,null);

You can specify the exact columns to return by creating an array containing the name of the column
to return, like this:

String[]projection=newString[]
{ContactsContract.Contacts._ID,
ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.Contacts.HAS_PHONE_NUMBER};
Cursorc=managedQuery(allContacts,projection,
null,null,null);

In the above case, the _ID, DISPLAY_NAME, and HAS_PHONE_NUMBER fi elds will be retrieved.

Filtering
The third and fourth parameters of the managedQuery() method enable you to specify a SQL WHERE
clause to fi lter the result of the query. For example, the following statement retrieves only the people
whose name ends with “Lee”:

Cursorc=managedQuery(allContacts,projection,
ContactsContract.Contacts.DISPLAY_NAME+“LIKE‘%Lee’”,
null,null);

Creating Your Own Content Providers ❘ 247

Here, the third parameter contains a SQL statement containing the name to search for (“Lee”). You
can also put the search string into the fourth argument of the method, like this:

Cursorc=managedQuery(allContacts,projection,
ContactsContract.Contacts.DISPLAY_NAME+“LIKE?”,
newString[]{“%Lee”},null);

Sorting
The fifth parameter of the managedQuery() method enables you to specify a SQL ORDER BY clause to
sort the result of the query. For example, the following statement sorts the contact names in ascend-
ing order:

Cursorc=managedQuery(
allContacts,
projection,
ContactsContract.Contacts.DISPLAY_NAME+“LIKE?”,
newString[]{“%”},
ContactsContract.Contacts.DISPLAY_NAME+“ASC”);

To sort in descending order, use the DESC keyword:

Cursorc=managedQuery(
allContacts,
projection,
ContactsContract.Contacts.DISPLAY_NAME+“LIKE?”,
newString[]{“%”},
ContactsContract.Contacts.DISPLAY_NAME+“DESC”);

creAting your oWn content providerS

Creating your own content provider in Android is pretty simple.
All you need to do is extend the abstract ContentProvider class
and override the various methods defined within it.

In this section, you will learn how to create a simple content pro-
vider that stores a list of books. For ease of illustration, the content
provider stores the books in a database table containing three fields,
as shown in Figure 7-4.

The following Try It Out shows you the steps.

Creating Your Own Content Providertry it out

codefile ContentProviders.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as ContentProviders.

Figure 7-4

248 ❘ chApter 7 content ProviderS

 2 . In the src folder of the project, add a new Java class file and name it BooksProvider.java (see
Figure 7-5).

Figure 7-5

 3 . Populate the BooksProvider.java file as follows:

package net.learn2develop.ContentProviders;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class BooksProvider extends ContentProvider
{
public static final String PROVIDER_NAME =
“net.learn2develop.provider.Books”;

public static final Uri CONTENT_URI =
Uri.parse(“content://”+ PROVIDER_NAME + “/books”);

public static final String _ID = “_id”;
public static final String TITLE = “title”;
public static final String ISBN = “isbn”;

private static final int BOOKS = 1;
private static final int BOOK_ID = 2;

private static final UriMatcher uriMatcher;
static{
uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI(PROVIDER_NAME, “books”, BOOKS);
uriMatcher.addURI(PROVIDER_NAME, “books/#”, BOOK_ID);
}

//---for database use---
private SQLiteDatabase booksDB;

Creating Your Own Content Providers ❘ 249

private static final String DATABASE_NAME = “Books”;
private static final String DATABASE_TABLE = “titles”;
private static final int DATABASE_VERSION = 1;
private static final String DATABASE_CREATE =
“create table “ + DATABASE_TABLE +
“ (_id integer primary key autoincrement, “
+ “title text not null, isbn text not null);”;

private static class DatabaseHelper extends SQLiteOpenHelper
{
DatabaseHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db)
{
db.execSQL(DATABASE_CREATE);
}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion) {
Log.w(“Content provider database”,
 “Upgrading database from version “ +
 oldVersion + “ to “ + newVersion +
 “, which will destroy all old data”);
db.execSQL(“DROP TABLE IF EXISTS titles”);
onCreate(db);
}
}
@Override
public int delete(Uri arg0, String arg1, String[] arg2) {
// arg0 = uri
// arg1 = selection
// arg2 = selectionArgs
int count=0;
switch (uriMatcher.match(arg0)){
case BOOKS:
count = booksDB.delete(
DATABASE_TABLE,
arg1,
arg2);
break;
case BOOK_ID:
String id = arg0.getPathSegments().get(1);
count = booksDB.delete(
DATABASE_TABLE,
_ID + “ = “ + id +
(!TextUtils.isEmpty(arg1) ? “ AND (“ +
arg1 + ‘)’ : “”),
arg2);
break;
default: throw new IllegalArgumentException(“Unknown URI “ + arg0);

250 ❘ chApter 7 content ProviderS

}
getContext().getContentResolver().notifyChange(arg0, null);
return count;
}

@Override
public String getType(Uri uri) {
switch (uriMatcher.match(uri)){
//---get all books---
case BOOKS:
return “vnd.android.cursor.dir/vnd.learn2develop.books “;
//---get a particular book---
case BOOK_ID:
return “vnd.android.cursor.item/vnd.learn2develop.books “;
default:
throw new IllegalArgumentException(“Unsupported URI: “ + uri);
}
}

@Override
public Uri insert(Uri uri, ContentValues values) {
//---add a new book---
long rowID = booksDB.insert(
DATABASE_TABLE,
“”,
values);

//---if added successfully---
if (rowID>0)
{
Uri _uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
getContext().getContentResolver().notifyChange(_uri, null);
return _uri;
}
throw new SQLException(“Failed to insert row into “ + uri);
}

@Override
public boolean onCreate() {
Context context = getContext();
DatabaseHelper dbHelper = new DatabaseHelper(context);
booksDB = dbHelper.getWritableDatabase();
return (booksDB == null)? false:true;
}

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
SQLiteQueryBuilder sqlBuilder = new SQLiteQueryBuilder();
sqlBuilder.setTables(DATABASE_TABLE);

if (uriMatcher.match(uri) == BOOK_ID)
//---if getting a particular book---
sqlBuilder.appendWhere(

Creating Your Own Content Providers ❘ 251

_ID + “ = “ + uri.getPathSegments().get(1));

if (sortOrder==null || sortOrder==””)
sortOrder = TITLE;

Cursor c = sqlBuilder.query(
booksDB,
projection,
selection,
selectionArgs,
null,
null,
sortOrder);

//---register to watch a content URI for changes---
c.setNotificationUri(getContext().getContentResolver(), uri);
return c;
}

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {
int count = 0;
switch (uriMatcher.match(uri)){
case BOOKS:
count = booksDB.update(
DATABASE_TABLE,
values,
selection,
selectionArgs);
break;
case BOOK_ID:
count = booksDB.update(
DATABASE_TABLE,
values,
_ID + “ = “ + uri.getPathSegments().get(1) +
(!TextUtils.isEmpty(selection) ? “ AND (“ +
selection + ‘)’ : “”),
selectionArgs);
break;
default: throw new IllegalArgumentException(“Unknown URI “ + uri);
}
getContext().getContentResolver().notifyChange(uri, null);
return count;
}
}

 4 . Add the following statements in bold to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.ContentProviders”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>

http://schemas.android.com/apk/res/android

252 ❘ chApter 7 content ProviderS

<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<provider android:name=”BooksProvider”
android:authorities=”net.learn2develop.provider.Books” />
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

How It Works

In this example, you first created a class named BooksProvider that extends the ContentProvider base
class. The various methods to override in this class are as follows:

getType()➤➤ — Returns the MIME type of the data at the given URI

onCreate()➤➤ — Called when the provider is started

query()➤➤ — Receives a request from a client. The result is returned as a Cursor object.

insert()➤➤ — Inserts a new record into the content provider

delete()➤➤ — Deletes an existing record from the content provider

update()➤➤ — Updates an existing record from the content provider

Within your content provider, you are free to choose how you want to store your data — a traditional
file system, XML, a database, or even through Web services. For this example, you use the SQLite
database approach that was discussed in the previous chapter.

You then defined the following constants within the BooksProvider class:

publicstaticfinalStringPROVIDER_NAME=
“net.learn2develop.provider.Books”;

publicstaticfinalUriCONTENT_URI=
Uri.parse(“content://”+PROVIDER_NAME+“/books”);

publicstaticfinalString_ID=“_id”;
publicstaticfinalStringTITLE=“title”;
publicstaticfinalStringISBN=“isbn”;

privatestaticfinalintBOOKS=1;
privatestaticfinalintBOOK_ID=2;

privatestaticfinalUriMatcheruriMatcher;
static{
uriMatcher=newUriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI(PROVIDER_NAME,“books”,BOOKS);
uriMatcher.addURI(PROVIDER_NAME,“books/#”,BOOK_ID);
}

Creating Your Own Content Providers ❘ 253

Observe in the preceding code that you use an UriMatcher object to parse the content URI that is passed
to the content provider through a ContentResolver. For example, the following content URI represents a
request for all books in the content provider:

content://net.learn2develop.provider.Books/books

The following represents a request for a particular book with _id 5:

content://net.learn2develop.provider.MailingList/books/5

Your content provider uses a SQLite database to store the books. Note that you use the SQLiteOpenHelper
helper class to help manage your database:

privatestaticclassDatabaseHelperextendsSQLiteOpenHelper
{
DatabaseHelper(Contextcontext){
super(context,DATABASE_NAME,null,DATABASE_VERSION);
}

@Override
publicvoidonCreate(SQLiteDatabasedb)
{
db.execSQL(DATABASE_CREATE);
}

@Override
publicvoidonUpgrade(SQLiteDatabasedb,intoldVersion,
intnewVersion){
Log.w(“Contentproviderdatabase”,
“Upgradingdatabasefromversion“+
oldVersion+“to“+newVersion+
“,whichwilldestroyallolddata”);
db.execSQL(“DROPTABLEIFEXISTStitles”);
onCreate(db);
}
}

Next, you override the getType() method to uniquely describe the data type for your content provider.
Using the UriMatcher object, you return “vnd.android.cursor.item/vnd.learn2develop.books” for a
single book, and “vnd.android.cursor.dir/vnd.learn2develop.books” for multiple books:

@Override
publicStringgetType(Uriuri){
switch(uriMatcher.match(uri)){
//---getallbooks---
caseBOOKS:
return“vnd.android.cursor.dir/vnd.learn2develop.books“;
//---getaparticularbook---
caseBOOK_ID:
return“vnd.android.cursor.item/vnd.learn2develop.books“;
default:
thrownewIllegalArgumentException(“UnsupportedURI:“+uri);
}
}

254 ❘ chApter 7 content ProviderS

Next, you override the onCreate() method to open a connection to the database when the content
provider is started:

@Override
publicbooleanonCreate(){
Contextcontext=getContext();
DatabaseHelperdbHelper=newDatabaseHelper(context);
booksDB=dbHelper.getWritableDatabase();
return(booksDB==null)?false:true;
}

You override the query() method to allow clients to query for books:

@Override
publicCursorquery(Uriuri,String[]projection,Stringselection,
String[]selectionArgs,StringsortOrder){
SQLiteQueryBuildersqlBuilder=newSQLiteQueryBuilder();
sqlBuilder.setTables(DATABASE_TABLE);

if(uriMatcher.match(uri)==BOOK_ID)
//---ifgettingaparticularbook---
sqlBuilder.appendWhere(
_ID+“=“+uri.getPathSegments().get(1));

if(sortOrder==null||sortOrder==””)
sortOrder=TITLE;

Cursorc=sqlBuilder.query(
booksDB,
projection,
selection,
selectionArgs,
null,
null,
sortOrder);

//---registertowatchacontentURIforchanges---
c.setNotificationUri(getContext().getContentResolver(),uri);
returnc;
}

By default, the result of the query is sorted using the title field. The resulting query is returned as a
Cursor object.

To allow a new book to be inserted into the content provider, override the insert() method:

@Override
publicUriinsert(Uriuri,ContentValuesvalues){
//---addanewbook---
longrowID=booksDB.insert(
DATABASE_TABLE,
“”,
values);

//---ifaddedsuccessfully---
if(rowID>0)

Creating Your Own Content Providers ❘ 255

{
Uri_uri=ContentUris.withAppendedId(CONTENT_URI,rowID);
getContext().getContentResolver().notifyChange(_uri,null);
return_uri;
}
thrownewSQLException(“Failedtoinsertrowinto“+uri);
}

Once the record is inserted successfully, call the notifyChange() method of the ContentResolver. This
will notify registered observers that a row was updated.

To delete a book, override the delete() method:

publicintdelete(Uriarg0,Stringarg1,String[]arg2){
//arg0=uri
//arg1=selection
//arg2=selectionArgs
intcount=0;
switch(uriMatcher.match(arg0)){
caseBOOKS:
count=booksDB.delete(
DATABASE_TABLE,
arg1,
arg2);
break;
caseBOOK_ID:
Stringid=arg0.getPathSegments().get(1);
count=booksDB.delete(
DATABASE_TABLE,
_ID+“=“+id+
(!TextUtils.isEmpty(arg1) ?“AND(“+
arg1+‘)’:“”),
arg2);
break;
default:thrownewIllegalArgumentException(“UnknownURI“+arg0);
}
getContext().getContentResolver().notifyChange(arg0,null);
returncount;
}

Likewise, call the notifyChange() method of the ContentResolver after the deletion. This will notify
registered observers that a row was deleted.

Finally, to update a book, override the update() method:

@Override
publicintupdate(Uriuri,ContentValuesvalues,Stringselection,
String[]selectionArgs){
intcount=0;
switch(uriMatcher.match(uri)){
caseBOOKS:
count=booksDB.update(
DATABASE_TABLE,
values,
selection,
selectionArgs);

256 ❘ chApter 7 content ProviderS

break;
caseBOOK_ID:
count=booksDB.update(
DATABASE_TABLE,
values,
_ID+“=“+uri.getPathSegments().get(1)+
(!TextUtils.isEmpty(selection)?“AND(“+
selection+‘)’:“”),
selectionArgs);
break;
default:thrownewIllegalArgumentException(“UnknownURI“+uri);
}
getContext().getContentResolver().notifyChange(uri,null);
returncount;
}
}

As with the insert() and delete() methods, you call the notifyChange() method of the ContentResolver
after the update. This notifies registered observers that a row was updated.

Finally, to register your content provider with Android, modify the AndroidManifest.xml file by adding
the <provider> element.

using the content provider
Now that you have built your new content provider, you can test it from within your Android appli-
cation. The following Try It Out demonstrates how this can be done.

Using the newly Created Content Providertry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”>

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”ISBN” />

<EditText
android:id=”@+id/txtISBN”
android:layout_height=”wrap_content”
android:layout_width=”fill_parent” />

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”

http://schemas.android.com/apk/res/android

Creating Your Own Content Providers ❘ 257

android:text=”Title” />

<EditText
android:id=”@+id/txtTitle”
android:layout_height=”wrap_content”
android:layout_width=”fill_parent” />

<Button
android:text=”Add title”
android:id=”@+id/btnAdd”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

<Button
android:text=”Retrieve titles”
android:id=”@+id/btnRetrieve”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

</LinearLayout>

 2 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.ContentProviders;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import android.content.ContentValues;
import android.database.Cursor;
import android.net.Uri;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btnAdd = (Button) findViewById(R.id.btnAdd);
btnAdd.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
//---add a book---
ContentValues values = new ContentValues();
values.put(BooksProvider.TITLE, ((EditText)
findViewById(R.id.txtTitle)).getText().toString());
values.put(BooksProvider.ISBN, ((EditText)
findViewById(R.id.txtISBN)).getText().toString());
Uri uri = getContentResolver().insert(
BooksProvider.CONTENT_URI, values);

258 ❘ chApter 7 content ProviderS

 Toast.makeText(getBaseContext(),uri.toString(),
 Toast.LENGTH_LONG).show();
 }
 });

 Button btnRetrieve = (Button) findViewById(R.id.btnRetrieve);
 btnRetrieve.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 //---retrieve the titles---
 Uri allTitles = Uri.parse(
 “content://net.learn2develop.provider.Books/books”);
 Cursor c = managedQuery(allTitles, null, null, null,
 “title desc”);
 if (c.moveToFirst()) {
 do{
 Log.v(“ContentProviders”,
 c.getString(c.getColumnIndex(
 BooksProvider._ID)) + “, “ +
 c.getString(c.getColumnIndex(
 BooksProvider.TITLE)) + “, “ +
 c.getString(c.getColumnIndex(
 BooksProvider.ISBN)));
 } while (c.moveToNext());
 }
 }
 });
}
}

 3 . Press F11 to debug the application on the Android Emulator.

 4 . Enter an ISBN and title for a book and click the Add title button. Figure 7-6 shows the Toast class
displaying the URI of the book added to the content provider. To retrieve all the titles stored in the
content provider, click the Retrieve titles button and observe the values printed in the Logcat win-
dow of Eclipse.

How It Works

First, you modified the activity so that users can enter a book’s ISBN and title to add to the content pro-
vider that you have just created.

To add a book to the content provider, you create a new ContentValues object and then populate it
with the various information about a book:

//---addabook---
ContentValuesvalues=newContentValues();
values.put(BooksProvider.TITLE,((EditText)
findViewById(R.id.txtTitle)).getText().toString());
values.put(BooksProvider.ISBN,((EditText)
findViewById(R.id.txtISBN)).getText().toString());
Uriuri=getContentResolver().insert(
BooksProvider.CONTENT_URI,values);

Creating Your Own Content Providers ❘ 259

Figure 7-6

Notice that because your content provider is in the same package, you can use the BooksProvider.TITLE
and the BooksProvider.ISBN constants to refer to the “title” and “isbn” fields, respectively. If you were
accessing this content provider from another package, then you would not be able to use these constants.
In that case, you need to specify the field name directly, like this:

ContentValuesvalues=newContentValues();
values.put(“title”,((EditText)
findViewById(R.id.txtTitle)).getText().toString());
values.put(“isbn”,((EditText)
findViewById(R.id.txtISBN)).getText().toString());
Uriuri=getContentResolver().insert(
Uri.parse(
“content://net.learn2develop.provider.Books/books”),
values);
Toast.makeText(getBaseContext(),uri.toString(),
Toast.LENGTH_LONG).show();

Also note that for external packages you need to refer to the content URI using the fully qualified
content URI:

Uri.parse(
“content://net.learn2develop.provider.Books/books”),

To retrieve all the titles in the content provider, you used the following code snippets:

UriallTitles=Uri.parse(
“content://net.learn2develop.provider.Books/books”);

260 ❘ chApter 7 content ProviderS

Cursorc=managedQuery(allTitles,null,null,null,
“titledesc”);
if(c.moveToFirst()){
do{
Log.v(“ContentProviders”,
c.getString(c.getColumnIndex(
BooksProvider._ID))+“,“+
c.getString(c.getColumnIndex(
BooksProvider.TITLE))+“,“+
c.getString(c.getColumnIndex(
BooksProvider.ISBN)));
}while(c.moveToNext());
}

The preceding query will return the result sorted in descending order based on the title field.

If you want to update a book’s detail, call the update() method with the content URI indicating the
book’s ID:

ContentValueseditedValues=newContentValues();
editedValues.put(BooksProvider.TITLE,“AndroidTipsandTricks”);
getContentResolver().update(
Uri.parse(
“content://net.learn2develop.provider.Books/books/2”),
editedValues,
null,
null);

To delete a book, use the delete() method with the content URI indicating the book’s ID:

getContentResolver().delete(
Uri.parse(“content://net.learn2develop.provider.Books/books/2”),
null,null);

To delete all books, simply omit the book’s ID in your content URI:

getContentResolver().delete(
Uri.parse(“content://net.learn2develop.provider.Books/books”),
null,null);

SummAry

In this chapter, you learned what content providers are and how to use some of the built-in con-
tent providers in Android. In particular, you have seen how to use the Contacts content provider.
Google’s decision to provide content providers enables applications to share data through a standard
set of programming interfaces. In addition to the built-in content providers, you can also create your
own custom content provider to share data with other packages.

Summary ❘ 261

exerciSeS

 1 . Write the query to retrieve all contacts from the Contacts application that contain the word “jack .”

 2 . Name the methods that you need to override in your own implementation of a content provider .

 3 . How do you register a content provider in your AndroidManifest.xml file?

Answers can be found in Appendix C.

262 ❘ chApter 7 content ProviderS

WhAt you leArned in thiS chApter ⊲

topic key conceptS

retrieving a managed cursor Use the managedQuery() method .

two ways to specify a query for a
content provider

Use either a query URI or a predefined query string constant .

retrieving the value of a column in
a content provider

Use the getColumnIndex() method .

Query uri for accessing a contact’s
name

ContactsContract.Contacts.CONTENT_URI

Query uri for accessing a contact’s
phone number

ContactsContract.CommonDataKinds.Phone.CONTENT_URI

creating your own content provider Create a class and extend the ContentProvider class .

Messaging and networking

WhAt you Will leArn in thiS chApter

How to send SMS messages programmatically from within your ➤➤

application

How to send SMS messages using the built-in Messaging application➤➤

How to receive incoming SMS messages➤➤

How to send e-mail messages from your application➤➤

How to connect to the Web using HTTP➤➤

How to consume Web services➤➤

Once your basic Android application is up and running, the next interesting thing you can add
to it is the capability to communicate with the outside world. You may want your application
to send an SMS message to another phone when an event happens (such as when you reach a
particular geographical location), or you may wish to access a Web service that provides cer-
tain services (such as currency exchange, weather, etc.).

In this chapter, you learn how to send and receive SMS messages programmatically from
within your Android application.

You will also learn how to use the HTTP protocol to talk to web servers so that you can download
text and binary data. The last part of this chapter shows you how to parse XML fi les to extract the
relevant parts of an XML fi le — a technique that is useful if you are accessing Web services.

SmS meSSAging

SMS messaging is one of the main killer applications on a mobile phone today — for some
users as necessary as the phone itself. Any mobile phone you buy today should have at least
SMS messaging capabilities, and nearly all users of any age know how to send and receive

8

264 ❘ chApter 8 meSSaGinG and networKinG

such messages. Android comes with a built-in SMS application that enables you to send and receive
SMS messages. However, in some cases you might want to integrate SMS capabilities into your own
Android application. For example, you might want to write an application that automatically sends
a SMS message at regular time intervals. For example, this would be useful if you wanted to track
the location of your kids — simply give them an Android device that sends out an SMS message con-
taining its geographical location every 30 minutes. Now you know if they really went to the library
after school! (Of course, that would also mean you would have to pay the fees incurred in sending
all those SMS messages…)

This section describes how you can programmatically send and receive SMS messages in your Android
applications. The good news for Android developers is that you don’t need a real device to test SMS
messaging: The free Android Emulator provides that capability.

Sending SmS messages programmatically
You will first learn how to send SMS messages programmatically from within your application. Using
this approach, your application can automatically send an SMS message to a recipient without user
intervention. The following Try It Out shows you how.

 Sending SMS Messagestry it out

codefile SMS.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it as shown in Figure 8-1.

Figure 8-1

SMS Messaging ❘ 265

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<Button
android:id=”@+id/btnSendSMS”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Send SMS” />

</LinearLayout>

 3 . In the AndroidManifest.xml file, add the following statements in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.SMS”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”8”/>
<uses-permission android:name=”android.permission.SEND_SMS”></uses-permission>
</manifest>

 4 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.SMS;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.app.PendingIntent;
import android.content.Intent;
import android.telephony.SmsManager;
import android.view.View;
import android.widget.Button;

publicclassMainActivityextendsActivity{
Button btnSendSMS;
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

266 ❘ chApter 8 meSSaGinG and networKinG

setContentView(R.layout.main);

btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
btnSendSMS.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v)
{
sendSMS(“5556”, “Hello my friends!”);

}
});
}

//---sends an SMS message to another device---
private void sendSMS(String phoneNumber, String message)
{
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage(phoneNumber, null, message, null, null);
}
}

 5 . Press F11 to debug the application on the Android Emulator. Using the Android SDK and AVD
Manager, launch another AVD.

 6 . On the first Android Emulator, click the Send SMS button to send an SMS message to the second
emulator. The left side of Figure 8-2 shows the SMS message received by the second emulator (note
the notification bar at the top of the second emulator).

Figure 8-2

SMS Messaging ❘ 267

How It Works

Android uses a permissions-based policy whereby all the permissions needed by an application must be
specified in the AndroidManifest.xml file. This ensures that when the application is installed, the user
knows exactly which access permissions it requires.

Because sending SMS messages incurs additional costs on the user’s end, indicating the SMS permissions
in the AndroidManifest.xml file enables users to decide whether to allow the application to install or not.

To send an SMS message programmatically, you use the SmsManager class. Unlike other classes, you do
not directly instantiate this class; instead, you call the getDefault() static method to obtain a SmsManager
object. You then send the SMS message using the sendTextMessage() method:

privatevoidsendSMS(StringphoneNumber,Stringmessage)
{
SmsManagersms=SmsManager.getDefault();
sms.sendTextMessage(phoneNumber,null,message,null,null);
}

Following are the five arguments to the sendTextMessage() method:

destinationAddress➤➤ — Phone number of the recipient

scAddress➤➤ — Service center address; use null for default SMSC

text➤➤ — Content of the SMS message

sentIntent➤➤ — Pending intent to invoke when the message is sent (discussed in more detail in the
next section)

deliveryIntent➤➤ — Pending intent to invoke when the message has been delivered (discussed in
more detail in the next section)

getting Feedback after Sending the message
In the previous section, you learned how to programmatically send SMS messages using the
SmsManager class; but how do you know that the message has been sent correctly? To do so, you can
create two PendingIntent objects to monitor the status of the SMS message-sending process. These
two PendingIntent objects are passed to the last two arguments of the sendTextMessage() method.
The following code snippets show how you can monitor the status of the SMS message being sent:

//---sendsanSMSmessagetoanotherdevice---
privatevoidsendSMS(StringphoneNumber,Stringmessage)
{
String SENT = “SMS_SENT”;
String DELIVERED = “SMS_DELIVERED”;

PendingIntent sentPI = PendingIntent.getBroadcast(this, 0,
new Intent(SENT), 0);

PendingIntent deliveredPI = PendingIntent.getBroadcast(this, 0,

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

268 ❘ chApter 8 meSSaGinG and networKinG

new Intent(DELIVERED), 0);

//---when the SMS has been sent---
registerReceiver(new BroadcastReceiver(){
@Override
public void onReceive(Context arg0, Intent arg1) {
switch (getResultCode())
{
case Activity.RESULT_OK:
Toast.makeText(getBaseContext(), “SMS sent”,
Toast.LENGTH_SHORT).show();
break;
case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
Toast.makeText(getBaseContext(), “Generic failure”,
Toast.LENGTH_SHORT).show();
break;
case SmsManager.RESULT_ERROR_NO_SERVICE:
Toast.makeText(getBaseContext(), “No service”,
Toast.LENGTH_SHORT).show();
break;
case SmsManager.RESULT_ERROR_NULL_PDU:
Toast.makeText(getBaseContext(), “Null PDU”,
Toast.LENGTH_SHORT).show();
break;
case SmsManager.RESULT_ERROR_RADIO_OFF:
Toast.makeText(getBaseContext(), “Radio off”,
Toast.LENGTH_SHORT).show();
break;
}
}
}, new IntentFilter(SENT));

//---when the SMS has been delivered---
registerReceiver(new BroadcastReceiver(){
@Override
public void onReceive(Context arg0, Intent arg1) {
switch (getResultCode())
{
case Activity.RESULT_OK:
Toast.makeText(getBaseContext(), “SMS delivered”,
Toast.LENGTH_SHORT).show();
break;
case Activity.RESULT_CANCELED:
Toast.makeText(getBaseContext(), “SMS not delivered”,
Toast.LENGTH_SHORT).show();
break;
}
}
}, new IntentFilter(DELIVERED));

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage(phoneNumber, null, message, sentPI, deliveredPI);
}

SMS Messaging ❘ 269

Here, you created two PendingIntent objects. You then registered for two BroadcastReceivers.
These two BroadcastReceivers listen for intents that match “SMS_SENT” and “SMS_DELIVERED”
(which are fired by the OS when the message has been sent and delivered, respectively). Within
each BroadcastReceiver you override the onReceive() method and get the current result code.

The two PendingIntent objects are passed into the last two arguments of the sendTextMessage()
method:

sms.sendTextMessage(phoneNumber, null, message, sentPI, deliveredPI);

In this case, whether a message has been sent correctly or failed to be delivered, you will be notified
of its status via the two PendingIntent objects.

Sending SmS messages using intent
Using the SmsManager class, you can send SMS messages from within your application without the need
to involve the built-in Messaging application. However, sometimes it would be easier if you could
simply invoke the built-in Messaging application and let it do all the work of sending the message.

To activate the built-in Messaging application from within your application, you can use an Intent
object together with the MIME type “vnd.android-dir/mms-sms” as shown by the following code
snippet:

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

btnSendSMS=(Button)findViewById(R.id.btnSendSMS);
btnSendSMS.setOnClickListener(newView.OnClickListener()
{
publicvoidonClick(Viewv)
{
//sendSMS(“5556”, “Hello my friends!”);
Intent i = new
Intent(android.content.Intent.ACTION_VIEW);
i.putExtra(“address”, “5556; 5558; 5560”);

i.putExtra(“sms_body”, “Hello my friends!”);
i.setType(“vnd.android-dir/mms-sms”);
startActivity(i);
}
});
}

This will invoke the Messaging application, as shown in Figure 8-3. Note that you can send your SMS
to multiple recipients by simply separating each phone number with a semicolon (in the putExtra()
method).

270 ❘ chApter 8 meSSaGinG and networKinG

Figure 8-3

NOTE If you use this method to invoke the Messaging application, there is no
need to ask for the SMS_SEND permission in AndroidManifest.xml because your
application is ultimately not the one sending the message.

receiving SmS messages
Besides sending SMS messages from your Android applications, you can also receive incoming SMS
messages from within your application by using a BroadcastReceiver object. This is useful when you
want your application to perform an action when a certain SMS message is received. For example,
you might want to track the location of your phone in case it is lost or stolen. In this case, you can
write an application that automatically listens for SMS messages containing some secret code. Once
that message is received, you can then send an SMS message containing the location’s coordinates
back to the sender.

The following Try It Out shows how to programmatically listen for incoming SMS messages.

 Receiving SMS Messagestry it out

1 . Using the same project created in the previous section, add the following statements in bold to the
AndroidManifest.xml fi le:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

http://schemas.android.com/apk/res/android

SMS Messaging ❘ 271

package=”net.learn2develop.SMS”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<receiver android:name=”.SMSReceiver”>
<intent-filter>
<action android:name=
“android.provider.Telephony.SMS_RECEIVED” />
</intent-filter>
</receiver>
</application>
<uses-sdkandroid:minSdkVersion=”8”/>
<uses-permissionandroid:name=”android.permission.SEND_SMS”></uses-permission>
<uses-permission android:name=”android.permission.RECEIVE_SMS”>
</uses-permission>
</manifest>

 2 . In the src folder of the project, add a new Class file to the package name
and call it SMSReceiver.java (see Figure 8-4).

 3 . Code the SMSReceiver.java file as follows:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver
{
@Override
public void onReceive(Context context, Intent intent)
{
//---get the SMS message passed in---
Bundle bundle = intent.getExtras();
SmsMessage[] msgs = null;
String str = “”;
if (bundle != null)
{
//---retrieve the SMS message received---
Object[] pdus = (Object[]) bundle.get(“pdus”);
msgs = new SmsMessage[pdus.length];
for (int i=0; i<msgs.length; i++){
msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
str += “SMS from “ + msgs[i].getOriginatingAddress();

Figure 8-4

272 ❘ chApter 8 meSSaGinG and networKinG

str += “ :”;
str += msgs[i].getMessageBody().toString();
str += “\n”;
}
//---display the new SMS message---
Toast.makeText(context, str, Toast.LENGTH_SHORT).show();
}
}
}

 4 . Press F11 to debug the application on the Android Emulator.

 5 . Using the DDMS, send a message to the emulator. Your application should be able to receive the
message and display it using the Toast class (see Figure 8-5).

Figure 8-5

How It Works

To listen for incoming SMS messages, you create a BroadcastReceiver class. The BroadcastReceiver
class enables your application to receive intents sent by other applications using the sendBroadcast()
method. Essentially, it enables your application to handle events raised by other applications. When an
intent is received, the onReceive() method is called; hence, you need to override this.

When an incoming SMS message is received, the onReceive() method is fired. The SMS message is
contained in the Intent object (intent; the second parameter in the onReceive() method) via a Bundle
object. The messages are stored in an Object array in the PDU format. To extract each message, you
use the static createFromPdu() method from the SmsMessage class. The SMS message is then displayed
using the Toast class. The phone number of the sender is obtained via the getOriginatingAddress()

SMS Messaging ❘ 273

method, so if you need to send an autoreply to the sender, this is the method to obtain the sender’s phone
number.

One interesting characteristic of the BroadcastReceiver is that you can continue to listen for incoming
SMS messages even if the application is not running; as long as the application is installed on the device,
any incoming SMS messages will be received by the application.

Updating an Activity from a BroadcastReceiver
The previous section described how you can use a BroadcastReceiver class to listen for incoming
SMS messages and then use the Toast class to display the received SMS message. Often, you’ll want
to send the SMS message back to the main activity of your application. For example, you might wish
to display the message in a TextView. The following Try It Out demonstrates how you can do this.

 Creating a View-Based Application Projecttry it out

 1 . Using the same project created in the previous section, add the following lines in bold to the
main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<Button
android:id=”@+id/btnSendSMS”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”SendSMS”/>

<TextView
android:id=”@+id/textView1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

</LinearLayout>

 2 . Add the following statements in bold to the SMSReceiver.java file:

packagenet.learn2develop.SMS;

importandroid.content.BroadcastReceiver;
importandroid.content.Context;
importandroid.content.Intent;
importandroid.os.Bundle;
importandroid.telephony.SmsMessage;
importandroid.widget.Toast;

publicclassSMSReceiverextendsBroadcastReceiver

http://schemas.android.com/apk/res/android

274 ❘ chApter 8 meSSaGinG and networKinG

{
@Override
publicvoidonReceive(Contextcontext,Intentintent)
{
//---gettheSMSmessagepassedin---
Bundlebundle=intent.getExtras();
SmsMessage[]msgs=null;
Stringstr=“”;
if(bundle!=null)
{
//---retrievetheSMSmessagereceived---
Object[]pdus=(Object[])bundle.get(“pdus”);
msgs=newSmsMessage[pdus.length];
for(inti=0;i<msgs.length;i++){
msgs[i]=SmsMessage.createFromPdu((byte[])pdus[i]);
str+=“SMSfrom“+msgs[i].getOriginatingAddress();
str+=“:”;
str+=msgs[i].getMessageBody().toString();
str+=“\n”;
}
//---displaythenewSMSmessage---
Toast.makeText(context,str,Toast.LENGTH_SHORT).show();

//---send a broadcast intent to update the SMS received in the activity---
Intent broadcastIntent = new Intent();
broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
broadcastIntent.putExtra(“sms”, str);
context.sendBroadcast(broadcastIntent);
}
}
}

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.SMS;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.app.PendingIntent;
importandroid.content.Context;
importandroid.content.Intent;
importandroid.telephony.SmsManager;
importandroid.view.View;
importandroid.widget.Button;
importandroid.widget.Toast;

import android.content.BroadcastReceiver;
import android.content.IntentFilter;
import android.widget.TextView;

publicclassMainActivityextendsActivity{
ButtonbtnSendSMS;
IntentFilter intentFilter;

private BroadcastReceiver intentReceiver = new BroadcastReceiver() {

SMS Messaging ❘ 275

@Override
public void onReceive(Context context, Intent intent) {
//---display the SMS received in the TextView---
TextView SMSes = (TextView) findViewById(R.id.textView1);
SMSes.setText(intent.getExtras().getString(“sms”));
}
};

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---intent to filter for SMS messages received---
intentFilter = new IntentFilter();
intentFilter.addAction(“SMS_RECEIVED_ACTION”);

btnSendSMS=(Button)findViewById(R.id.btnSendSMS);
btnSendSMS.setOnClickListener(newView.OnClickListener()
{
publicvoidonClick(Viewv)
{
//sendSMS(“5554”,“Hellomyfriends!”);

Intenti=new
Intent(android.content.Intent.ACTION_VIEW);
i.putExtra(“address”,“5556;5558;5560”);
i.putExtra(“sms_body”,“Hellomyfriends!”);
i.setType(“vnd.android-dir/mms-sms”);
startActivity(i);
}
});
}

@Override
protected void onResume() {
//---register the receiver---
registerReceiver(intentReceiver, intentFilter);
super.onResume();
}

@Override
protected void onPause() {
//---unregister the receiver---
unregisterReceiver(intentReceiver);
super.onPause();
}

//---sendsanSMSmessagetoanotherdevice---
privatevoidsendSMS(StringphoneNumber,Stringmessage)
{
//...
}
}

276 ❘ chApter 8 meSSaGinG and networKinG

 4 . Press F11 to debug the application on the Android Emulator. Using the DDMS, send an SMS message
to the emulator. Figure 8-6 shows the Toast class displaying the message received, and the TextView
showing the message received.

Figure 8-6

How It Works

You first added a TextView to your activity so that it can be used to display the received SMS message.

Next, you modified the SMSReceiver class so that when it receives an SMS message, it will broadcast another
Intent object so that any applications listening for this intent can be notified (which we will implement in
the activity next). The SMS received is also sent out via this intent:

//---sendabroadcastintenttoupdatetheSMSreceivedintheactivity---
IntentbroadcastIntent=newIntent();
broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
broadcastIntent.putExtra(“sms”,str);
context.sendBroadcast(broadcastIntent);

Next, in your activity you created a BroadcastReceiver object to listen for broadcast intents:

privateBroadcastReceiverintentReceiver=newBroadcastReceiver(){
@Override
publicvoidonReceive(Contextcontext,Intentintent){
//---displaytheSMSreceivedintheTextView---
TextViewSMSes=(TextView)findViewById(R.id.textView1);
SMSes.setText(intent.getExtras().getString(“sms”));
}
};

SMS Messaging ❘ 277

When a broadcast intent is received, you update the SMS message in the TextView.

You need to create an IntentFilter object so that you can listen for a particular intent. In this case, the
intent is “SMS_RECEIVED_ACTION”:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---intent to filter for SMS messages received---
intentFilter = new IntentFilter();
intentFilter.addAction(“SMS_RECEIVED_ACTION”);
//...
}

Finally, you register the BroadcastReceiver in the activity’s onResume() event and unregister it in the
onPause() event:

@Override
protectedvoidonResume(){
//---registerthereceiver---
registerReceiver(intentReceiver,intentFilter);
super.onResume();
}

@Override
protectedvoidonPause(){
//---unregisterthereceiver---
unregisterReceiver(intentReceiver);
super.onPause();
}

This means that the TextView will display the SMS message only when the message is received while the
activity is visible on the screen. If the SMS message is received when the activity is not in the foreground,
the TextView will not be updated.

invoking an Activity from a BroadcastReceiver
The previous example shows how you can pass the SMS message received to be displayed in the activ-
ity. However, in many situations your activity may be in the background when the SMS message is
received. In this case, it would be useful to be able to bring the activity to the foreground when a mes-
sage is received. The following Try It Out shows you how.

 invoking an Activitytry it out

 1 . Using the same project created in the previous section, add the following lines in bold to the
MainActivity.java file:

/**Calledwhentheactivityisfirstcreated.*/
@Override

278 ❘ chApter 8 meSSaGinG and networKinG

publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---intenttofilterforSMSmessagesreceived---
intentFilter=newIntentFilter();
intentFilter.addAction(“SMS_RECEIVED_ACTION”);

//---register the receiver---
registerReceiver(intentReceiver, intentFilter);

btnSendSMS=(Button)findViewById(R.id.btnSendSMS);
btnSendSMS.setOnClickListener(newView.OnClickListener()
{
publicvoidonClick(Viewv)
{
//sendSMS(“5554”,“Hellomyfriends!”);
Intenti=new
Intent(android.content.Intent.ACTION_VIEW);
i.putExtra(“address”,“5556;5558;5560”);

i.putExtra(“sms_body”,“Hellomyfriends!”);
i.setType(“vnd.android-dir/mms-sms”);
startActivity(i);
}
});
}

@Override
protectedvoidonResume(){
//---registerthereceiver---
//registerReceiver(intentReceiver, intentFilter);
super.onResume();
}

@Override
protectedvoidonPause(){
//---unregisterthereceiver---
//unregisterReceiver(intentReceiver);
super.onPause();
}

@Override
protected void onDestroy() {
//---unregister the receiver---
unregisterReceiver(intentReceiver);
super.onPause();
}

 2 . Add the following statements in bold to the SMSReceiver.java file:

@Override
publicvoidonReceive(Contextcontext,Intentintent)
{

SMS Messaging ❘ 279

//---gettheSMSmessagepassedin---
Bundlebundle=intent.getExtras();
SmsMessage[]msgs=null;
Stringstr=“”;
if(bundle!=null)
{
//---retrievetheSMSmessagereceived---
Object[]pdus=(Object[])bundle.get(“pdus”);
msgs=newSmsMessage[pdus.length];
for(inti=0;i<msgs.length;i++){
msgs[i]=SmsMessage.createFromPdu((byte[])pdus[i]);
str+=“SMSfrom“+msgs[i].getOriginatingAddress();
str+=“:”;
str+=msgs[i].getMessageBody().toString();
str+=“\n”;
}
//---displaythenewSMSmessage---
Toast.makeText(context,str,Toast.LENGTH_SHORT).show();

//---launch the MainActivity---
Intent mainActivityIntent = new Intent(context, MainActivity.class);
mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
context.startActivity(mainActivityIntent);

//---sendabroadcasttoupdatetheSMSreceivedintheactivity---
IntentbroadcastIntent=newIntent();
broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
broadcastIntent.putExtra(“sms”,str);
context.sendBroadcast(broadcastIntent);
}
}

 3 . Modify the main.xml file as follows:

<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”
 android:launchMode=”singleTask” >
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>

 4 . Press F11 to debug the application on the Android Emulator. When the MainActivity is shown,
click the Home button to send the activity to the background.

 5 . Use the DDMS to send an SMS message to the emulator again. This time, note that the activity will
be brought to the foreground, displaying the SMS message received.

How It Works

In the MainActivity class, you first register the BroadcastReceiver in the activity’s onCreate() event,
instead of the onResume() event; and instead of unregistering it in the onPause() event, you now unregister

280 ❘ chApter 8 meSSaGinG and networKinG

it in the onDestroy() event. This ensures that even if the activity is in the background, it will still be able to
listen for the broadcast intent.

Next, you modify the onReceive() event in the SMSReceiver class by using an intent to bring the activ-
ity to the foreground before broadcasting another intent:

//---launch the MainActivity---
Intent mainActivityIntent = new Intent(context, MainActivity.class);
mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
context.startActivity(mainActivityIntent);

//---sendabroadcasttoupdatetheSMSreceivedintheactivity---
IntentbroadcastIntent=newIntent();
broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
broadcastIntent.putExtra(“sms”,str);
context.sendBroadcast(broadcastIntent);

The startActivity() method launches the activity and brings it to the foreground. Note that you need
to set the Intent.FLAG_ACTIVITY_NEW_TASK flag because calling startActivity() from outside of an
activity context requires the FLAG_ACTIVITY_NEW_TASK flag.

You also need to set the launchMode attribute of the <activity> element in the AndroidManifest.xml file
to singleTask:

<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”
 android:launchMode=”singleTask” >

If you don’t set this, multiple instances of the activity will be launched as your application receives SMS
messages.

Note that in this example, when the activity is in the background (such as when you click the Home
button to show the home screen), the activity is brought to the foreground and its TextView is updated
with the SMS received. However, if the activity was killed (such as when you click the Back button to
destroy it), the activity is launched again but the TextView is not updated.

caveats and Warnings
While the ability to send and receive SMS messages makes Android a very compelling platform
for developing sophisticated applications, this flexibility comes with a price. A seemingly innocent
application may send SMS messages behind the scene without the user knowing, as demonstrated by
a recent case of an SMS-based Trojan Android application (http://forum.vodafone.co.nz/topic/
5719-android-sms-trojan-warning/). Claiming to be a media player, once installed, the application
sends SMS messages to a premium number, resulting in huge phone bills for the user.

While the user needs to explicitly give permission to your application, the request for permission is
only shown at installation time. Figure 8-7 shows the request for permission that appears when you

http://forum.vodafone.co.nz/topic/5719-android-sms-trojan-warning/
http://forum.vodafone.co.nz/topic/5719-android-sms-trojan-warning/

Sending e-Mail ❘ 281

try to install the application (as an APK file; Chapter 11 discusses packaging your Android applica-
tions in more detail) on the emulator (same as on a real device). If the user clicks the Install button,
he or she is considered to have given permission to allow the application to send and receive SMS
messages. This is dangerous, as after the application is installed it can send and receive SMS mes-
sages without ever prompting the user again.

Figure 8-7

In addition to this, the application can also “sniff” for incoming SMS messages. For example, based
on the techniques you learned from the previous section, you can easily write an application that
checks for certain keywords in the SMS message. When an SMS message contains the keyword you
are looking for, you can then use the Location Manager (discussed in Chapter 9) to obtain your geo-
graphical location and then send the coordinates back to the sender of the SMS message. The sender
could then easily track your location. All these tasks can be done easily without the user knowing it!
That said, users should try to avoid installing Android applications that come from dubious sources,
such as from unknown websites, strangers, etc.

Sending e-mAil

Like SMS messaging, Android also supports e-mail. The Gmail/Email application on Android enables
you to configure an e-mail account using POP3 or IMAP. Besides sending and receiving e-mails using
the Gmail/Email application, you can also send e-mail messages programmatically from within your
Android application. The following Try It Out shows you how.

282 ❘ chApter 8 meSSaGinG and networKinG

 Sending e-mail Programmaticallytry it out

codefile Emails.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Emails.

 2 . Add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<Button
android:id=”@+id/btnSendEmail”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Send Email” />

</LinearLayout>

 3 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Email;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Intent;
import android.net.Uri;
import android.view.View;
import android.widget.Button;

publicclassMainActivityextendsActivity{
Button btnSendEmail;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

btnSendEmail = (Button) findViewById(R.id.btnSendEmail);
btnSendEmail.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v)
{
String[] to = {“weimenglee@learn2develop.net”, “weimenglee@gmail.com”};
String[] cc = {“course@learn2develop.net”};
sendEmail(to, cc, “Hello”, “Hello my friends!”);
}
});

http://schemas.android.com/apk/res/android

Sending e-Mail ❘ 283

}

//---sends an SMS message to another device---
private void sendEmail(String[] emailAddresses, String[] carbonCopies,
String subject, String message)
{
Intent emailIntent = new Intent(Intent.ACTION_SEND);
emailIntent.setData(Uri.parse(“mailto:”));
String[] to = emailAddresses;
String[] cc = carbonCopies;
emailIntent.putExtra(Intent.EXTRA_EMAIL, to);
emailIntent.putExtra(Intent.EXTRA_CC, cc);
emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);
emailIntent.putExtra(Intent.EXTRA_TEXT, message);
emailIntent.setType(“message/rfc822”);
startActivity(Intent.createChooser(emailIntent, “Email”));
}
}

 4 . Press F11 to test the application on a real Android device. Click the Send Email button and you
should see the Email application launched in your device, as shown in Figure 8-8.

Figure 8-8

How It Works

In this example, you are launching the built-in Email application to send an e-mail message. To do so,
you use an Intent object and set the various parameters using the setData(), putExtra(), and setType()
methods:

IntentemailIntent=newIntent(Intent.ACTION_SEND);
emailIntent.setData(Uri.parse(“mailto:”));
String[]to=emailAddresses;
String[]cc=carbonCopies;
emailIntent.putExtra(Intent.EXTRA_EMAIL,to);
emailIntent.putExtra(Intent.EXTRA_CC,cc);
emailIntent.putExtra(Intent.EXTRA_SUBJECT,subject);
emailIntent.putExtra(Intent.EXTRA_TEXT,message);
emailIntent.setType(“message/rfc822”);
startActivity(Intent.createChooser(emailIntent,“Email”));

284 ❘ chApter 8 meSSaGinG and networKinG

netWorking

The previous sections covered how to get connected to the outside world using SMS and e-mail. Another
way to achieve that is to use the HTTP protocol. Using the HTTP protocol, you can perform a wide vari-
ety of tasks, such as downloading web pages from a web server, downloading binary data, and so on.

The following Try It Out creates an Android project so that you can use the HTTP protocol to con-
nect to the Web to download all sorts of data.

 Creating the Projecttry it out

codefile Networking.zip available for download at Wrox.com

 1 . Using Eclipse, create a new Android project and name it Networking.

 2 . Add the following statement in bold to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Networking”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”8”/>
<uses-permission android:name=”android.permission.INTERNET”></uses-permission>
</manifest>

 3 . Import the following namespaces in the MainActivity.java file:

packagenet.learn2develop.Networking;

importandroid.app.Activity;
importandroid.os.Bundle;

import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.net.URLConnection;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.widget.ImageView;
import android.widget.Toast;

import javax.xml.parsers.DocumentBuilder;

http://schemas.android.com/apk/res/android

networking ❘ 285

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

 4 . Define the OpenHttpConnection() method in the MainActivity.java file:

publicclassMainActivityextendsActivity{

private InputStream OpenHttpConnection(String urlString)
throws IOException
{
InputStream in = null;
int response = -1;

URL url = new URL(urlString);
URLConnection conn = url.openConnection();

if (!(conn instanceof HttpURLConnection))
throw new IOException(“NotanHTTPconnection”);
try{
HttpURLConnection httpConn = (HttpURLConnection) conn;
httpConn.setAllowUserInteraction(false);
httpConn.setInstanceFollowRedirects(true);
httpConn.setRequestMethod(“GET”);
httpConn.connect();
response = httpConn.getResponseCode();
if (response == HttpURLConnection.HTTP_OK) {
in = httpConn.getInputStream();
}
}
catch (Exception ex)
{
throw new IOException(“Errorconnecting”);
}
return in;
}

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

286 ❘ chApter 8 meSSaGinG and networKinG

How It Works

Because you are using the HTTP protocol to connect to the Web, your application needs the INTERNET
permission; hence, the first thing you do is add the permission in the AndroidManifest.xml file.

You then define the OpenHttpConnection() method, which takes a URL string and returns an InputStream
object. Using an InputStream object, you can download the data by reading bytes from the stream object.
In this method, you made use of the HttpURLConnection object to open an HTTP connection with a remote
URL. You set all the various properties of the connection, such as the request method, and so on:

HttpURLConnectionhttpConn=(HttpURLConnection)conn;
httpConn.setAllowUserInteraction(false);
httpConn.setInstanceFollowRedirects(true);
httpConn.setRequestMethod(“GET”);

After you try to establish a connection with the server, you get the HTTP response code from it. If the
connection is established (via the response code HTTP_OK), then you proceed to get an InputStream object
from the connection:

httpConn.connect();
response=httpConn.getResponseCode();
if(response==HttpURLConnection.HTTP_OK){
in=httpConn.getInputStream();
}

Using the InputStream object, you can then start to download the data from the server.

downloading Binary data
One of the common tasks you need to perform is downloading binary data from the Web. For example,
you may want to download an image from a server so that you can display it in your application. The
following Try It Out shows how this is done.

 Creating the Projecttry it out

 1 . Using the same project created earlier, add the following statements in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>

<ImageView
android:id=”@+id/img”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:layout_gravity=”center” />

</LinearLayout>

http://schemas.android.com/apk/res/android

networking ❘ 287

 2 . Add the following statements in bold to the MainActivity.java file:

publicclassMainActivityextendsActivity{
ImageView img;

privateInputStreamOpenHttpConnection(StringurlString)
throwsIOException
{
//...
}

private Bitmap DownloadImage(String URL)
{
Bitmap bitmap = null;
InputStream in = null;
try {
in = OpenHttpConnection(URL);
bitmap = BitmapFactory.decodeStream(in);
in.close();
} catch (IOException e1) {
Toast.makeText(this, e1.getLocalizedMessage(),
Toast.LENGTH_LONG).show();

e1.printStackTrace();
}
return bitmap;
}

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---download an image---
Bitmap bitmap =
DownloadImage(
“http://www.streetcar.org/mim/cable/images/cable-01.jpg”);
img = (ImageView) findViewById(R.id.img);
img.setImageBitmap(bitmap);
}
}

 3 . Press F11 to debug the application on the Android Emulator. Figure 8-9 shows the image down-
loaded from the Web and then displayed in the ImageView.

How It Works

The DownloadImage() method takes the URL of the image to download and then opens the connection to
the server using the OpenHttpConnection() method that you have defined earlier. Using the InputStream
object returned by the connection, the decodeStream() method from the BitmapFactory class is used
to download and decode the data into a Bitmap object. The DownloadImage() method returns a Bitmap
object.

http://www.streetcar.org/mim/cable/images/cable-01.jpg

288 ❘ chApter 8 meSSaGinG and networKinG

Figure 8-9

The image is then displayed using an ImageView view.

reFerring to locAlhoSt From your emulAtor

When working with the Android Emulator, you may frequently need to access data
hosted on the local web server using localhost. For example, your own Web services
is likely to be hosted on your local computer during development time and you want
to test it on the same development machine you use to write your Android applica-
tions. In such cases, you should use the special IP address of 10.0.2.2 (not 127.0.0.1)
to refer to the host computer’s loopback interface. From the Android Emulator’s per-
spective, localhost (127.0.0.1) refers to its own loopback interface.

downloading text Files
Besides downloading binary data, you can also download plain-text fi les. For example, you might
be writing an RSS Reader application and hence need to download RSS XML feeds for processing.
The following Try It Out shows how you can download a plain-text fi le in your application.

networking ❘ 289

 Downloading Plain-Text Filestry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

publicclassMainActivityextendsActivity{
ImageViewimg;

privateInputStreamOpenHttpConnection(StringurlString)
throwsIOException
{
//...
}

privateBitmapDownloadImage(StringURL)
{
//...
}

private String DownloadText(String URL)
{
int BUFFER_SIZE = 2000;
InputStream in = null;
try {
in = OpenHttpConnection(URL);
} catch (IOException e1) {
Toast.makeText(this, e1.getLocalizedMessage(),
Toast.LENGTH_LONG).show();

e1.printStackTrace();
return “”;
}

InputStreamReader isr = new InputStreamReader(in);
int charRead;
String str = “”;
char[] inputBuffer = new char[BUFFER_SIZE];
try {
while ((charRead = isr.read(inputBuffer))>0)
{
//---convert the chars to a String---
String readString =
String.copyValueOf(inputBuffer, 0, charRead);
str += readString;
inputBuffer = new char[BUFFER_SIZE];
}
in.close();
} catch (IOException e) {
Toast.makeText(this, e.getLocalizedMessage(),
Toast.LENGTH_LONG).show();

e.printStackTrace();

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

290 ❘ chApter 8 meSSaGinG and networKinG

return “”;
}
return str;
}

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---downloadanimage---
Bitmapbitmap=
DownloadImage(
“http://www.streetcar.org/mim/cable/images/cable-01.jpg”);
img=(ImageView)findViewById(R.id.img);
img.setImageBitmap(bitmap);

//---download an RSS feed---
String str = DownloadText(
“http://www.appleinsider.com/appleinsider.rss”);
Toast.makeText(getBaseContext(), str,
 Toast.LENGTH_SHORT).show();
}
}

 2 . Press F11 to debug the application on the Android Emulator. Figure 8-10 shows the RSS feed
downloaded and displayed using the Toast class.

Figure 8-10

http://www.streetcar.org/mim/cable/images/cable-01.jpg
http://www.appleinsider.com/appleinsider.rss

networking ❘ 291

How It Works

The DownloadText() method takes an URL of the text file to download and then returns the string
of the text file downloaded. It basically opens an HTTP connection to the server and then uses an
InputStreamReader object to read each character from the stream and save it in a String object.

Accessing Web Services
So far you have seen how to download images and text from the Web. The previous section showed
how to download an RSS feed from a server. Very often, you need to download XML files and parse
the contents (a good example of this is consuming Web services). Therefore, in this section you learn
how to connect to a Web service using the HTTP GET method. Once the Web service returns a result
in XML, you will extract the relevant parts and display its content using the Toast class.

For this example, the web method you will be using is from http://services.aonaware.com/
DictService/DictService.asmx?op=Define. This web method is from a Dictionary Web service
that returns the definitions of a given word.

The web method takes a request in the following format:

GET/DictService/DictService.asmx/Define?word=stringHTTP/1.1
Host:services.aonaware.com
HTTP/1.1200OK
Content-Type:text/xml;charset=utf-8
Content-Length:length

It returns a response in the following format:

<?xmlversion=”1.0”encoding=”utf-8”?>
<WordDefinitionxmlns=”http://services.aonaware.com/webservices/”>
<Word>string</Word>
<Definitions>
<Definition>
<Word>string</Word>
<Dictionary>
<Id>string</Id>
<Name>string</Name>
</Dictionary>
<WordDefinition>string</WordDefinition>
</Definition>
<Definition>
<Word>string</Word>
<Dictionary>
<Id>string</Id>
<Name>string</Name>
</Dictionary>
<WordDefinition>string</WordDefinition>
</Definition>
</Definitions>
</WordDefinition>

http://services.aonaware.com/DictService/DictService.asmx?op=Define
http://services.aonaware.com/webservices/
http://services.aonaware.com/DictService/DictService.asmx?op=Define

292 ❘ chApter 8 meSSaGinG and networKinG

Hence, to obtain the definition of a word, you need to establish an HTTP connection to the web
method and then parse the XML result that is returned. The following Try It Out shows you how.

 Consuming Web Servicestry it out

 1 . Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

publicclassMainActivityextendsActivity{
ImageViewimg;

privateInputStreamOpenHttpConnection(StringurlString)
throwsIOException
{
//...
}

privateBitmapDownloadImage(StringURL)
{
//...
}

privateStringDownloadText(StringURL)
{
//...
}

private void WordDefinition(String word) {
InputStream in = null;
try {
in = OpenHttpConnection(
“http://services.aonaware.com/DictService/DictService.asmx/Define?word=” + word);
Document doc = null;
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db;
try {
db = dbf.newDocumentBuilder();
doc = db.parse(in);
} catch (ParserConfigurationException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
doc.getDocumentElement().normalize();

//---retrieve all the <Definition> nodes---
NodeList itemNodes =
doc.getElementsByTagName(“Definition”);

String strDefinition = “”;
for (int i = 0; i < definitionElements.getLength(); i++) {

http://services.aonaware.com/DictService/DictService.asmx/Define?word=

networking ❘ 293

Node itemNode = definitionElements.item(i);
if (itemNode.getNodeType() == Node.ELEMENT_NODE)
{
//---convert the Node into an Element---
Element definitionElement = (Element) itemNode;

//---get all the <WordDefinition> elements under
// the <Definition> element---
NodeList wordDefinitionElements =
(definitionElement).getElementsByTagName(
“WordDefinition”);

strDefinition = “”;
for (int j = 0; j < wordDefinitionElements.getLength(); j++) {
//---convert a <WordDefinition> Node into an Element---
Element wordDefinitionElement =
(Element) wordDefinitionElements.item(j);

//---get all the child nodes under the
// <WordDefinition> element---
NodeList textNodes =
((Node) wordDefinitionElement).getChildNodes();

strDefinition +=
((Node) textNodes.item(0)).getNodeValue() + “. “;
}

//---display the title---
Toast.makeText(getBaseContext(),strDefinition,
Toast.LENGTH_SHORT).show();
}
}
} catch (IOException e1) {
Toast.makeText(this, e1.getLocalizedMessage(),
Toast.LENGTH_LONG).show();
e1.printStackTrace();
}
}

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---downloadanimage---
Bitmapbitmap=
DownloadImage(
“http://www.streetcar.org/mim/cable/images/cable-01.jpg”);
img=(ImageView)findViewById(R.id.img);
img.setImageBitmap(bitmap);

//---downloadanRSSfeed---
Stringstr=DownloadText(

http://www.streetcar.org/mim/cable/images/cable-01.jpg

294 ❘ chApter 8 meSSaGinG and networKinG

“http://www.appleinsider.com/appleinsider.rss”);
Toast.makeText(getBaseContext(),str,
Toast.LENGTH_SHORT).show();

//---access a Web service using GET---
WordDefinition(“Apple”);
}
}

 2 . Press F11 to debug the application on the Android Emulator. Figure 8-11 shows the result of the
Web service call being parsed and then displayed using the Toast class.

Figure 8-11

How It Works

The WordDefinition() method first opens an HTTP connection to the Web service, passing in the word
that you are interested in:

in=OpenHttpConnection(
“http://services.aonaware.com/DictService/DictService.asmx/Define?word=”+word);

It then uses the DocumentBuilderFactory and DocumentBuilder objects to obtain a Document (DOM)
object from an XML file (which is the XML result returned by the Web service):

Documentdoc=null;
DocumentBuilderFactorydbf=
DocumentBuilderFactory.newInstance();
DocumentBuilderdb;
try{

http://www.appleinsider.com/appleinsider.rss
http://services.aonaware.com/DictService/DictService.asmx/Define?word=

networking ❘ 295

db=dbf.newDocumentBuilder();
doc=db.parse(in);
}catch(ParserConfigurationExceptione){
//TODOAuto-generatedcatchblock
e.printStackTrace();
}catch(Exceptione){
//TODOAuto-generatedcatchblock
e.printStackTrace();
}
doc.getDocumentElement().normalize();

Once the Document object is obtained, you will find all the elements with the <Definition> tag:

//---retrieveallthe<Definition>nodes---
NodeListitemNodes=
doc.getElementsByTagName(“Definition”);

Figure 8-12 shows the structure of the XML document returned by the Web service.

Figure 8-12

As the definition of a word is contained within the <WordDefinition> element, you then proceed to
extract all the definitions:

StringstrDefinition=“”;
for(inti=0;i<definitionElements.getLength();i++){
NodeitemNode=definitionElements.item(i);
if(itemNode.getNodeType()==Node.ELEMENT_NODE)
{
//---converttheNodeintoanElement---
ElementdefinitionElement=(Element)itemNode;

//---getallthe<WordDefinition>elementsunder
//the<Definition>element---
NodeListwordDefinitionElements=
(definitionElement).getElementsByTagName(
“WordDefinition”);

strDefinition=“”;
for(intj=0;j<wordDefinitionElements.getLength();j++){
//---converta<WordDefinition>NodeintoanElement---

296 ❘ chApter 8 meSSaGinG and networKinG

ElementwordDefinitionElement=
(Element)wordDefinitionElements.item(j);

//---getallthechildnodesunderthe
//<WordDefinition>element---
NodeListtextNodes=
((Node)wordDefinitionElement).getChildNodes();
//---getthefirstnode,whichcontainsthetext---
strDefinition+=
((Node)textNodes.item(0)).getNodeValue()+“.“;
}
//---displaythetitle---
Toast.makeText(getBaseContext(),strDefinition,
Toast.LENGTH_SHORT).show();
}
}
}catch(IOExceptione1){
Toast.makeText(this, e1.getLocalizedMessage(),
Toast.LENGTH_LONG).show();
e1.printStackTrace();
}

The above loops through all the <Definition> elements and then for each <Definition> element it looks
for a child element named <WordDefinition>. The text content of the <WordDefinition> element contains
the definition of a word. The Toast class displays each word definition that is retrieved.

performing Asynchronous calls
So far, all the connections made in the previous few sections are all synchronous – that is, the con-
nection to a server will not return until the data is received. In real life, this presents some problems
due to network connections being inherently slow. When you connect to a server to download some
data, the user interface of your application remains frozen until a response is obtained. In most cases,
this is not acceptable. Hence, you need to ensure that the connection to the server is made in an asyn-
chronous fashion.

The easiest way to connect to the server asynchronously is to use the AsyncTask class available in the
Android SDK. Using AsyncTask enables you to perform background tasks in a separate thread and
then return the result in a UI thread. Using this class enables you to perform background operations
without needing to handle complex threading issues.

Using the previous example of downloading an image from the server and then displaying the image
in an ImageView, you could wrap the code in an instance of the AsyncTask class, as shown below:

publicclassMainActivityextendsActivity{
ImageViewimg;

private class BackgroundTask extends AsyncTask
<String, Void, Bitmap> {
protected Bitmap doInBackground(String... url) {

Summary ❘ 297

 //---download an image---
Bitmap bitmap = DownloadImage(url[0]);
return bitmap;
}

protected void onPostExecute(Bitmap bitmap) {
ImageView img = (ImageView) findViewById(R.id.img);
img.setImageBitmap(bitmap);
}
}

privateInputStreamOpenHttpConnection(StringurlString)
throwsIOException
{
...
}

Basically, you defi ned a class that extends the AsyncTask class. In this case, there are two methods
within the BackgroundTask class — doInBackground() and onPostExecute(). You put all the code
that needs to be run asynchronously in the doInBackground() method. When the task is completed,
the result is passed back via the onPostExecute() method. The onPostExecute() method is executed
on the UI thread, hence it is thread safe to update the ImageView with the bitmap downloaded from
the server.

NOTE You will learn more about the AsyncTask class in Chapter 10 which covers
developing services in Android.

To perform the asynchronous tasks, simply create an instance of the BackgroundTask class and call
its execute() method:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
new BackgroundTask().execute(
“http://www.streetcar.org/mim/cable/images/cable-01.jpg”);
}

SummAry

This chapter described the various ways to communicate with the outside world. You fi rst learned
how to send and receive SMS messages. You then learned how to send e-mail messages from within
your Android application. Besides SMS and e-mail, another way to communicate with the outside
world is through the use of the HTTP protocol. Using the HTTP protocol, you can download data
from a web server. One good application of this is to talk to Web services, whereby you need to
parse XML fi les.

http://www.streetcar.org/mim/cable/images/cable-01.jpg

298 ❘ chApter 8 meSSaGinG and networKinG

exerciSeS

 1 . Name the two ways in which you can send SMS messages in your Android application .

 2 . Name the permissions you need to declare in your AndroidManifest.xml file for sending and

receiving SMS messages .

 3 . How do you notify an activity from a BroadcastReceiver?

 4 . Name the permissions you need to declare in your AndroidManifest.xml file for an HTTP

connection .

Answers to Exercises can be found in Appendix C.

Summary ❘ 299

WhAt you leArned in thiS chApter ⊲

topic key conceptS

programmatically send-
ing SmS messages

Use the SmsManager class .

getting feedback on
messages sent

Use two PendingIntent objects in the sendTextMessage() method .

Sending SmS messages
using intent

Set the intent type to “vnd.android-dir/mms-sms” .

receiving SmS
messages

Implement a BroadcastReceiver and set it in the AndroidManifest

.xml file .

Sending e-mail using
intent

Set the intent type to “message/rfc822” .

establishing an http
connection

Use the HttpURLConnection class .

Accessing Web services Use the Document, DocumentBuilderFactory, and DocumentBuilder

classes to parse the XML result returned by the Web service .

Location-Based Services

WhAt you Will leArn in thiS chApter

How to display Google Maps in your Android application➤➤

How to display the zoom controls on the map➤➤

How to switch between the diff erent map views➤➤

How to add markers to maps➤➤

How to get the address location touched on the map➤➤

How to perform geocoding and reverse geocoding➤➤

How to obtain geographical data using GPS, Cell-ID, and Wi-Fi ➤➤

triangulation

How to monitor for a location➤➤

We have all seen the explosive growth of mobile apps in recent years. One category of apps
that is very popular is location-based services, commonly known as LBS. LBS apps track your
location, and may offer additional services such as locating amenities nearby, as well as offer-
ing suggestions for route planning, and so on. Of course, one of the key ingredients in a LBS
app is maps, which present a visual representation of your location.

In this chapter, you will learn how to make use of the Google Maps in your Android application,
and how to manipulate it programmatically. In addition, you will learn how to obtain your geo-
graphical location using the LocationManager class available in the Android SDK.

9

302 ❘ chApter 9 location-BaSed ServiceS

diSplAying mApS

Google Maps is one of the many applications bundled with the Android platform. In addition to
simply using the Maps application, you can also embed it into your own applications and make it do
some very cool things. This section describes how to use Google Maps in your Android applications
and programmatically perform the following:

Change the views of Google Maps.➤➤

Obtain the latitude and longitude of locations in Google Maps.➤➤

Perform geocoding and reverse geocoding (translating an address to latitude and longitude ➤➤

and vice versa).

Add markers to Google Maps.➤➤

creating the project
To get started, you need to first create an Android project so that you can display the Google Maps
in your activity.

Creating the Projecttry it out

codefile LBS.zip available for download at Wrox.com

 1 . Using Eclipse, create an Android project as shown in Figure 9-1.

Figure 9-1

Displaying Maps ❘ 303

NOTE In order to use Google Maps in your Android application, you need to
ensure that you check the Google APIs as your build target. Google Maps is
not part of the standard Android SDK, so you need to fi nd it in the Google APIs
add-on.

2 . Once the project is created, observe the additional JAR fi le (maps.jar) located under the Google
APIs folder (see Figure 9-2).

Figure 9-2

How It Works

This simple activity created an Android project that uses the Google APIs add-on. The Google APIs add-
on includes the standard Android library, with the addition of the Maps library, as packaged within the
maps.jar fi le.

obtaining the maps Api key
Beginning with the Android SDK release v1.0, you need to apply for a free Google Maps API key before
you can integrate Google Maps into your Android application. When you apply for the key, you must
also agree to Google’s terms of use, so be sure to read them carefully.

To apply for a key, follow the series of steps outlined next.

NOTE Google provides detailed documentation on applying for a Maps API key
at http://code.google.com/android/add-ons/google-apis/mapkey.html.

First, if you are testing the application on the Android Emulator or an Android device directly con-
nected to your development machine, locate the SDK debug certifi cate located in the default folder
(C:\Users\<username>\.android for Windows 7 users). You can verify the existence of the debug
certifi cate by going to Eclipse and selecting Window ➪ Preferences. Expand the Android item and
select Build (see Figure 9-3). On the right side of the window, you will be able to see the debug cer-
tifi cate’s location.

http://code.google.com/android/add-ons/google-apis/mapkey.html

304 ❘ chApter 9 location-BaSed ServiceS

NOTE For Windows XP users, the default Android folder is
C:\DocumentsandSettings\<username>\LocalSettings\ApplicationData\Android.

Figure 9-3

The fi lename of the debug keystore is debug.keystore. This is the certifi cate that Eclipse uses to sign
your application so that it may be run on the Android Emulator or devices.

Using the debug keystore, you need to extract its MD5 fi ngerprint using the Keytool.exe application
included with your JDK installation. This fi ngerprint is needed to apply for the free Google Maps
key. You can usually fi nd the Keytool.exe in the C:\ProgramFiles\Java\<JDK_version_number>\bin
folder.

Issue the following command (see Figure 9-4) to extract the MD5 fi ngerprint:

keytool.exe-list-aliasandroiddebugkey-keystore
“C:\Users\<username>\.android\debug.keystore”-storepassandroid
-keypassandroid

Figure 9-4

Displaying Maps ❘ 305

In this example, my MD5 fi ngerprint is EF:7A:61:EA:AF:E0:B4:2D:FD:43:5E:1D:26:04:34:BA.

Copy the MD5 certifi cate fi ngerprint and navigate your web browser to: http://code.google.com/
android/maps-api-signup.html. Follow the instructions on the page to complete the application
and obtain the Google Maps key. When you are done, you should see something similar to what is
shown in Figure 9-5.

Figure 9-5

NOTE Although you can use the MD5 fi ngerprint of the debug keystore to
obtain the Maps API key for debugging your application on the Android Emulator
or devices, the key will not be valid if you try to deploy your Android application
as an APK fi le. Once you are ready to deploy your application to the Android
Market (or other methods of distribution), you need to reapply for a Maps API
key using the certifi cate that will be used to sign your application. Chapter 11 dis-
cusses this topic in more detail.

displaying the map
You are now ready to display Google Maps in your Android application. This involves two main
tasks:

Modify your ➤➤ AndroidManifest.xml fi le by adding both the <uses-library> element and the
INTERNET permission.

Add the ➤➤ MapView element to your UI.

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html

306 ❘ chApter 9 location-BaSed ServiceS

The following Try It Out shows you how.

Displaying google Mapstry it out

 1 . Using the project created in the previous section, add the following lines in bold to the main.xml
file (be sure to replace the value of the apiKey attribute with the API key you obtained earlier):

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<com.google.android.maps.MapView
 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”<YOUR KEY>” />
</LinearLayout>

 2 . Add the following lines in bold to the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.LBS”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>

 <uses-library android:name=”com.google.android.maps” />

<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>

</application>
<uses-sdkandroid:minSdkVersion=”8”/>

<uses-permission android:name=”android.permission.INTERNET”></uses-permission>
</manifest>

 3 . Add the following statements in bold to the MainActivity.java file. Note that MainActivity is
now extending the MapActivity class.

packagenet.learn2develop.LBS;

importandroid.app.Activity;

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Displaying Maps ❘ 307

importandroid.os.Bundle;

import com.google.android.maps.MapActivity;

publicclassMainActivityextendsMapActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

 @Override
 protected boolean isRouteDisplayed() {
 // TODO Auto-generated method stub
 return false;
 }
}

 4 . Press F11 to debug the application on the Android Emulator. Figure 9-6 shows Google Maps dis-
playing in the activity of your application.

Figure 9-6

How It Works

In order to display Google Maps in your application, you first need to have the INTERNET permission in
your manifest file. You then add the <com.google.android.maps.MapView> element to your UI file to
embed the map within your activity. Very importantly, your activity must now extend the MapActivity
class, which itself is an extension of the Activity class. For the MapActivity class, you need to implement
one method: isRouteDisplayed(). This method is used for Google’s accounting purposes, and you should

308 ❘ chApter 9 location-BaSed ServiceS

return true for this method if you are displaying routing information on the map. For most simple cases,
you can simply return false.

cAn’t See the mAp?

If instead of seeing Google Maps displayed you see an empty screen with grids,
then most likely you are using the wrong API key in the main.xml fi le. It is also pos-
sible that you omitted the INTERNET permission in your AndroidManifest.xml fi le.
Finally, ensure that you have Internet access on your emulator/devices.

If your program does not run (i.e., it crashes), then you probably forgot to add the
following statement to the AndroidManifest.xml fi le:

<uses-library android:name=”com.google.android.maps” />

Note its placement in the AndroidManifest.xml fi le; it should be within the
<Application> element.

displaying the zoom control
The previous section showed how you can display Google Maps in your Android application. You
can pan the map to any desired location and it will be updated on-the-fl y. However, on the emulator
there is no way to zoom in or out from a particular location (on a real Android device you can pinch
the map to zoom it). Thus, in this section, you will learn how you can let users zoom in or out of the
map using the built-in zoom controls.

Displaying the Built-in Zoom Controlstry it out

1 . Using the project created in the previous activity, add in the following statements in bold:

packagenet.learn2develop.LBS;

importandroid.app.Activity;
importandroid.os.Bundle;

importcom.google.android.maps.MapActivity;

import com.google.android.maps.MapView;

publicclassMainActivityextendsMapActivity{
MapView mapView;
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

 mapView = (MapView) findViewById(R.id.mapView);

Displaying Maps ❘ 309

 mapView.setBuiltInZoomControls(true);
}

@Override
protectedbooleanisRouteDisplayed(){
//TODOAuto-generatedmethodstub
returnfalse;
}
}

 2 . Press F11 to debug the application on the Android
Emulator. Observe the built-in zoom controls that appear
at the bottom of the map when you click and drag the map
(see Figure 9-7). You can click the minus (–) icon to zoom
out of the map and the plus (+) icon to zoom into the map.

How It Works

To display the built-in zoom controls, you first get a reference to
the map and then call the setBuiltInZoomControls() method:

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);

Besides displaying the zoom controls, you can also programmatically zoom in or out of the map
using the zoomIn() or zoomOut() method of the MapController class. The following Try It Out
shows you how to achieve this.

Programmatically Zooming in or Out of the Maptry it out

 1 . Using the project created in the previous activity, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;
importandroid.os.Bundle;

importcom.google.android.maps.MapActivity;
importcom.google.android.maps.MapView;

import android.view.KeyEvent;
import com.google.android.maps.MapController;

publicclassMainActivityextendsMapActivity{
MapViewmapView;
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

Figure 9-7

310 ❘ chApter 9 location-BaSed ServiceS

setContentView(R.layout.main);

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);
}

 public boolean onKeyDown(int keyCode, KeyEvent event)
 {
 MapController mc = mapView.getController();
 switch (keyCode)
 {
 case KeyEvent.KEYCODE_3:
 mc.zoomIn();
 break;
 case KeyEvent.KEYCODE_1:
 mc.zoomOut();
 break;
 }
 return super.onKeyDown(keyCode, event);
 }

@Override
protectedbooleanisRouteDisplayed(){
//TODOAuto-generatedmethodstub
returnfalse;
}
}

 2 . Press F11 to debug the application on the Android Emulator. You can now zoom into the map by
pressing the numeric 3 key on the emulator. To zoom out of the map, press the numeric 1 key.

How It Works

To handle key presses on your activity, you handle the onKeyDown event:

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
//...
}

To manage the panning and zooming of the map, you need to obtain an instance of the MapController
class from the MapView object. The MapController class contains the zoomIn() and zoomOut() methods
(plus some other methods to control the map) to enable users to zoom in or out of the map, respectively.

changing views
By default, Google Maps is displayed in map view, which is basically drawings of streets and places
of interest. You can also set Google Maps to display in satellite view using the setSatellite()
method of the MapView class:

@Override
publicvoidonCreate(BundlesavedInstanceState){

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Displaying Maps ❘ 311

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);
 mapView.setSatellite(true);
}

Figure 9-8 shows Google Maps displayed in satellite view.

Figure 9-8

Besides satellite view, you can also display the map in street view (which highlights all the streets
on the map) using the setStreetView() method. Figure 9-9 shows the map displaying a location in
both street view (left) and satellite view (right).

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);
mapView.setSatellite(true);
 mapView.setStreetView(true);
}

If you want to display traffic conditions on the map, use the setTraffic() method:

mapView.setTraffic(true);

312 ❘ chApter 9 location-BaSed ServiceS

Figure 9-9

Figure 9-10 shows the map displaying the current traffic con-
ditions. The different colors reflect the varying traffic condi-
tions. In general, green color equates to smooth traffic of
about 50 miles per hour, yellow equates to moderate traffic
of about 25-50 miles per hour, and red equates to slow traf-
fic of about less than 25 miles per hour.

Note that the traffic information is only available in major
cities in the United States, France, Britain, Australia, and
Canada, with new cities and countries frequently added.

navigating to a Specific location
By default, Google Maps displays the map of the United States
when it is first loaded. However, you can also set Google
Maps to display a particular location. In this case, you can
use the animateTo() method of the MapController class.

The following Try It Out shows how you can programmati-
cally animate Google Maps to a particular location.

Figure 9-10

Displaying Maps ❘ 313

navigating the Map to Display a Specific Locationtry it out

 1 . Using the project created in the previous activity, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;
importandroid.os.Bundle;
importandroid.view.KeyEvent;
importcom.google.android.maps.MapActivity;
importcom.google.android.maps.MapController;
importcom.google.android.maps.MapView;

import com.google.android.maps.GeoPoint;

publicclassMainActivityextendsMapActivity{
MapViewmapView;
 MapController mc;
 GeoPoint p;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);

 //mapView.setSatellite(true);

mapView.setStreetView(true);

 mc = mapView.getController();
 String coordinates[] = {“1.352566007”, “103.78921587”};
 double lat = Double.parseDouble(coordinates[0]);
 double lng = Double.parseDouble(coordinates[1]);

 p = new GeoPoint(
 (int) (lat * 1E6),
 (int) (lng * 1E6));

 mc.animateTo(p);
 mc.setZoom(13);
 mapView.invalidate();
}

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{

314 ❘ chApter 9 location-BaSed ServiceS

MapControllermc=mapView.getController();
switch(keyCode)
{
caseKeyEvent.KEYCODE_3:
mc.zoomIn();
break;
caseKeyEvent.KEYCODE_1:
mc.zoomOut();
break;
}
returnsuper.onKeyDown(keyCode,event);
}

@Override
protectedbooleanisRouteDisplayed(){
//TODOAuto-generatedmethodstub
returnfalse;
}
}

 2 . Press F11 to debug the application on the Android Emulator. When the map is loaded, observe that
it now animates to a particular location in Singapore (see Figure 9-11).

Figure 9-11

How It Works

In the preceding code, you first obtain a map controller from the MapView instance and assign it to a
MapController object (mc). You then use a GeoPoint object to represent a geographical location. Note
that for this class, the latitude and longitude of a location are represented in micro degrees. This means

Displaying Maps ❘ 315

that they are stored as integer values. For a latitude value of 40.747778, for example, you need to multi-
ply it by 1e6 (which is one million) to obtain 40747778.

To navigate the map to a particular location, you can use the animateTo() method of the MapController
class. The setZoom() method enables you to specify the zoom level at which the map is displayed (the
bigger the number, the more details you see on the map). The invalidate() method forces the MapView
to be redrawn.

Adding markers
Adding markers to a map to indicate places of interest enables your users to easily locate the places
they are looking for. The following Try It Out shows you how to add a marker to Google Maps.

Adding Markers to the Maptry it out

 1 . Create a GIF image containing a pushpin (see Figure 9-12) and copy it
into the res/drawable-mdpi folder of the project. For the best effect,
make the background of the image transparent so that it does not
block parts of the map when the image is added to the map.

 2 . Using the project created in the previous activity, add the following
statements in bold to the MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;

importandroid.os.Bundle;
importandroid.view.KeyEvent;

importcom.google.android.maps.GeoPoint;
importcom.google.android.maps.MapActivity;
importcom.google.android.maps.MapController;
importcom.google.android.maps.MapView;

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Point;
import com.google.android.maps.Overlay;
import java.util.List;

publicclassMainActivityextendsMapActivity{
MapViewmapView;
MapControllermc;
GeoPointp;

 class MapOverlay extends com.google.android.maps.Overlay
 {
 @Override

Figure 9-12

316 ❘ chApter 9 location-BaSed ServiceS

 public boolean draw(Canvas canvas, MapView mapView,
 boolean shadow, long when)
 {
 super.draw(canvas, mapView, shadow);

 //---translate the GeoPoint to screen pixels---
 Point screenPts = new Point();
 mapView.getProjection().toPixels(p, screenPts);

 //---add the marker---
 Bitmap bmp = BitmapFactory.decodeResource(
 getResources(), R.drawable.pushpin);
 canvas.drawBitmap(bmp, screenPts.x, screenPts.y-50, null);
 return true;
 }
 }

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);

//mapView.setSatellite(true);
 //mapView.setStreetView(true);

mc=mapView.getController();
Stringcoordinates[]={“1.352566007”,“103.78921587”};
doublelat=Double.parseDouble(coordinates[0]);
doublelng=Double.parseDouble(coordinates[1]);

p=newGeoPoint(
(int)(lat*1E6),
(int)(lng*1E6));

mc.animateTo(p);
mc.setZoom(13);

 //---Add a location marker---
 MapOverlay mapOverlay = new MapOverlay();
 List<Overlay> listOfOverlays = mapView.getOverlays();
 listOfOverlays.clear();
 listOfOverlays.add(mapOverlay);

mapView.invalidate();
}

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
MapControllermc=mapView.getController();
switch(keyCode)

Displaying Maps ❘ 317

{
caseKeyEvent.KEYCODE_3:
mc.zoomIn();
break;
caseKeyEvent.KEYCODE_1:
mc.zoomOut();
break;
}
returnsuper.onKeyDown(keyCode,event);
}
@Override
protectedbooleanisRouteDisplayed(){
//TODOAuto-generatedmethodstub
returnfalse;
}
}

 3 . Press F11 to debug the application on the Android Emulator. Figure 9-13 shows the marker added
to the map.

Figure 9-13

How It Works

To add a marker to the map, you first need to define a class that extends the Overlay class:

classMapOverlayextendscom.google.android.maps.Overlay
{
@Override
publicbooleandraw(Canvascanvas,MapViewmapView,

318 ❘ chApter 9 location-BaSed ServiceS

booleanshadow,longwhen)
{
//...
}
}

An overlay represents an individual item that you can draw on the map. You can add as many overlays
as you want. In the MapOverlay class, override the draw() method so that you can draw the pushpin
image on the map. In particular, note that you need to translate the geographical location (represented
by a GeoPoint object, p) into screen coordinates:

//---translatetheGeoPointtoscreenpixels---
PointscreenPts=newPoint();
mapView.getProjection().toPixels(p,screenPts);

Because you want the pointed tip of the pushpin to indicate the position of the location, you need to
deduct the height of the image (which is 50 pixels) from the y coordinate of the point (see Figure 9-14)
and draw the image at that location:

//---addthemarker---
Bitmapbmp=BitmapFactory.decodeResource(
getResources(),R.drawable.pushpin);
canvas.drawBitmap(bmp,screenPts.x,screenPts.y-50,null);

Figure 9-14

To add the marker, create an instance of the MapOverlay class and add it to the list of overlays available
on the MapView object:

//---Addalocationmarker---
MapOverlaymapOverlay=newMapOverlay();
List<Overlay>listOfOverlays=mapView.getOverlays();
listOfOverlays.clear();
listOfOverlays.add(mapOverlay);

getting the location that Was touched
After using Google Maps for a while, you may want to know the latitude and longitude of a location
corresponding to the position on the screen that was just touched. Knowing this information is very
useful, as you can determine a location’s address, a process known as reverse geocoding (you will
learn how this is done in the next section).

Displaying Maps ❘ 319

If you have added an overlay to the map, you can override the onTouchEvent() method within the
MapOverlay class. This method is fired every time the user touches the map. This method has two
parameters: MotionEvent and MapView. Using the MotionEvent parameter, you can determine whether
the user has lifted his or her finger from the screen using the getAction() method. In the following
code snippet, if the user has touched and then lifted the finger, you display the latitude and longitude
of the location touched:

import android.view.MotionEvent;
import android.widget.Toast;
//...

classMapOverlayextendscom.google.android.maps.Overlay
{
@Override
publicbooleandraw(Canvascanvas,MapViewmapView,
booleanshadow,longwhen)
{
super.draw(canvas,mapView,shadow);

//---translatetheGeoPointtoscreenpixels---
PointscreenPts=newPoint();
mapView.getProjection().toPixels(p,screenPts);

//---addthemarker---
Bitmapbmp=BitmapFactory.decodeResource(
getResources(),R.drawable.pushpin);
canvas.drawBitmap(bmp,screenPts.x,screenPts.y-50,null);
returntrue;
}

 @Override
 public boolean onTouchEvent(MotionEvent event, MapView mapView)
 {
 //---when user lifts his finger---
 if (event.getAction() == 1) {
 GeoPoint p = mapView.getProjection().fromPixels(
 (int) event.getX(),
 (int) event.getY());
 Toast.makeText(getBaseContext(),
 “Location: “+
 p.getLatitudeE6() / 1E6 + “,” +
 p.getLongitudeE6() /1E6 ,
 Toast.LENGTH_SHORT).show();
 }
 return false;
 }
}

The getProjection() method returns a projection for converting between screen-pixel coordinates
and latitude/longitude coordinates. The fromPixels() method then converts the screen coordinates
into a GeoPoint object.

Figure 9-15 shows the map displaying a set of coordinates when the user clicks a location on the map.

320 ❘ chApter 9 location-BaSed ServiceS

Figure 9-15

geocoding and reverse geocoding
As mentioned in the preceding section, if you know the latitude and longitude of a location, you can
find out its address using a process known as reverse geocoding. Google Maps in Android supports
this via the Geocoder class. The following code snippet shows how you can retrieve the address of a
location just touched using the getFromLocation() method:

importandroid.location.Address;
importandroid.location.Geocoder;
importjava.util.Locale;
importjava.io.IOException;
//...

@Override
publicbooleanonTouchEvent(MotionEventevent,MapViewmapView)
{
//---whenuserliftshisfinger---
if(event.getAction()==1){
GeoPointp=mapView.getProjection().fromPixels(
(int)event.getX(),
(int)event.getY());
/*
Toast.makeText(getBaseContext(),
“Location:“+
p.getLatitudeE6()/1E6+“,”+
p.getLongitudeE6()/1E6,
Toast.LENGTH_SHORT).show();

Displaying Maps ❘ 321

*/

 Geocoder geoCoder = new Geocoder(
 getBaseContext(), Locale.getDefault());
 try {
 List<Address> addresses = geoCoder.getFromLocation(
 p.getLatitudeE6() / 1E6,
 p.getLongitudeE6() / 1E6, 1);

 String add = “”;
 if (addresses.size() > 0)
 {
 for (int i=0; i<addresses.get(0).getMaxAddressLineIndex();
 i++)
 add += addresses.get(0).getAddressLine(i) + “\n”;
 }
 Toast.makeText(getBaseContext(), add, Toast.LENGTH_SHORT).show();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 return true;
}
returnfalse;
}
}

The Geocoder object converts the latitude and longitude into an address using the getFromLocation()
method. Once the address is obtained, you display it using the Toast class. Figure 9-16 shows the
application displaying the address of a location that was touched on the map.

If you know the address of a location but want to know its latitude and longitude, you can do so via
geocoding. Again, you can use the Geocoder class for this purpose. The following code shows how
you can find the exact location of the Empire State Building by using the getFromLocationName()
method:

 //---geo-coding---
 Geocoder geoCoder = new Geocoder(this, Locale.getDefault());
 try {
 List<Address> addresses = geoCoder.getFromLocationName(
 “empire state building”, 5);

 String add = “”;
 if (addresses.size() > 0) {
 p = new GeoPoint(
 (int) (addresses.get(0).getLatitude() * 1E6),
 (int) (addresses.get(0).getLongitude() * 1E6));
 mc.animateTo(p);
 mapView.invalidate();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

322 ❘ chApter 9 location-BaSed ServiceS

Figure 9-17 shows the map navigating to the location of the Empire State Building.

getting locAtion dAtA

Nowadays, mobile devices are commonly equipped with GPS receivers. Because of the many satellites
orbiting the earth, you can use a GPS receiver to find your location easily. However, GPS requires a
clear sky to work and hence does not always work indoors or where satellites can’t penetrate (such as
a tunnel through a mountain).

Another effective way to locate your position is through cell tower triangulation. When a mobile phone
is switched on, it is constantly in contact with base stations surrounding it. By knowing the identity of
cell towers, it is possible to translate this information into a physical location through the use of various
databases containing the cell towers’ identities and their exact geographical locations. The advantage of
cell tower triangulation is that it works indoors, without the need to obtain information from satellites.
However, it is not as precise as GPS because its accuracy depends on overlapping signal coverage, which
varies quite a bit. Cell tower triangulation works best in densely populated areas where the cell towers
are closely located.

A third method of locating your position is to rely on Wi-Fi triangulation. Rather than connect to cell
towers, the device connects to a Wi-Fi network and checks the service provider against databases to
determine the location serviced by the provider. Of the three methods described here, Wi-Fi triangu-
lation is the least accurate.

On the Android, the SDK provides the LocationManager class to help your device determine the user’s
physical location. The following Try It Out shows you how this is done in code.

navigating the Map to a Specific Location Using the Location try it out
Manager Class

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.LBS;

importandroid.app.Activity;

Figure 9-16 Figure 9-17

getting Location Data ❘ 323

importandroid.content.Context;
//...
//...

import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;

publicclassMainActivityextendsMapActivity{
MapViewmapView;
MapControllermc;
GeoPointp;

 private LocationManager lm;
 private LocationListener locationListener;

classMapOverlayextendscom.google.android.maps.Overlay
{
//...
}

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mapView=(MapView)findViewById(R.id.mapView);
mapView.setBuiltInZoomControls(true);

mc=mapView.getController();

//---navigatetoapointfirst---
Stringcoordinates[]={“1.352566007”,“103.78921587”};
doublelat=Double.parseDouble(coordinates[0]);
doublelng=Double.parseDouble(coordinates[1]);
p=newGeoPoint(
(int)(lat*1E6),
(int)(lng*1E6));
mc.animateTo(p);
mc.setZoom(13);

//---Addalocationmarker---
//...
//---reversegeo-coding---
//...

 //---use the LocationManager class to obtain locations data---
 lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 locationListener = new MyLocationListener();

 lm.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,

324 ❘ chApter 9 location-BaSed ServiceS

 0,
 locationListener);
}

 private class MyLocationListener implements LocationListener
 {
 @Override
 public void onLocationChanged(Location loc) {
 if (loc != null) {
 Toast.makeText(getBaseContext(),
 “Location changed : Lat: “ + loc.getLatitude() +
 “ Lng: “ + loc.getLongitude(),
 Toast.LENGTH_SHORT).show();
 }

 p = new GeoPoint(
 (int) (loc.getLatitude() * 1E6),
 (int) (loc.getLongitude() * 1E6));

 mc.animateTo(p);
 mc.setZoom(18);
 }

 @Override
 public void onProviderDisabled(String provider) {
 }

 @Override
 public void onProviderEnabled(String provider) {
 }

 @Override
 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 }
 }

publicbooleanonKeyDown(intkeyCode,KeyEventevent)
{
//...
}

@Override
protectedbooleanisRouteDisplayed(){
//TODOAuto-generatedmethodstub
returnfalse;
}
}

 2 . Press F11 to debug the application on the Android Emulator.

 3 . To simulate GPS data received by the Android Emulator, you use the Location Controls tool (see
Figure 9-18) located in the DDMS perspective.

getting Location Data ❘ 325

 4 . Ensure that you have first selected the emulator in the Devices tab. Then, in the Emulator Control
tab, locate the Location Controls tool and select the Manual tab. Enter a latitude and longitude
and click the Send button.

 5 . Observe that the map on the emulator now animates to another location (see Figure 9-19). This
proves that the application has received the GPS data.

Figure 9-18

Figure 9-19

326 ❘ chApter 9 location-BaSed ServiceS

How It Works

In Android, location-based services are provided by the LocationManager class, located in the android
.location package. Using the LocationManager class, your application can obtain periodic updates of
the device’s geographical locations, as well as fire an intent when it enters the proximity of a certain
location.

In the MainActivity.java file, you first obtain a reference to the LocationManager class using the
getSystemService() method. To be notified whenever there is a change in location, you need to reg-
ister a request for location changes so that your program can be notified periodically. This is done
via the requestLocationUpdates() method:

lm.requestLocationUpdates(
LocationManager.GPS_PROVIDER,
0,
0,
locationListener);

This method takes four parameters:

provider➤➤ — The name of the provider with which you register. In this case, you are using GPS to
obtain your geographical location data.

minTime➤➤ — The minimum time interval for notifications, in milliseconds

minDistance➤➤ — The minimum distance interval for notifications, in meters

listener➤➤ — An object whose onLocationChanged() method will be called for each location update

The MyLocationListener class implements the LocationListener abstract class. You need to override
four methods in this implementation:

onLocationChanged(Locationlocation)➤➤ — Called when the location has changed

onProviderDisabled(Stringprovider)➤➤ — Called when the provider is disabled by the user

onProviderEnabled(Stringprovider)➤➤ — Called when the provider is enabled by the user

onStatusChanged(Stringprovider,intstatus,Bundleextras)➤➤ — Called when the provider
status changes

In this example, you’re more interested in what happens when a location changes, so you’ll write some
code in the onLocationChanged() method. Specifically, when a location changes, you will display a
small dialog on the screen showing the new location information: latitude and longitude. You show
this dialog using the Toast class.

If you want to use Cell-ID and Wi-Fi triangulation (important for indoor use) for obtaining your
location data, you can use the network location provider, like this:

lm.requestLocationUpdates(
 LocationManager.NETWORK_PROVIDER,
0,
0,
locationListener);

Summary ❘ 327

You can combine both the GPS location provider with the network location provider within your
application.

monitoring a location
One very cool feature of the LocationManager class is its ability to monitor a specific location. This
is achieved using the addProximityAlert() method. The following code snippet shows how to moni-
tor a particular location so that if the user is within a five-meter radius from that location, your
application will fire an intent to launch the web browser:

//---usetheLocationManagerclasstoobtainlocationsdata---
lm=(LocationManager)
getSystemService(Context.LOCATION_SERVICE);

 //---PendingIntent to launch activity if the user is within some locations---
 PendingIntent pendIntent = PendingIntent.getActivity(
 this, 0, new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse(“http://www.amazon.com”)), 0);

 lm.addProximityAlert(37.422006, -122.084095, 5, -1, pendIntent);

The addProximityAlert() method takes five arguments: latitude, longitude, radius (in meters), expi-
ration (time for the proximity alert to be valid, after which it will be deleted; -1 for no expiration),
and the pending intent.

Note that if the Android device’s screen goes to sleep, the proximity is also checked once every four
minutes in order to preserve the battery life of the device.

SummAry

This chapter took a whirlwind tour of the MapView object, which displays Google Maps in your
Android application. You have learned the various ways in which the map can be manipulated, and
you have also seen how you can obtain geographical location data using the various network provid-
ers: GPS, Cell-ID, or Wi-Fi triangulation.

exerciSeS

 1 . If you have embedded the Google Maps API into your Android application but it does not show

the map when the application is loaded, what could be the likely reasons?

 2 . What is the difference between geocoding and reverse geocoding?

 3 . Name the two location providers that you can use to obtain your location data .

 4 . What is the method for monitoring a location?

Answers to Exercises can be found in Appendix C.

328 ❘ chApter 9 location-BaSed ServiceS

WhAt you leArned in thiS chApter ⊲

topic key conceptS

displaying the
mapview

<com.google.android.maps.MapView
android:id=”@+id/mapView”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:enabled=”true”
android:clickable=”true”
android:apiKey=”0K2eMNyjc5HFPsiobLh6uLHb8F9ZFmh4uIm7VTA”/>

referencing the
map library

<uses-libraryandroid:name=”com.google.android.maps”/>

displaying the
zoom controls

mapView.setBuiltInZoomControls(true);

programmatically
zooming in or out
of the map

mc.zoomIn();
mc.zoomOut();

changing views mapView.setSatellite(true);
mapView.setStreetView(true);
mapView.setTraffic(true);

Animating to
a particular
location

mc=mapView.getController();
Stringcoordinates[]={“1.352566007”,“103.78921587”};
doublelat=Double.parseDouble(coordinates[0]);
doublelng=Double.parseDouble(coordinates[1]);
p=newGeoPoint(
(int)(lat*1E6),
(int)(lng*1E6));
mc.animateTo(p);

Adding markers ImplementanOverlayclassandoverridethedraw()method

getting the loca-
tion of the map
touched

GeoPointp=mapView.getProjection().fromPixels(
(int)event.getX(),
(int)event.getY());

geocoding
and reverse
geocoding

Use the Geocoder class

Summary ❘ 329

topic key conceptS

obtaining
location data

privateLocationManagerlm;

//...

lm=(LocationManager)
getSystemService(Context.LOCATION_SERVICE);

locationListener=newMyLocationListener();

lm.requestLocationUpdates(
LocationManager.GPS_PROVIDER,
0,
0,
locationListener);

//...

privateclassMyLocationListenerimplementsLocationListener
{
@Override
publicvoidonLocationChanged(Locationloc){
if(loc!=null){
}
}

@Override
publicvoidonProviderDisabled(Stringprovider){
}

@Override
publicvoidonProviderEnabled(Stringprovider){
}

@Override
publicvoidonStatusChanged(Stringprovider,intstatus,
Bundleextras){
}
}

monitoring a
location

lm.addProximityAlert(37.422006,-122.084095,5,-1,pendIntent);

Developing Android Services

WhAt you Will leArn in thiS chApter

How to create a service that runs in the background➤➤

How to perform long-running tasks in a separate thread➤➤

How to perform repeated tasks in a service➤➤

How an activity and a service communicate➤➤

A service is an application in Android that runs in the background without needing to interact
with the user. For example, while using an application, you may want to play some background
music at the same time. In this case, the code that is playing the background music has no need
to interact with the user, and hence it can be run as a service. Services are also ideal for situa-
tions in which there is no need to present a UI to the user. A good example of this scenario is
an application that continually logs the geographical coordinates of the device. In this case, you
can write a service to do that in the background. In this chapter, you will learn how to create
your own services and use them to perform background tasks asynchronously.

creAting your oWn ServiceS

The best way to understand how a service works is by creating one. The following Try It Out
shows you the steps to create a simple service. Subsequent sections will add more functionality
to this service. For now, you will learn how to start and stop a service.

Creating a Simple Servicetry it out

codefi le Services.zip available for download at Wrox.com

1 . Using Eclipse, create a new Android project and name it as shown in Figure 10-1.

10
D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

332 ❘ chApter 10 develoPinG android ServiceS

Figure 10-1

 2 . Add a new class file to the project and name it MyService.java. Populate it with the following code:

packagenet.learn2develop.Services;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.widget.Toast;

public class MyService extends Service {

@Override
public IBinder onBind(Intent arg0) {
return null;
}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText(this, “Service Started”, Toast.LENGTH_LONG).show();
return START_STICKY;
}

@Override
public void onDestroy() {
super.onDestroy();

Creating Your Own Services ❘ 333

Toast.makeText(this, “Service Destroyed”, Toast.LENGTH_LONG).show();
}
}

 3 . In the AndroidManifest.xml file, add the following statement in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Services”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<service android:name=”.MyService” />
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
</manifest>

 4 . In the main.xml file, add the following statements in bold:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<Button android:id=”@+id/btnStartService”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Start Service” />
<Button android:id=”@+id/btnStopService”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Stop Service” />
</LinearLayout>

 5 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Services;

importandroid.app.Activity;
importandroid.os.Bundle;

import android.content.Intent;
import android.view.View;
import android.widget.Button;

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

334 ❘ chApter 10 develoPinG android ServiceS

publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
startService(new Intent(getBaseContext(), MyService.class));
}
});

Button btnStop = (Button) findViewById(R.id.btnStopService);
btnStop.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
stopService(new Intent(getBaseContext(), MyService.class));
}
});
}
}

 6 . Press F11 to debug the application on the Android Emulator.

 7 . Clicking the Start Service button will start the service (see Figure 10-2). To stop the service, click
the Stop Service button.

Figure 10-2

How It Works

This example demonstrated the simplest service that you can create. The service itself is not doing
anything useful, of course, but it serves to illustrate the creation process.

Creating Your Own Services ❘ 335

First, you defined a class that extends the Service base class. All services extend the Service class:

publicclassMyServiceextendsService{

}

Within the MyService class, you implemented three methods:

@Override
publicIBinderonBind(Intentarg0){...}

@Override
publicintonStartCommand(Intentintent,intflags,intstartId){...}

@Override
publicvoidonDestroy(){...}

The onBind() method enables you to bind an activity to a service. This in turn enables an activity
to directly access members and methods inside a service. For now, you simply return a null for this
method. Later in this chapter you will learn more about binding.

The onStartCommand() method is called when you start the service explicitly using the startService()
method (discussed shortly). This method signifies the start of the service, and you code it to do the
things you need to do for your service. In this method, you returned the constant START_STICKY so that
the service will continue to run until it is explicitly stopped.

The onDestroy() method is called when the service is stopped using the stopService() method. This is
where you clean up the resources used by your service.

All services that you have created must be declared in the AndroidManifest.xml file, like this:

<serviceandroid:name=”.MyService”/>

If you want your service to be available to other applications, you can always add an intent filter with
an action name, like this:

<serviceandroid:name=”.MyService”>
<intent-filter>
<action android:name=”net.learn2develop.MyService” />
</intent-filter>
</service>

To start a service, you use the startService() method, like this:

startService(newIntent(getBaseContext(),MyService.class));

If you are calling an external service, then the call to the startService() method will look like this:

startService(new Intent(“net.learn2develop.MyService”));

To stop a service, use the stopService() method, like this:

stopService(newIntent(getBaseContext(),MyService.class));

336 ❘ chApter 10 develoPinG android ServiceS

performing long-running tasks in a Service
Because the service you created in the previous section does not do anything useful, in this section
you will modify the service so that it perform a task. In the following Try It Out, you will simulate
the service of downloading a file from the Internet.

Making Your Service Usefultry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

packagenet.learn2develop.Services;

importandroid.app.Service;
importandroid.content.Intent;
importandroid.os.IBinder;
importandroid.widget.Toast;

import java.net.MalformedURLException;
import java.net.URL;

publicclassMyServiceextendsService{
@Override
publicIBinderonBind(Intentarg0){
returnnull;
}

@Override
publicintonStartCommand(Intentintent,intflags,intstartId){
//Wewantthisservicetocontinuerunninguntilitisexplicitly
//stopped,soreturnsticky.
Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();

try {
int result = DownloadFile(new URL(“http://www.amazon.com/somefile.pdf”));
Toast.makeText(getBaseContext(),
 “Downloaded “ + result + “ bytes”,
Toast.LENGTH_LONG).show();
} catch (MalformedURLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
returnSTART_STICKY;
}

@Override
publicvoidonDestroy(){
super.onDestroy();
Toast.makeText(this,“ServiceDestroyed”,Toast.LENGTH_LONG).show();
}

private int DownloadFile(URL url) {
try {
//---simulate taking some time to download a file---

http://www.amazon.com/somefile.pdf

Creating Your Own Services ❘ 337

Thread.sleep(5000);
} catch (InterruptedException e) {
 e.printStackTrace();
}
//---return an arbitrary number representing
// the size of the file downloaded---
return 100;
}
}

 2 . Press F11 to debug the application on the Android Emulator.

 3 . Click the Start Service button to start the service to download the file. Observe that the activity will
be frozen for a few seconds (see Figure 10-3) before the Toast class displays the “Downloaded 100
bytes” message.

Figure 10-3

How It Works

In this example, your service calls the DownloadFile() method to simulate downloading a file from a
given URL. This method returns the total number of bytes downloaded (which you have hardcoded as
100). To simulate the delays experienced by the service when downloading the file, you used the Thread
.Sleep() method to pause the service for five seconds (5,000 milliseconds).

As you start the service, note that the activity is suspended for about five seconds, which is the time taken
for the file to be downloaded from the Internet. During this time, the entire activity is not responsive,
proving a very important point: The service runs on the same thread as your activity. In this case, because
the service is suspended for five seconds, so is the activity.

338 ❘ chApter 10 develoPinG android ServiceS

Hence, for a long-running service, it is important that you put all long-running code into a separate
thread so that it does not tie up the application that calls it. The following Try It Out shows you how.

Performing Tasks in a Service Asynchronouslytry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MyService.java file:

packagenet.learn2develop.Services;

importandroid.app.Service;
importandroid.content.Intent;
importandroid.os.IBinder;
importandroid.util.Log;
importandroid.widget.Toast;

importjava.net.MalformedURLException;
importjava.net.URL;

import android.os.AsyncTask;

publicclassMyServiceextendsService{
@Override
publicIBinderonBind(Intentarg0){
returnnull;
}

@Override
publicintonStartCommand(Intentintent,intflags,intstartId){
//Wewantthisservicetocontinuerunninguntilitisexplicitly
//stopped,soreturnsticky.
Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();
try {
new DoBackgroundTask().execute(
new URL(“http://www.amazon.com/somefiles.pdf”),
new URL(“http://www.wrox.com/somefiles.pdf”),
new URL(“http://www.google.com/somefiles.pdf”),
new URL(“http://www.learn2develop.net/somefiles.pdf”));
} catch (MalformedURLException e) {
e.printStackTrace();
}
returnSTART_STICKY;
}

@Override
publicvoidonDestroy(){
super.onDestroy();
Toast.makeText(this,“ServiceDestroyed”,Toast.LENGTH_LONG).show();
}

privateintDownloadFile(URLurl){

Creating Your Own Services ❘ 339

try{
//---simulatetakingsometimetodownloadafile---
Thread.sleep(5000);
}catch(InterruptedExceptione){
e.printStackTrace();
}
//---returnanarbitrarynumberrepresenting
//thesizeofthefiledownloaded---
return100;
}

private class DoBackgroundTask extends AsyncTask<URL, Integer, Long> {
protected Long doInBackground(URL... urls) {
int count = urls.length;
long totalBytesDownloaded = 0;
for (int i = 0; i < count; i++) {
totalBytesDownloaded += DownloadFile(urls[i]);
//---calculate percentage downloaded and
// report its progress---
publishProgress((int) (((i+1) / (float) count) * 100));
}
return totalBytesDownloaded;
}

protected void onProgressUpdate(Integer... progress) {
Log.d(“Downloading files”,
String.valueOf(progress[0]) + “% downloaded”);
Toast.makeText(getBaseContext(),
String.valueOf(progress[0]) + “% downloaded”,
Toast.LENGTH_LONG).show();
}

protected void onPostExecute(Long result) {
Toast.makeText(getBaseContext(),
“Downloaded “ + result + “ bytes”,
Toast.LENGTH_LONG).show();
stopSelf();
}
}
}

 2 . Press F11 to debug the application on the Android Emulator.

 3 . Click the Start Service button. The Toast class will display a message indicating what percentage of the
download is completed (see Figure 10-4). You should see four of them: 25%, 50%, 75%, and 100%.

 4 . You will also observe the following output in the LogCat window:

01-1602:56:29.051:DEBUG/Downloadingfiles(8844):25%downloaded
01-1602:56:34.071:DEBUG/Downloadingfiles(8844):50%downloaded
01-1602:56:39.106:DEBUG/Downloadingfiles(8844):75%downloaded
01-1602:56:44.173:DEBUG/Downloadingfiles(8844):100%downloaded

340 ❘ chApter 10 develoPinG android ServiceS

Figure 10-4

How It Works

This example illustrates one way in which you can execute a task asynchronously within your service.
You do so by creating an inner class that extends the AsyncTask class. The AsyncTask class enables you
to perform background execution without needing to manually handle threads and handlers.

The DoBackgroundTask class extends the AsyncTask class by specifying three generic types:

privateclassDoBackgroundTaskextendsAsyncTask<URL,Integer,Long>{

In this case, the three types specified are URL, Integer and Long. These three types specify the data type
used by the following three methods that you implement in an AsyncTask class:

doInBackground()➤➤ — This method takes an array of the first generic type specified earlier. In this
case, the type is URL. This method is executed in the background thread and is where you put your
long-running code. To report the progress of your task, you call the publishProgress() method,
which invokes the next method, onProgressUpdate(), which you implement in an AsyncTask class.
The return type of this method takes the third generic type specified earlier, which is Long in this case.

onProgressUpdate()➤➤ — This method is invoked in the UI thread and is called when you call the
publishProgress() method. It takes an array of the second generic type specified earlier. In this
case, the type is Integer. Use this method to report the progress of the background task to the user.

onPostExecute()➤➤ — This method is invoked in the UI thread and is called when the doInBackground()
method has finished execution. This method takes an argument of the third generic type specified earlier,
which in this case is a Long.

Creating Your Own Services ❘ 341

To download multiple files in the background, you created an instance of the DoBackgroundTask class
and then called its execute() method by passing in an array of URLs:

try{
newDoBackgroundTask().execute(
newURL(“http://www.amazon.com/somefiles.pdf”),
newURL(“http://www.wrox.com/somefiles.pdf”),
newURL(“http://www.google.com/somefiles.pdf”),
newURL(“http://www.learn2develop.net/somefiles.pdf”));
}catch(MalformedURLExceptione){
//TODOAuto-generatedcatchblock
e.printStackTrace();
}

The preceding causes the service to download the files in the background, and reports the progress as
a percentage of files downloaded. More important, the activity remains responsive while the files are
downloaded in the background, on a separate thread.

Note that when the background thread has finished execution, you need to manually call the stopSelf()
method to stop the service:

protectedvoidonPostExecute(Longresult){
Toast.makeText(getBaseContext(),
“Downloaded“+result+“bytes”,
Toast.LENGTH_LONG).show();
stopSelf();
}

The stopSelf() method is the equivalent of calling the stopService() method to stop the service.

performing repeated tasks in a Service
Besides performing long-running tasks in a service, you might also perform some repeated tasks
in a service. For example, you may write an alarm clock service that runs persistently in the back-
ground. In this case, your service may need to periodically execute some code to check whether a
prescheduled time has been reached so that an alarm can be sounded. To execute a block of code to
be executed at a regular time interval, you can use the Timer class within your service. The following
Try It Out shows you how.

Running Repeated Tasks Using the Timer Classtry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MyService.java file:

packagenet.learn2develop.Services;

importandroid.app.Service;
importandroid.content.Intent;
importandroid.os.AsyncTask;
importandroid.os.IBinder;
importandroid.util.Log;

342 ❘ chApter 10 develoPinG android ServiceS

importandroid.widget.Toast;
importjava.net.URL;

import java.util.Timer;
import java.util.TimerTask;

publicclassMyServiceextendsService{
int counter = 0;
static final int UPDATE_INTERVAL = 1000;
private Timer timer = new Timer();

@Override
publicIBinderonBind(Intentarg0){
returnnull;
}

@Override
publicintonStartCommand(Intentintent,intflags,intstartId){
//Wewantthisservicetocontinuerunninguntilitisexplicitly
//stopped,soreturnsticky.
Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();
doSomethingRepeatedly();
returnSTART_STICKY;
}

private void doSomethingRepeatedly() {
timer.scheduleAtFixedRate(new TimerTask() {
public void run() {
Log.d(“MyService”, String.valueOf(++counter));
}
}, 0, UPDATE_INTERVAL);
}

@Override
publicvoidonDestroy(){
super.onDestroy();
if (timer != null){
timer.cancel();
}
Toast.makeText(this,“ServiceDestroyed”,Toast.LENGTH_LONG).show();
}
}

 2 . Press F11 to debug the application on the Android Emulator.

 3 . Click the Start Service button.

 4 . Observe the output displayed in the LogCat window:

01-1615:12:04.364:DEBUG/MyService(495):1
01-1615:12:05.384:DEBUG/MyService(495):2
01-1615:12:06.386:DEBUG/MyService(495):3
01-1615:12:07.389:DEBUG/MyService(495):4
01-1615:12:08.364:DEBUG/MyService(495):5
01-1615:12:09.427:DEBUG/MyService(495):6
01-1615:12:10.374:DEBUG/MyService(495):7

Creating Your Own Services ❘ 343

How It Works

In this example, you created a Timer object and called its scheduleAtFixedRate() method inside the
doSomethingRepeatedly() method that you have defined:

privatevoiddoSomethingRepeatedly(){
timer.scheduleAtFixedRate(newTimerTask(){
publicvoidrun(){
Log.d(“MyService”,String.valueOf(++counter));
}
},0,UPDATE_INTERVAL);
}

You passed an instance of the TimerTask class to the scheduleAtFixedRate() method so that
you can execute the block of code within the run() method repeatedly. The second parameter to the
scheduleAtFixedRate() method specifies the amount of time, in milliseconds, before first execution.
The third parameter specifies the amount of time, in milliseconds, between subsequent executions.

In the preceding example, you essentially print out the value of the counter every one second (1,000
milliseconds). The service repeatedly prints the value of counter until the service is terminated:

@Override
publicvoidonDestroy(){
super.onDestroy();
if(timer!=null){
timer.cancel();
}
Toast.makeText(this,“ServiceDestroyed”,Toast.LENGTH_LONG).show();
}

For the scheduleAtFixedRate() method, your code is executed at fixed time intervals, regardless of
how long each task takes. For example, if the code within your run() method takes two seconds to
complete, then your second task will start immediately after the first task has ended. Similarly, if your
delay is set to three seconds and the task takes two seconds to complete, then the second task will wait
for one second before starting.

executing Asynchronous tasks on
Separate threads using intentService

Earlier in this chapter, you saw how to start a service using the startService() method and stop a
service using the stopService() method. You have also seen how you should execute long-running
task on a separate thread — not the same thread as the calling activities. It is important to note that
once your service has finished executing a task, it should be stopped as soon as possible so that it does
not unnecessarily hold up valuable resources. That’s why you use the stopSelf() method to stop the
service when a task has been completed. Unfortunately, a lot of developers often forgot to terminate
the service when it is done performing its task. To easily create a service that runs a task asynchro-
nously and terminates itself when it is done, you can use the IntentService class.

344 ❘ chApter 10 develoPinG android ServiceS

The IntentService class is a base class for Service that handles asynchronous requests on demand.
It is started just like a normal service and it executes its task within a worker thread and terminates
itself when the task is completed.

The following Try It Out demonstrates how to use the IntentService class.

Using the intentService Class to Auto-Stop a Servicetry it out

 1 . Using the same project created in the previous section, add a new class file named
MyIntentService.java.

 2 . Populate the MyIntentService.java file as follows:

packagenet.learn2develop.Services;

import java.net.MalformedURLException;
import java.net.URL;

import android.app.IntentService;
import android.content.Intent;
import android.util.Log;

public class MyIntentService extends IntentService {

public MyIntentService() {
super(“MyIntentServiceName”);
}

@Override
protected void onHandleIntent(Intent intent) {
try {
int result =
DownloadFile(new URL(“http://www.amazon.com/somefile.pdf”));
Log.d(“IntentService”, “Downloaded “ + result + “ bytes”);
} catch (MalformedURLException e) {
e.printStackTrace();
}
}

private int DownloadFile(URL url) {
try {
//---simulate taking some time to download a file---
Thread.sleep(5000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return 100;
}
}

 3 . Add the following statement in bold to the AndroidManifest.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.Services”
android:versionCode=”1”

http://schemas.android.com/apk/res/android

Creating Your Own Services ❘ 345

android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
<serviceandroid:name=”.MyService”/>
<service android:name=”.MyIntentService” />
</application>
<uses-sdkandroid:minSdkVersion=”9”/>
<uses-permissionandroid:name=”android.permission.INTERNET”></uses-permission>
</manifest>

 4 . Add the following statement in bold to the MainActivity.java file:

publicclassMainActivityextendsActivity{
/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ButtonbtnStart=(Button)findViewById(R.id.btnStartService);
btnStart.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
//startService(new Intent(getBaseContext(), MyService.class));
startService(new Intent(getBaseContext(), MyIntentService.class));
}
});

ButtonbtnStop=(Button)findViewById(R.id.btnStopService);
btnStop.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
stopService(newIntent(getBaseContext(),MyService.class));
}
});
}
}

 5 . Press F11 to debug the application on the Android Emulator.

 6 . Click the Start Service button. After about five seconds, you should observe the following statement
in the LogCat window:

01-1703:05:21.244:DEBUG/IntentService(692):Downloaded100bytes

How It Works

First, you defined the MyIntentService class, which extends the IntentService class instead of the
Service class:

publicclassMyIntentServiceextendsIntentService{
...
}

346 ❘ chApter 10 develoPinG android ServiceS

You needed to implement a constructor for the class and call its superclass with the name of the intent
service (setting it with a string):

publicMyIntentService(){
super(“MyIntentServiceName”);
}

You then implemented the onHandleIntent() method, which is executed on a worker thread:

@Override
protected void onHandleIntent(Intent intent) {
try {
int result =
DownloadFile(new URL(“http://www.amazon.com/somefile.pdf”));
Log.d(“IntentService”, “Downloaded “ + result + “ bytes”);
} catch (MalformedURLException e) {
e.printStackTrace();
}
}

The onHandleIntent() method is where you place the code that needs to be executed on a separate
thread, such as downloading a file from a server. When the code has finished executing, the thread is
terminated and the service is stopped automatically.

communicAting BetWeen A Service And An Activity

Often a service simply executes in its own thread, independently of the activity that calls it. This doesn’t
pose any problem if you simply want the service to perform some tasks periodically and the activity does
not need to be notified of the status of the service. For example, you may have a service that periodically
logs the geographical location of the device to a database. In this case, there is no need for your service to
interact with any activities, because its main purpose is to save the coordinates into a database. However,
suppose you want to monitor for a particular location. When the service logs an address that is near the
location you are monitoring, it might need to communicate that information to the activity. In this case,
you would need to devise a way for the service to interact with the activity.

The following Try It Out demonstrates how a service can communicate with an activity using a
BroadcastReceiver.

invoking an Activity from a Servicetry it out

 1 . Using the same project created in the previous section, add the following statements in bold to the
MyIntentService.java file:

packagenet.learn2develop.Services;

importjava.net.MalformedURLException;
importjava.net.URL;

Communicating between a Service and an Activity ❘ 347

importandroid.app.IntentService;
importandroid.content.Intent;
importandroid.util.Log;

publicclassMyIntentServiceextendsIntentService{
publicMyIntentService(){
super(“MyIntentServiceName”);
}

@Override
protectedvoidonHandleIntent(Intentintent){
try{
intresult=
DownloadFile(newURL(“http://www.amazon.com/somefile.pdf”));
Log.d(“IntentService”,“Downloaded“+result+“bytes”);

//---send a broadcast to inform the activity
// that the file has been downloaded---
Intent broadcastIntent = new Intent();
broadcastIntent.setAction(“FILE_DOWNLOADED_ACTION”);
getBaseContext().sendBroadcast(broadcastIntent);
}catch(MalformedURLExceptione){
e.printStackTrace();
}
}

privateintDownloadFile(URLurl){
try{
//---simulatetakingsometimetodownloadafile---
Thread.sleep(5000);
}catch(InterruptedExceptione){
e.printStackTrace();
}
return100;
}
}

 2 . Add the following statements in bold to the MainActivity.java file:

packagenet.learn2develop.Services;

importandroid.app.Activity;
importandroid.content.BroadcastReceiver;
importandroid.content.Context;
importandroid.content.Intent;
importandroid.os.Bundle;
importandroid.view.View;
importandroid.widget.Button;
importandroid.widget.Toast;

import android.content.IntentFilter;

publicclassMainActivityextendsActivity{

348 ❘ chApter 10 develoPinG android ServiceS

IntentFilter intentFilter;

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---intent to filter for file downloaded intent---
intentFilter = new IntentFilter();
intentFilter.addAction(“FILE_DOWNLOADED_ACTION”);

//---register the receiver---
registerReceiver(intentReceiver, intentFilter);

ButtonbtnStart=(Button)findViewById(R.id.btnStartService);
btnStart.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
//startService(newIntent(getBaseContext(),MyService.class));
startService(newIntent(getBaseContext(),MyIntentService.class));
}
});

ButtonbtnStop=(Button)findViewById(R.id.btnStopService);
btnStop.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
stopService(newIntent(getBaseContext(),MyService.class));
}
});
}

private BroadcastReceiver intentReceiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
Toast.makeText(getBaseContext(), “File downloaded!”,
Toast.LENGTH_LONG).show();
}
};
}

 3 . Press F11 to debug the application on the Android Emulator.

 4 . Click the Start Service button. After about five seconds, the Toast class will display a message
indicating that the file has been downloaded (see Figure 10-5).

How It Works

To notify an activity when a service has finished its execution, you broadcast an intent using the
sendBroadcast() method:

@Override
protectedvoidonHandleIntent(Intentintent){
try{
intresult=
DownloadFile(newURL(“http://www.amazon.com/somefile.pdf”));

Communicating between a Service and an Activity ❘ 349

Log.d(“IntentService”,“Downloaded“+result+“bytes”);

//---send a broadcast to inform the activity
// that the file has been downloaded---
Intent broadcastIntent = new Intent();
broadcastIntent.setAction(“FILE_DOWNLOADED_ACTION”);
getBaseContext().sendBroadcast(broadcastIntent);
}catch(MalformedURLExceptione){
e.printStackTrace();
}
}

The action of this intent that you are broadcasting is set to “FILE_DOWNLOADED_ACTION”, which means
any activity that is listening for this intent will be invoked. Hence, in your MainActivity.java file, you
listen for this intent using the registerReceiver() method from the IntentFilter class:

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

//---intent to filter for file downloaded intent---
intentFilter = new IntentFilter();
intentFilter.addAction(“FILE_DOWNLOADED_ACTION”);
//---register the receiver---
registerReceiver(intentReceiver, intentFilter);
...
...
}

Figure 10-5

350 ❘ chApter 10 develoPinG android ServiceS

When the intent is received, it invokes an instance of the BroadcastReceiver class that you have defi ned:

privateBroadcastReceiverintentReceiver=newBroadcastReceiver(){
@Override
publicvoidonReceive(Contextcontext,Intentintent){
Toast.makeText(getBaseContext(),“Filedownloaded!”,
Toast.LENGTH_LONG).show();
}
};
}

NOTE Chapter 8 discusses the BroadcastReceiver class in more detail.

In this case, you displayed the message “File downloaded!” Of course, if you need to pass some data
from the service to the activity, you can make use of the Intent object. The next section discusses this.

Binding ActivitieS to ServiceS

So far, you have seen how services are created and how they are called and terminated when they
are done with their task. All the services that you have seen are simple — either they start with a
counter and increment at regular intervals, or they download a fi xed set of fi les from the Internet.
However, real-world services are usually much more sophisticated, requiring the passing of data
so that they can do the job correctly for you.

Using the service demonstrated earlier that downloads a set of fi les, suppose you now want to let the
calling activity determine what fi les to download, instead of hardcoding them in the service. Here is
what you need to do.

First, in the calling activity, you create an Intent object, specifying the service name:

ButtonbtnStart=(Button)findViewById(R.id.btnStartService);
btnStart.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
Intent intent = new Intent(getBaseContext(), MyService.class);
}
});

You then create an array of URL objects and assign it to the Intent object through its putExtra()
method. Finally, you start the service using the Intent object:

ButtonbtnStart=(Button)findViewById(R.id.btnStartService);
btnStart.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
Intentintent=newIntent(getBaseContext(),MyService.class);
try {
URL[] urls = new URL[] {

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Binding Activities to Services ❘ 351

new URL(“http://www.amazon.com/somefiles.pdf”),
new URL(“http://www.wrox.com/somefiles.pdf”),
new URL(“http://www.google.com/somefiles.pdf”),
new URL(“http://www.learn2develop.net/somefiles.pdf”)};
intent.putExtra(“URLs”, urls);
} catch (MalformedURLException e) {
e.printStackTrace();
}
startService(intent);
}
});

Note that the URL array is assigned to the Intent object as an Object array.

On the service’s end, you need to extract the data passed in through the Intent object in the
onStartCommand() method:

@Override
publicintonStartCommand(Intentintent,intflags,intstartId){
//Wewantthisservicetocontinuerunninguntilitisexplicitly
//stopped,soreturnsticky.
Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();

Object[] objUrls = (Object[]) intent.getExtras().get(“URLs”);
URL[] urls = new URL[objUrls.length];
for (int i=0; i<objUrls.length-1; i++) {
urls[i] = (URL) objUrls[i];
}
new DoBackgroundTask().execute(urls);
returnSTART_STICKY;
}

The preceding first extracts the data using the getExtras() method to return a Bundle object. It
then uses the get() method to extract out the URL array as an Object array. Because in Java you can-
not directly cast an array from one type to another, you have to create a loop and cast each member
of the array individually. Finally, you execute the background task by passing the URL array into
the execute() method.

This is one way in which your activity can pass values to the service. As you can see, if you have
relatively complex data to pass to the service, you have to do some additional work to ensure that
the data is passed correctly. A better way to pass data is to bind the activity directly to the service so
that the activity can call any public members and methods on the service directly. The following Try
It Out shows you how to bind an activity to a service.

Accessing Members of a Property Directly through Bindingtry it out

 1 . Using the same project created earlier, add the following statements in bold to the MyService.java file:

packagenet.learn2develop.Services;

importjava.net.URL;
importjava.util.Timer;

352 ❘ chApter 10 develoPinG android ServiceS

importjava.util.TimerTask;

importandroid.app.Service;
importandroid.content.Intent;
importandroid.os.AsyncTask;
importandroid.util.Log;
importandroid.widget.Toast;
importandroid.os.IBinder;

import android.os.Binder;

publicclassMyServiceextendsService{
intcounter=0;
URL[] urls;

staticfinalintUPDATE_INTERVAL=1000;
privateTimertimer=newTimer();

private final IBinder binder = new MyBinder();

public class MyBinder extends Binder {
MyService getService() {
return MyService.this;
}
}

@Override
publicIBinderonBind(Intentarg0){
//return null;
return binder;
}

@Override
publicintonStartCommand(Intentintent,intflags,intstartId){
//Wewantthisservicetocontinuerunninguntilitisexplicitly
//stopped,soreturnsticky.
Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();
new DoBackgroundTask().execute(urls);
returnSTART_STICKY;
}

@Override
publicvoidonDestroy(){
...
}

privateintDownloadFile(URLurl){
...
}

privateclassDoBackgroundTaskextendsAsyncTask<URL,Integer,Long>{
...
}
}

Binding Activities to Services ❘ 353

 2 . In the MainActivity.java file, add the following statements in bold:

packagenet.learn2develop.Services;

importjava.net.MalformedURLException;
importjava.net.URL;

importandroid.app.Activity;
importandroid.content.BroadcastReceiver;
importandroid.content.ComponentName;
importandroid.content.Context;
importandroid.content.Intent;
importandroid.content.IntentFilter;
importandroid.os.Bundle;
importandroid.view.View;
importandroid.widget.Button;
importandroid.widget.Toast;

import android.os.IBinder;
import android.content.ServiceConnection;

publicclassMainActivityextendsActivity{
IntentFilterintentFilter;

private MyService serviceBinder;
Intent i;

private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
//---called when the connection is made---
serviceBinder = ((MyService.MyBinder)service).getService();
try {
URL[] urls = new URL[] {
new URL(“http://www.amazon.com/somefiles.pdf”),
new URL(“http://www.wrox.com/somefiles.pdf”),
new URL(“http://www.google.com/somefiles.pdf”),
new URL(“http://www.learn2develop.net/somefiles.pdf”)};
//---assign the URLs to the service through the serviceBinder object---
serviceBinder.urls = urls;
} catch (MalformedURLException e) {
e.printStackTrace();
}
startService(i);
}
public void onServiceDisconnected(ComponentName className) {
//---called when the service disconnects---
serviceBinder = null;
}
};

/**Calledwhentheactivityisfirstcreated.*/
@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

354 ❘ chApter 10 develoPinG android ServiceS

setContentView(R.layout.main);

//---intenttofilterforfiledownloadedintent---
intentFilter=newIntentFilter();
intentFilter.addAction(“FILE_DOWNLOADED_ACTION”);

//---registerthereceiver---
registerReceiver(intentReceiver,intentFilter);

ButtonbtnStart=(Button)findViewById(R.id.btnStartService);
btnStart.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
i = new Intent(MainActivity.this, MyService.class);
bindService(i, connection, Context.BIND_AUTO_CREATE);
}
});

ButtonbtnStop=(Button)findViewById(R.id.btnStopService);
btnStop.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
stopService(newIntent(getBaseContext(),MyService.class));
}
});
}

privateBroadcastReceiverintentReceiver=newBroadcastReceiver(){
...
};
}

 3 . Press F11 to debug the application. Clicking the Start Service button will start the service as normal.

How It Works

To bind activities to a service, you must first declare an inner class in your service that extends the
Binder class:

publicclassMyBinderextendsBinder{
MyServicegetService(){
returnMyService.this;
}
}

Within this class you implemented the getService() method, which returns an instance of the service.

You then created an instance of the MyBinder class:

privatefinalIBinderbinder=newMyBinder();

You also modified the onBind() method to return the MyBinder instance:

@Override
publicIBinderonBind(Intentarg0){
//returnnull;
returnbinder;
}

Binding Activities to Services ❘ 355

In the onStartCommand() method, you then call the execute() method using the urls array, which you
declared as a public member in your service:

publicclassMyServiceextendsService{
intcounter=0;
URL[] urls;
...
...
...
@Override
publicintonStartCommand(Intentintent,intflags,intstartId){
//Wewantthisservicetocontinuerunninguntilitisexplicitly
//stopped,soreturnsticky.
Toast.makeText(this,“ServiceStarted”,Toast.LENGTH_LONG).show();
new DoBackgroundTask().execute(urls);
returnSTART_STICKY;
}

This URL array can be set directly from your activity, which you did next.

In the MainActivity.java file, you first declared an instance of your service and an Intent object:

private MyService serviceBinder;
Intent i;

The serviceBinder object will be used as a reference to the service, which you accessed directly.

You then created an instance of the ServiceConnection class so that you could monitor the state of the
service:

private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
//---called when the connection is made---
serviceBinder = ((MyService.MyBinder)service).getService();
try {
URL[] urls = new URL[] {
new URL(“http://www.amazon.com/somefiles.pdf”),
new URL(“http://www.wrox.com/somefiles.pdf”),
new URL(“http://www.google.com/somefiles.pdf”),
new URL(“http://www.learn2develop.net/somefiles.pdf”)};
//---assign the URLs to the service through the serviceBinder object---
serviceBinder.urls = urls;
} catch (MalformedURLException e) {
e.printStackTrace();
}
startService(i);
}
public void onServiceDisconnected(ComponentName className) {
//---called when the service disconnects---
serviceBinder = null;
}
};

356 ❘ chApter 10 develoPinG android ServiceS

You need to implement two methods: onServiceConnected() and onServiceDisconnected().
The onServiceConnected() method is called when the activity is connected to the service; the
onServiceDisconnected()method is called when the service is disconnected from the activity.

In the onServiceConnected() method, when the activity is connected to the service, you obtained an
instance of the service by using the getService() method of the service argument and then assigning
it to the serviceBinder object. The serviceBinder object is a reference to the service, and all the mem-
bers and methods in the service can be accessed through this object. Here, you created an URL array
and then directly assigned it to the public member in the service:

URL[]urls=newURL[]{
newURL(“http://www.amazon.com/somefiles.pdf”),
newURL(“http://www.wrox.com/somefiles.pdf”),
newURL(“http://www.google.com/somefiles.pdf”),
newURL(“http://www.learn2develop.net/somefiles.pdf”)};

//---assigntheURLstotheservicethroughtheserviceBinderobject---
serviceBinder.urls=urls;

You then started the service using an Intent object:

startService(i);

Before you can start the service, you have to bind the activity to the service. This you did in the
onClick() method of the Start Service button:

ButtonbtnStart=(Button)findViewById(R.id.btnStartService);
btnStart.setOnClickListener(newView.OnClickListener(){
publicvoidonClick(Viewv){
i = new Intent(MainActivity.this, MyService.class);
bindService(i, connection, Context.BIND_AUTO_CREATE);
}
});

The bindService() method enables your activity to be connected to the service. It takes three arguments:
an Intent object, a ServiceConnection object, and a flag to indicate how the service should be bound.

SummAry

In this chapter, you learned how to create a service in your Android project to execute long-running
tasks. You have seen the many approaches you can use to ensure that the background task is exe-
cuted in an asynchronous fashion, without tying up the main calling activity. You have also learned
how an activity can pass data into a service, and how you can alternatively bind to an activity so
that it can access a service more directly.

Summary ❘ 357

exerciSeS

 1 . Why is it important to put long-running code in a service on a separate thread?

 2 . What is the use of the IntentService class?

 3 . Name the three methods you need to implement in an AsyncTask class .

 4 . How can a service notify an activity of an event happening?

Answers to Exercises can be found in Appendix C.

358 ❘ chApter 10 develoPinG android ServiceS

WhAt you leArned in thiS chApter ⊲

topic key conceptS

creating a service Create a class and extend the Service class .

implementing the methods
in a service

Implement the following methods: onBind(), onStartCommand(),

and onDestroy().

Starting a service Use the startService() method .

Stopping a service Use the stopService() method .

performing long-running
tasks

Use the AsyncTask class and implement three methods:

doInBackground(), onProgressUpdate(), and onPostExecute() .

performing repeated tasks Use the Timer class and call its scheduleAtFixedRate() method .

executing tasks on a separate
thread and auto-stopping a
service

Use the IntentService class .

communicating between an
activity and a service

Use the Intent object to pass data into the service . For a service,

broadcast an Intent to notify an activity .

Binding an activity to a
service

Use the Binder class in your service and implement the

ServiceConnection class in your calling activity .

Publishing Android Applications

WhAt you Will leArn in thiS chApter

How to prepare your application for deployment➤➤

How to export your application as an APK fi le and sign it with a new ➤➤

certifi cate

How to distribute your Android application➤➤

How to publish your application on the Android Market➤➤

So far you have seen quite a lot of interesting things you can do with Android. However, in
order to get your application running on users’ devices, you need a way to deploy it and dis-
tribute it. In this chapter, you will learn how to prepare your Android applications for deploy-
ment and get them onto your customer’s devices. In addition, you will learn how to publish
your applications on the Android Market, where you can sell them and make some money!

prepAring For puBliShing

Google has made it relatively easy to publish your Android application so that it can be quickly
distributed to end users. The steps to publishing your Android application generally involve the
following:

 1 . Export your application as an APK (Android Package) fi le.

 2 . Generate your own self-signed certifi cate and digitally sign your application with it.

 3 . Deploy the signed application.

 4 . Use the Android Market for hosting and selling your application.

11

360 ❘ chApter 11 PUBliShinG android aPPlicationS

In the following sections, you will learn how to prepare your application for signing, and then learn
about the various ways to deploy your applications.

This chapter uses the LBS project created in Chapter 9 to demonstrate how to deploy an Android
application.

versioning
Beginning with version 1.0 of the Android SDK, the AndroidManifest.xml file of every Android
application includes the android:versionCode and android:versionName attributes:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”@string/app_name”>
<uses-libraryandroid:name=”com.google.android.maps”/>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”7”/>
<uses-permissionandroid:name=”android.permission.INTERNET”/>
<uses-permissionandroid:name=”android.permission.ACCESS_FINE_LOCATION”/>
<uses-permissionandroid:name=”android.permission.ACCESS_COARSE_LOCATION”/>
</manifest>

The android:versionCode attribute represents the version number of your application. For every revi-
sion you make to the application, you should increment this value by 1 so that you can programmatically
differentiate the newest version from the previous one. This value is never used by the Android system,
but is useful for developers as a means to obtain the version number of an application. However, the
android:versionCode attribute is used by Android Market to determine if there is a newer version of
your application available.

You can programmatically retrieve the value of the android:versionCode attribute by using the
getPackageInfo() method from the PackageManager class, like this:

PackageManagerpm=getPackageManager();
try{
//---getthepackageinfo---
PackageInfopi=
pm.getPackageInfo(“net.learn2develop.LBS”,0);
//---displaytheversioncode---
Toast.makeText(getBaseContext(),
“VersionCode:“+Integer.toString(pi.versionCode),
Toast.LENGTH_SHORT).show();

http://schemas.android.com/apk/res/android

Preparing for Publishing ❘ 361

}catch(NameNotFoundExceptione){
//TODOAuto-generatedcatchblock
e.printStackTrace();
}

The android:versionName attribute contains versioning information that is visible to the users. It
should contain values in the format: <major>.<minor>.<point>. If your application undergoes a
major upgrade, you should increase the <major> by 1. For small incremental updates, you can either
increase the <minor> or <point> by 1. For example, a new application may have a version name of
“1.0.0”. For a small incremental update, you might change to “1.1.0” or “1.0.1”. For the next major
update, you might change it “2.0.0”.

If you are planning to publish your application on the Android Market (www.android.com/market/),
the AndroidManifest.xml file must have the following attributes:

android:versionCode➤➤ (within the <manifest> element)

android:versionName➤➤ (within the <manifest> element)

android:icon➤➤ (within the <application> element)

android:label➤➤ (within the <application> element)

The android:label attribute specifies the name of your application. This name will be displayed
in the Settings ➪ Applications ➪ Manage Applications section of your Android device. For the LBS
project, we’ll give the application the name “Where Am I”:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”
package=”net.learn2develop.LBS”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”Where Am I”>
<uses-libraryandroid:name=”com.google.android.maps”/>
<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdkandroid:minSdkVersion=”7”/>
<uses-permissionandroid:name=”android.permission.INTERNET”/>
<uses-permissionandroid:name=”android.permission.ACCESS_FINE_LOCATION”/>
<uses-permissionandroid:name=”android.permission.ACCESS_COARSE_LOCATION”/>
</manifest>

In addition, if your application needs a minimum version of the SDK, you can specify it in the
AndroidManifest.xml file using the <uses-sdk> element:

<?xmlversion=”1.0”encoding=”utf-8”?>
<manifestxmlns:android=”http://schemas.android.com/apk/res/android”

http://www.android.com/market/
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

362 ❘ chApter 11 PUBliShinG android aPPlicationS

package=”net.learn2develop.LBS”
android:versionCode=”1”
android:versionName=”1.0”>
<applicationandroid:icon=”@drawable/icon”android:label=”WhereAmI”>
<uses-libraryandroid:name=”com.google.android.maps”/>

<activityandroid:name=”.MainActivity”
android:label=”@string/app_name”>
<intent-filter>
<actionandroid:name=”android.intent.action.MAIN”/>
<categoryandroid:name=”android.intent.category.LAUNCHER”/>
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion=”7” />
<uses-permissionandroid:name=”android.permission.INTERNET”/>
<uses-permissionandroid:name=”android.permission.ACCESS_FINE_LOCATION”/>
<uses-permissionandroid:name=”android.permission.ACCESS_COARSE_LOCATION”/>
</manifest>

In the preceding example, the application requires a minimum of SDK version 7, which is Android 2.1.
In general, it is always good to set this version number to the lowest one that your application can sup-
port. This ensures that a wider range of users will be able to run your application. Although the latest
version of Android at the time of writing is 2.3, a lot of devices are still running Android 2.1 and 2.2.

digitally Signing your Android Applications
All Android applications must be digitally signed before they are allowed to be deployed onto a device
(or emulator). Unlike some mobile platforms, you need not purchase digital certificates from a certifi-
cate authority (CA) to sign your applications. Instead, you can generate your own self-signed certificate
and use it to sign your Android applications.

When you use Eclipse to develop your Android application and then press F11 to deploy it to an emu-
lator, Eclipse automatically signs it for you. You can verify this by going to Windows ➪ Preferences
in Eclipse, expanding the Android item, and selecting Build (see Figure 11-1). Eclipse uses a default
debug keystore (appropriately named “debug.keystore”) to sign your application. A keystore is com-
monly known as a digital certificate.

If you are publishing an Android application, you must sign it with your own certificate. Applications
signed with the debug certificate cannot be published. While you can manually generate your own
certificates using the keytool.exe utility provided by the Java SDK, Eclipse has made it easy for you
by including a wizard that walks you through the steps to generate a certificate. It will also sign your
application with the generated certificate (which you can also sign manually using the jarsigner.exe
tool from the Java SDK).

The following Try It Out demonstrates how to use Eclipse to export an Android application and
sign it with a newly generated certificate.

Preparing for Publishing ❘ 363

Figure 11-1

 exporting and Signing an Android Applicationtry it out

 1 . Using Eclipse, open the LBS projected created in Chapter 9.

 2 . Select the LBS project in Eclipse and then select File ➪ Export….

 3 . In the Export dialog, expand the Android item and select Export Android Application (see Figure 11-2).
Click Next.

Figure 11-2

364 ❘ chApter 11 PUBliShinG android aPPlicationS

 4 . The LBS project should now be displayed (see Figure 11-3). Click Next.

 5 . Select the “Create new keystore” option to create a new certificate (keystore) for signing your appli-
cation (see Figure 11-4). Enter a path to save your new keystore and then enter a password to pro-
tect the keystore. For this example, type in “password” as the password. Click Next.

 6 . Provide an alias for the private key (name it DistributionKeyStoreAlias; see Figure 11-5) and enter a
password to protect the private key. For this example, enter “password” as the password. You also
need to enter a validity period for the key. According to Google, your application must be signed
with a cryptographic private key whose validity period ends after 22 October 2033. Hence, enter a
number that is greater than 2033 minus the current year. Click Next.

 7 . Enter a path to store the destination APK file (see Figure 11-6). Click Finish. The APK file will now
be generated.

 8 . Recall from Chapter 9 that the LBS application requires the use of the Google Maps API key, which
you applied by using your debug.keystore’s MD5 fingerprint. This means that the Google Maps
API key is essentially tied to the debug.keystore used to sign your application. Because you are now
generating your new keystore to sign your application for deployment, you need to apply for the
Google Maps API key again, using the new keystore’s MD5 fingerprint. To do so, go to the com-
mand prompt and enter the following command (the location of your keytool.exe utility might
differ slightly and you would need to replace the path of the keystore with the path you selected
earlier in step 5; see also Figure 11-7):

C:\ProgramFiles\Java\jre6\bin>keytool.exe-list-aliasDistributionKeyStoreAlias
-keystore“C:\Users\Wei-MengLee\Desktop\DistributionKeyStore”-storepasspassword
-keypasspassword

Figure 11-3 Figure 11-4

Preparing for Publishing ❘ 365

 9 . Using the MD5 fingerprint obtained from the previous step, go to http://code.google.com/
android/add-ons/google-apis/maps-api-signup.htmland sign up for a new Maps API key.

 10 . Enter the new Maps API key in the main.xml file:

<?xmlversion=”1.0”encoding=”utf-8”?>
<LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<com.google.android.maps.MapView
android:id=”@+id/mapView”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:enabled=”true”
android:clickable=”true”
android:apiKey=”<Your Key Here>”/>
</LinearLayout>

Figure 11-7

 11 . With the new Maps API key entered in the main.xml file, you now need to export the application
once more and re-sign it. Repeat steps 2 through 4. When you are asked to select a keystore,

Figure 11-5 Figure 11-6

http://code.google.com/android/add-ons/google-apis/maps-api-signup.html
http://schemas.android.com/apk/res/android
http://code.google.com/android/add-ons/google-apis/maps-api-signup.html

366 ❘ chApter 11 PUBliShinG android aPPlicationS

select the “Use existing keystore” option (see
Figure 11-8) and enter the password you used
earlier to protect your keystore (in this case,
“password”). Click Next.

 12 . Select the “Use existing key” option (see
Figure 11-9) and enter the password you
set earlier to secure the private key (enter
“password”). Click Next.

 13 . Click Finish (see Figure 11-10) to generate
the APK file again.

That’s it! The APK is now generated and it con-
tains the new Map API key that is tied to the new
keystore.

How It Works

Eclipse provides the Export Android Application
option, which helps you to both export your
Android application as an APK file and generate a
new keystore to sign the APK file. For applications
that use the Maps API key, note that the Maps API
key must be associated with the new keystore that
you use to sign your APK file.

Figure 11-8

Figure 11-9 Figure 11-10

Deploying APK Files ❘ 367

deploying Apk FileS

Once you have signed your APK fi les, you need a way to get them onto your users’ devices. The fol-
lowing sections describe the various ways to deploy your APK fi les. Three methods are covered:

Deploying manually using the ➤➤ adb.exe tool

Hosting the application on a web server➤➤

Publishing through the Android Market➤➤

Besides the above methods, you can install your applications on users’ devices through e-mails, SD
card, etc. As long as you can transfer the APK fi le onto the user’s device, you can install the application.

using the adb .exe tool
Once your Android application is signed, you can deploy it to emulators and devices using the adb.exe
(Android Debug Bridge) tool (located in the platform-tools folder of the Android SDK).

Using the command prompt in Windows, navigate to the “<Android_SDK>\platform-tools” folder.
To install the application to an emulator/device (assuming the emulator is currently up and running
or a device is currently connected), issue the following command:

adb install “C:\Users\Wei-Meng Lee\Desktop\LBS.apk”

exploring the AdB .exe tool

The adb.exe tool is a very versatile tool that enables you to control Android devices
(and emulators) connected to your computer.

By default, when you use the adb command, it assumes that currently there is only
one connected device/emulator. If you have more than one device connected, the
adb command returns an error message:

error:morethanonedeviceandemulator

You can view the devices currently connected to your computer by using the
devices option with adb, like this:

D:\Android2.3\android-sdk-windows\platform-tools>adbdevices
Listofdevicesattached
HT07YPY09335device
emulator-5554device
emulator-5556device

As the preceding example shows, this returns the list of devices currently attached.
To issue a command for a particular device, you need to indicate the device using
the -s option, like this:

adb–semulator-5556installLBS.apk

continues

368 ❘ chApter 11 PUBliShinG android aPPlicationS

If you try to install an APK fi le onto a device that already has the APK fi le, it will
display the following error message:

Failure[INSTALL_FAILED_ALREADY_EXISTS]

Figure 11-11 shows an APK fi le successfully installed onto a real device.

Figure 11-11

When you inspect the Launcher on the Android device/emulator, you will be able to see the LBS icon
(on the left of Figure 11-12). If you select Settings➪ Applications➪ Manage Applications on your
Android device/emulator, you will see the “Where Am I” application (on the right in Figure 11-12).

Figure 11-12

Besides using the adb.exe tool to install applications, you can also use it to remove an installed appli-
cation. To do so, you can use the shell option to remove an application from its installed folder:

adb shell rm /data/app/net.learn2develop.LBS.apk

Another way to deploy an application is to use the DDMS tool in Eclipse (see Figure 11-13). With an
emulator (or device) selected, use the File Explorer in DDMS to go to the /data/app folder and use
the “Push a fi le onto the device” button to copy the APK fi le onto the device.

(continued)

Deploying APK Files ❘ 369

Figure 11-13

using a Web Server
If you wish to host your application on your own, you can use a web server to do that. This is ideal if
you have your own web hosting services and want to provide the application free of charge to your users
(or you can restrict access to certain groups of people).

NOTE Even if you restrict your application to a certain group of people, there
is nothing to stop users from redistributing your application to other users after
they have downloaded your APK fi le.

To demonstrate this, I will use the Internet Information Server (IIS) on my Windows 7 computer.
Copy the signed LBS.apk fi le to c:\inetpub\wwwroot\. In addition, create a new HTML fi le named
Install.html with the following content:

<html>
<title>WhereAmIapplication</title>
<body>
DownloadtheWhereAmIapplication<ahref=”LBS.apk”>here
</body>
</html>

NOTE If you are unsure how to set up the IIS on your Windows 7 computer,
check out the following link: http://technet.microsoft.com/en-us/library/
cc725762.aspx.

On your web server, you may need to register a new MIME type for the APK fi le. The MIME type
for the .apk extension is application/vnd.android.package-archive.

NOTE To install APK fi les over the Web, you need an SD card installed on your
emulator or device. This is because the downloaded APK fi les will be saved to
the download folder created on the SD card.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://technet.microsoft.com/en-us/library/cc725762.aspx
http://technet.microsoft.com/en-us/library/cc725762.aspx

370 ❘ chApter 11 PUBliShinG android aPPlicationS

By default, for online installation of Android applications, the Android Emulator or device only
allows applications to be installed from the Android Market (www.android.com/market/). Hence, for
installation over a web server, you need to configure your Android Emulator/device to accept appli-
cations from non-Market sources.

From the Application settings menu, check the “Unknown sources” item (see Figure 11-14). You will
be prompted with a warning message. Click OK. Checking this item will allow the Emulator/device
to install applications from other non-Market sources (such as from a web server).

Figure 11-14

To install the LBS.apk application from the IIS web server running on your computer, launch the
Browser application on the Android Emulator/device and navigate to the URL pointing to the APK
file. To refer to the computer running the emulator, you should use the special IP address of 10.0.2.2.
Alternatively, you can also use the IP address of the host computer. Figure 11-15 shows the Install
.html file loaded on the web browser. Clicking the “here” link will download the APK file onto your
device. Drag the notification bar down to reveal the download status.

To install the downloaded application, simply tap on it and it will show the permission(s) required
by this application (see Figure 11-16).

Click the Install button to proceed with the installation. When the application is installed, you can
launch it by clicking the Open button (see Figure 11-17).

Besides using a web server, you can also e-mail your application to users as an attachment; when the
users receive the e-mail they can download the attachment and install the application directly onto
their device.

http://www.android.com/market/

Deploying APK Files ❘ 371

Figure 11-15

Figure 11-16

372 ❘ chApter 11 PUBliShinG android aPPlicationS

Figure 11-17

publishing on the Android market
So far, you have learned how to package your Android application and distribute it in various
ways — via web server, the adb.exe file, e-mail, SD card, and so on.

However, these methods do not provide a way for users to discover your applications easily. A better
way is to host your application on the Android Market, a Google-hosted service that makes it very
easy for users to discover and download (i.e., purchase) applications for their Android devices. Users
simply need to launch the Market application on their Android device in order to discover a wide
range of applications that they can install on their devices.

In this section, you will learn how to publish your Android application on the Android Market. I will
walk you through each of the steps involved, including the various items you need to prepare for your
application for submission to the Android Market.

Creating a Developer Profile
The first step toward publishing on the Android Market is to create a developer profile at http://market
.android.com/publish/Home. For this, you need a Google account (such as your Gmail account). Once
you have logged in to the Android Market, you first create your developer profile (see Figure 11-18).
Click Continue after entering the required information.

For publishing on the Android Market, you need to pay a one-time registration fee, currently U.S.$25.
Click the Google Checkout button (see Figure 11-19) to be redirected to a page where you can pay the
registration fee. After paying, click the Continue link.

http://market.android.com/publish/Home
http://market.android.com/publish/Home

Deploying APK Files ❘ 373

Next, you need to agree to the Android Market Developer Distribution Agreement. Check the “I agree”
checkbox and click the “I agree. Continue” link (see Figure 11-20).

Figure 11-18

Figure 11-19

Submitting Your Apps
Once you have set up your profile, you are ready to submit your application to the Android Market.
If you intend to charge for your application, click the Setup Merchant Account link located at the
bottom of the screen. Here you enter additional information such as bank account and tax ID.

374 ❘ chApter 11 PUBliShinG android aPPlicationS

For free applications, click the Upload Application link, shown in Figure 11-21.

Figure 11-20

Figure 11-21

Deploying APK Files ❘ 375

You will be asked to supply some details for your application. Figure 11-22 shows the first set of
details you need to provide. Among the information needed, the following are compulsory:

The application in APK format➤➤

At least two screenshots. You can use the DDMS perspective in Eclipse to capture screenshots ➤➤

of your application running on the Emulator or real device.

A high-resolution application icon. This size of this image must be 512➤➤ ×512 pixels.

The other information details are optional, and you can always supply them later.

Figure 11-22

Figure 11-23 shows that I have uploaded the LBS.apk file to the Android Market site. In particular, note
that based on the APK file that you have uploaded, the user will be warned about any specific permis-
sions required, and your application’s features will be used to filter search results. For example, because
my application requires GPS access, it will not appear in the search result list if a user searches for my
application on a device that does not have a GPS receiver.

The next set of information you need to supply, shown in Figure 11-24, includes the title of your appli-
cation, its description, as well as recent changes’ details (useful for application updates). You can also
select the application type and the category in which it will appear in the Android Market.

On the last dialog, you indicate whether your application employs copy protection, and specify a
content rating. You also supply your website URL and your contact information (see Figure 11-25).

376 ❘ chApter 11 PUBliShinG android aPPlicationS

When you have given your consent to the two guidelines and agreements, click Publish to publish
your application on the Android Market.

Figure 11-23

Figure 11-24

Deploying APK Files ❘ 377

That’s it! Your application is now available on the Android Market. You will be able to monitor
any comments submitted about your application (see Figure 11-26), as well as bug reports and total
number of downloads.

Figure 11-25

Figure 11-26

378 ❘ chApter 11 PUBliShinG android aPPlicationS

Good luck! All you need to do now is wait for the good news; and hopefully you can laugh your
way to the bank soon!

SummAry

In this chapter, you have seen how you can export your Android application as an APK file and then
digitally sign it with a keystore created by yourself. You then learned about the various ways you
can distribute your application, and the advantages of each method. Finally, you walked through the
steps required to publish on the Android Market, which makes it possible for you to sell your appli-
cation and reach out to a wider audience. Hopefully, this exposure enables you to sell a lot of copies
and thereby make some decent money!

exerciSeS

 1 . How do you specify the minimum version of Android required by your application?

 2 . How do you generate a self-sign certificate for signing your Android application?

 3 . How do you configure your Android device to accept applications from non-Market sources?

Answers to Exercises can be found in Appendix C.

Summary ❘ 379

WhAt you leArned in thiS chApter ⊲

topic key conceptS

checklist for publishing
your apps

To publish an application on the Android Market, an application must

have the four required attributes in the AndroidManifest.xml file:

android:versionCode, android:versionName , android:icon, and

android:label .

Applications must be
signed

All applications to be distributed must be signed with a self-signed

certificate . The debug keystore is not valid for distribution .

exporting an application
and signing it

Use the Export feature of Eclipse to export the application as an APK

file and then sign it with a self-signed certificate .

deploying Apk files You can deploy using various means – web server, e-mail, adb.exe,

DDMS, etc .

publishing your appli-
cation on the Android
market

Apply for the Android Market with a one-time fee of US$25 and you

will be able to sell and host your apps on the Android Market .

Using eclipse for Android
Development

Although Google supports the development of Android applications using IDEs such as IntelliJ,
or basic editors like Emacs, Google’s recommendation is to use the Eclipse IDE together with
the ADT Plugin. Doing so makes developing Android applications much easier and more pro-
ductive. This appendix describes some of the neat features available in Eclipse that can make
your development life much easier.

NOTE If you have not downloaded Eclipse yet, please start with Chapter 1,
where you will learn how to obtain Eclipse and confi gure it to work with the
Android SDK. This appendix assumes that you have already set up your Eclipse
environment for Android development.

getting Around in eclipSe

Eclipse is a highly extensible multi-language software development environment that supports
application development of all sorts. Using Eclipse, you could write and test your applications
using a wide variety of languages, such as Java, C, C++, PHP, Ruby, and so on. Because of its
extensibility, new users of Eclipse often feel inundated with the IDE. Hence, the following sec-
tions aim to make you more at home with Eclipse when you develop your Android applications.

Workspaces
Eclipse adopts the concept of a workspace. A workspace is a folder that you have chosen to
store all your projects.

When you fi rst start Eclipse, you are prompted to select a workspace (see Figure A-1).

A

382 ❘ Appendix A USinG ecliPSe for android develoPment

Figure A-1

When Eclipse has finished launching the projects located in your workspace, it will display several
panes in the IDE (see Figure A-2).

Figure A-2

The following sections highlight some of the more important panes that you need to know about
when developing Android applications.

package explorer
The Package Explorer, shown in Figure A-3, lists all the projects currently in your workspace. To
edit a particular item in your project, you can double-click on it and the file will be displayed in the
respective editor.

You can also right-click on each item displayed in the Package Explorer to display context sensitive menu(s)
related to the selected item. For example, if you wish to add a new .java file to the project, you can right-
click on the package name in the Package Explorer and then select New ➪ Class (see Figure A-4).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

getting Around in eclipse ❘ 383

Figure A-3

Figure A-4

using projects from other Workspaces
There may be times when you have several workspaces created to store different projects. If you
need to access the project in another workspace, there are generally two ways to go about doing so.
First, you can switch to the desired workspace by selecting File ➪ Switch Workspace (see Figure A-5).
Specify the new workspace to work on and then restart Eclipse.

384 ❘ Appendix A USinG ecliPSe for android develoPment

The second method is to import the project from another workspace into the current one. To do so,
select File ➪ Import… and then select General ➪ Existing Projects into Workspace (see Figure A-6).

In the Select root directory textbox, enter the path of the workspace containing the project(s) you
want to import and tick the project(s) you want to import (see Figure A-7). To import the selected
project(s), click Finish.

Figure A-5

Figure A-6

Figure A-7

getting Around in eclipse ❘ 385

Note that even when you import a project from another workspace into the current workspace, the
physical location of the imported project remains unchanged. That is, it will still be located in its
original directory. To have a copy of the project in the current workspace, check the “Copy projects
into workspace” option.

editors
Depending on the type of items you have double-clicked in the Package Explorer, Eclipse will open
the appropriate editor for you to edit the file. For example, if you double-click on a .java file, the
text editor for editing the source file will be opened (see Figure A-8).

Figure A-8

If you double-click on the icon.png file in the res/drawable-mdpi folder, the Windows Photo Viewer
application will be invoked to display the image (see Figure A-9).

Figure A-9

386 ❘ Appendix A USinG ecliPSe for android develoPment

If you double-click on the main.xml file in the res/layout folder, Eclipse will display the UI editor,
where you can graphically view and build the layout of your UI (see Figure A-10).

Figure A-10

To edit the UI manually using XML, you can switch to XML view by clicking on the main.xml tab
located at the bottom of the screen (see Figure A-11).

Figure A-11

getting Around in eclipse ❘ 387

perspectives
In Eclipse, a perspective is a visual container for a set of views
and editors. When you edit your project in Eclipse, you are in
the Java perspective (see Figure A-12).

The Java EE perspective is used for developing enterprise Java
applications, and it includes other modules that are relevant to it.

You can switch to other perspectives by clicking on the per-
spective name. If the perspective name is not shown, you can
click the Open Perspective button and add a new perspective
(see Figure A-13).

The DDMS perspective contains the tools for communicating
with Android emulators and devices. This is covered in more
detail in Appendix B. The Debug perspective contains panes
used for debugging your Android applications. You will learn
more about this later in this appendix.

Auto import of namespaces
The various classes in the Android library are organized into namespaces. As such, when you use a
particular class from a namespace, you need to import the appropriate namespaces, like this:

importandroid.app.Activity;
importandroid.os.Bundle;

Because the number of classes in the Android
Library is very large, remembering the correct
namespace for each class is not an easy task.
Fortunately, Eclipse can help find the correct
namespace for you, enabling you to import it
with just a click.

Figure A-14 shows that I have declared an
object of type Button. Because I did not import
the correct namespace for the Button class,
Eclipse signals an error beneath the statement.
When you move the mouse over the Button
class, Eclipse displays a list of suggested fixes.
In this case, I need to import the android
.widget.Button namespace. Clicking the
“Import ‘Button’ (android.widget)” link will
add the import statement at the top of the file.

Alternatively, you can also use the following key combination: Control+Shift+o. This key combination
will cause Eclipse to automatically import all the namespaces required by your class.

Figure A-12

Figure A-13

Figure A-14

388 ❘ Appendix A USinG ecliPSe for android develoPment

code completion
Another very useful feature of Eclipse is the support for code completion. Code completion displays
a context-sensitive list of relevant classes, objects, methods, and property names as you type in the
code editor. For example, Figure A-15 shows code-completion in action. As I type the word “fin,” I
can activate the code-completion feature by pressing Ctrl+Space. This will bring up a list of names
that begin with “fin.”

To select the required name, simply double-click on it or use your cursor to highlight it and press the
Enter key.

Code completion also works when you type a “.” after an object/class name. Figure A-16 shows an
example.

refactoring
Refactoring is a very useful feature that most mod-
ern IDEs support. Eclipse supports a whole slew of
refactoring features that make application develop-
ment efficient.

In Eclipse, when you position the cursor at a par-
ticular object/variable, the editor will highlight all
occurrences of the selected object in the current
source (see Figure A-17).

This feature is very useful for identifying where a particular object is used in your code. To change
the name of an object, simply right-click on it and select Refactor ➪ Rename… (see Figure A-18).

After entering a new name for the object, all occurrences of the object will be changed dynamically
(see Figure A-19).

A detailed discussion of refactoring is beyond the scope of this book. For more information on refac-
toring in Eclipse, refer to www.ibm.com/developerworks/library/os-ecref/.

Figure A-15 Figure A-16

Figure A-17

http://www.ibm.com/developerworks/library/os-ecref/

Debugging ❘ 389

Figure A-18

Figure A-19

deBugging
Eclipse supports debugging your application on both the Android Emulators as well as on real Android
devices. When you press F11 in Eclipse, Eclipse will first determine whether an Android Emulator instance
is already running or a real device is connected. If at least one emulator (or device) is running, Eclipse will
deploy the application onto the running emulator or the connected device. If there is no emulator run-
ning and no connected device, Eclipse will automatically launch an instance of the Android Emulator and
deploy the application onto it.

If you have more than one emulator or device connected, Eclipse will prompt you to select the target
emulator/device on which to deploy the application (see Figure A-20). Select the target device you
want to use and click OK.

If you want to launch a new emulator instance to test the application, select Window ➪ Android
SDK and AVD Manager to launch the AVD manager.

Setting Breakpoints
Setting breakpoints is a good way to temporarily pause the execution of the application and then examine
the content of variables and objects.

To set a breakpoint, double-click on the leftmost column in the code editor. Figure A-21 shows a break-
point set on a particular statement.

390 ❘ Appendix A USinG ecliPSe for android develoPment

Figure A-20

When the application is running and the first
breakpoint is reached, Eclipse will display a
Confirm Perspective Switch dialog. Basically,
it wants to switch to the Debug perspective.
To prevent this window from appearing again,
check the “Remember my decision” checkbox
at the bottom and click Yes.

Eclipse now highlights the breakpoint (see Figure A-22).

At this point, you can right-click on any selected object/variable and view its content using the vari-
ous options (Watch, Inspect, and Display) shown in Figure A-23.

Figure A-24 shows the Inspect option displaying the content of the str variable.

There are several options at this point to continue the execution:

Step Into➤➤ — Press F5 to step into the next method call/statement.

Step Over➤➤ — Press F6 to step over the next method call without entering it.

Step Return➤➤ — Press F7 to return from a method that has been stepped into.

Resume Execution➤➤ — Press F8 to resume the execution.

exceptions
As you develop in Android, you will encounter numerous run-time exceptions that prevent your pro-
gram from continuing. Examples of run-time exceptions include the following:

Null reference exception (accessing an object which is null)➤➤

Failure to specify the required permissions required by your application➤➤

Arithmetic operation exceptions➤➤

Figure A-21

Debugging ❘ 391

Figure A-22

Figure A-23

Figure A-24

Figure A-25 shows the current state of an application when an exception occurred. In this example,
I am trying to send an SMS message from my application and it crashes when the SMS message is
about to be sent.

392 ❘ Appendix A USinG ecliPSe for android develoPment

Figure A-25

The various windows do not really identify the cause of the exception. To find out more, press F6 in
Eclipse so that it can step over the current statement. The Variables window, shown in Figure A-26,
indicates the cause of the exception. In this case, the SEND_SMS permission is missing.

Figure A-26

To remedy this, all you need to do is to add the following permission statement in the
AndroidManifest.xml file:

<uses-permission
android:name=”android.permission.SEND_SMS”/>

Using the Android emulator
The Android Emulator ships with the Android SDK and is an invaluable tool to help test your
application without requiring you to purchase a real device. While you should thoroughly test
your applications on real devices before you deploy them, the emulator mimics most of the
capabilities of real devices. It is a very handy tool that you should make use of during the devel-
opment stage of your project. This appendix provides some common tips and tricks for master-
ing the Android Emulator.

uSeS oF the Android emulAtor

As discussed in Chapter 1, you can use the Android Emulator to emulate the different Android
confi gurations by creating Android Virtual Devices (AVDs).

You launch the Android Emulator by directly starting the AVD you have created in the Android
SDK and AVD Manager window (see Figure B-1). Simply select the AVD and click the Start
button. You have the option to scale the emulator to a particular size and monitor DPI.

Alternatively, when you run an Android project in Eclipse, the Android Emulator is automati-
cally invoked to test your application. You can customize the Android Emulator for each of
your Android projects in Eclipse. To do so, simply select Run ➪ Run Confi gurations. Select
the project name listed under Android Application on the left (see Figure B-2), and on the right
you will see the Target tab. You can choose which AVD to use for testing your application, as
well as emulate different scenarios, such as network speed and network latency.

inStAlling cuStom AvdS

Sometimes device manufacturers provide their own AVDs that you can use to emulate your applica-
tions running on their devices. A good example is Samsung, which provides the Samsung Galaxy
Tab add-on (http://innovator.samsungmobile.com/galaxyTab.do) for emulating their Samsung
Galaxy Tab tablet. To install the Samsung Galaxy Tab add-on, fi rst launch the Android SDK and
AVD Manager in Eclipse, and then select the Available Packages option on the left side of the dia-
log (see Figure B-3).

B

http://innovator.samsungmobile.com/galaxyTab.do

394 ❘ Appendix B USinG the android emUlator

Figure B-1

Figure B-2

At the bottom of the screen, click the Add Add-on Site… button and enter the following URL:
http://innovator.samsungmobile.com/android/repository/srepository.xml (see Figure B-4).
Click OK.

http://innovator.samsungmobile.com/android/repository/srepository.xml

installing Custom AVDs ❘ 395

Figure B-3

Figure B-4

You should now see the additional package available (see Figure B-5). Check the package and click
Install Selected.

In the dialog that pops up, click “Accept” to accept the licensing agreement and then click Install to
download and install the package.

After the downloaded package is installed, you can create a new AVD based on the newly down-
loaded package. Select the Virtual Devices item in the Androids SDK and AVD Manager window
and click the New button.

Name the new AVD as shown in Figure B-6. Click the Create AVD button to create the AVD.

396 ❘ Appendix B USinG the android emUlator

Figure B-5

Figure B-6

To launch the SamsungGalaxyTab AVD, select it and click the Start… button. The Launch Options
dialog, shown in Figure B-7, will appear.

Check the “Scale display to real size” option if you want to resize the emulator. This is very useful if
you are running the emulator on a small monitor (such as on a notebook computer). Specify a screen
size and click the Launch button to start the emulator. Figure B-8 shows the Samsung Galaxy Tab
emulator.

installing Custom AVDs ❘ 397

Figure B-7

Figure B-8

398 ❘ Appendix B USinG the android emUlator

emulAting reAl deviceS

Besides using the Android Emulator to test the different confi gurations of Android, you can also make
use of the emulator to emulate real devices, using the system images provided by device manufacturers.

For example, HTC provides images for their devices running Android 1.5 and 1.6 (http://developer
.htc.com/google-io-device.html#s3). You can download a device’s system image and then use the
Android Emulator to emulate it using the system image. Here is how this can be done (in theory, this
should work for any version of Android).

NOTE If you use HTC’s image, you should be able to boot up the emulator with-
out problems. However, the network cannot be enabled. Some kind souls have
uploaded a modifi ed image that works properly. You can try downloading it at
www.4shared.com/get/x6pZm3-W/system.html.

First, using the Android SDK and AVD Manager, create a new AVD. In the case of HTC, create
an AVD using Android 1.6 as the platform. The AVD will be located in the C:\Users\<username>\
.android\avd\<avd_name>.avd folder. As shown in Figure B-9, a newly created AVD contains only
two fi les in the folder.

Using the downloaded system image, copy the system.img fi le into the AVD folder, as shown in
Figure B-10.

Launch the AVD and you should see it booting up (see Figure B-11).

You can proceed to sign in using your Google account (see Figure B-12). When prompted to slide
open the keyboard, press Ctrl+F11 to change the orientation of the emulator. This action tricks the
emulator into believing that you are sliding the keyboard open.

Once you have successfully signed in, you will be able to explore the Android Market on your emu-
lator (see Figure B-13)!

Figure B-9 Figure B-10

http://developer.htc.com/google-io-device.html#s3
http://developer.htc.com/google-io-device.html#s3
http://www.4shared.com/get/x6pZm3-W/system.html

SD Card emulation ❘ 399

Figure B-11

Figure B-12

Sd cArd emulAtion

When you create a new AVD, you can emulate the existence of an SD card (see Figure B-14). Simply
enter the size of the SD card that you want to emulate (in the figure, it is 200MiB).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

400 ❘ Appendix B USinG the android emUlator

Figure B-13

Figure B-14

Alternatively, you can simulate the presence of an SD card in the Android Emulator by creating
a disk image first and then attaching it to the AVD. The mksdcard.exe utility (also located in the
tools folder of the Android SDK) enables you to create an ISO disk image. The following command
creates an ISO image that is 2GB in size (see also Figure B-15):

mksdcard2048Msdcard.iso

emulating Devices with Different Screen Sizes ❘ 401

Figure B-15

Once the image is created, you can specify the location of the ISO file, as shown in Figure B-16.

Figure B-16

emulAting deviceS With diFFerent Screen SizeS

Besides emulating an SD card, you can also emulate devices with different screen sizes. Figure B-17 indi-
cates that the AVD is emulating the WVGA854 skin, which has a resolution of 480×854 pixels. Note
that the LCD density is 240, which means that this screen has a pixel density of 240 pixels per inch.

Figure B-17

402 ❘ Appendix B USinG the android emUlator

For each target that you select, a list of skins is available. The Android SDK supports the following
screen resolutions:

QVGA➤➤ — 240×320

WQVGA400➤➤ — 240×400

WQVGA432➤➤ — 240×432

HVGA➤➤ — 320×480

WVGA800➤➤ — 480×800

WVGA854➤➤ — 480×854

Figure B-18 shows the Android Emulator using the WVGA854 skin.

Figure B-18

emulAting phySicAl cApABilitieS

In addition to emulating devices of different screen sizes, you also have the option to emulate differ-
ent hardware capabilities. When creating a new AVD, clicking the New button will display a dialog
for choosing the type of hardware that you want to emulate (see Figure B-19).

Sending SMS Messages to the emulator ❘ 403

For example, if you want to emulate an Android device with no touch screen, select the “Touch-
screen support” property and click OK. Back in the AVD dialog, change the value of the property
from yes to no (see Figure B-20).

This will create an AVD with no touch-screen support (i.e., users won’t be able to use their mouse to
click on the screen).

You can also simulate location data using the Android Emulator. Chapter 9 discusses this in more details.

One useful tip to make your development more productive is to keep your Android Emulator run-
ning during development — avoid closing and restarting it. Because the emulator takes time to boot
up, it is much better to leave it running when you are debugging your applications.

Sending SmS meSSAgeS to the emulAtor

You can emulate sending SMS messages to the Android Emulator using either the Dalvik Debug
Monitor Service (DDMS) tool available in Eclipse, or the Telnet client.

NOTE The Telnet client is not installed by default in Windows 7. To install it,
type the following command line in the Windows command prompt:
pkgmgr/iu:”TelnetClient”.

Figure B-19 Figure B-20

404 ❘ Appendix B USinG the android emUlator

keyBoArd ShortcutS

The Android Emulator supports several keyboard shortcuts that enable you to mimic
the behavior of a real handset. The following list shows the list of shortcuts that you
can use with the emulator:

Esc➤➤ — Back

Home➤➤ — Main screen

F2➤➤ — Toggles context-sensitive menu

F3➤➤ — Call Log

F4➤➤ — Lock

F5➤➤ — Search

F8➤➤ — Toggles data network (3G)

Ctrl+F5➤➤ — Ringer volume up

Ctrl+F6➤➤ — Ringer volume down

Ctrl+F11/Ctrl+F12➤➤ — Toggle orientation

For example, by pressing Ctrl+F11, you can change the orientation of the emulator
to landscape mode (see Figure B-21).

Figure B-21

Sending SMS Messages to the emulator ❘ 405

Take a look at how this is done in Telnet. First, ensure that the Android Emulator is running. In
order to Telnet to the emulator, you need to know the port number of the emulator. You can obtain
this by looking at the title bar of the Android Emulator window. It normally starts with 5554, with
each subsequent emulator having a port number incremented by two, such as 5556, 5558, and so on.
Assuming that you currently have one Android Emulator running, you can Telnet to it using the fol-
lowing command:

C:\telnetlocalhost5554

To send an SMS message to the emulator, use the following command:

smssend+651234567Hellomyfriend!

The syntax of the sms send command is as follows:

smssend<phone_number><message>

Figure B-22 shows the emulator receiving the sent SMS message.

Besides using Telnet for sending SMS messages, you can also use the DDMS perspective in Eclipse. If
the DDMS perspective is not visible within Eclipse, you can display it by clicking the Open Perspective
button (see Figure B-23) and selecting Other.

Select the DDMS perspective (see Figure B-24) and click OK.

Once the DDMS perspective is displayed, you will see the Devices tab (see Figure B-25), which shows the
list of emulators currently running. Select the emulator instance to which you want to send the SMS mes-
sage, and under the Emulator Control tab you will see the Telephony Actions section. In the Incoming
number field, enter an arbitrary phone number and check the SMS radio button. Enter a message and
click the Send button.

The selected emulator will now receive the incoming SMS message.

If you have multiple AVDs running at the same time, you can send SMS messages between each AVD
by using the port number of the emulator as the phone number. For example, if you have an emula-
tor running on port number 5554 and another on 5556, their phone numbers will be 5554 and 5556,
respectively.

Figure B-22 Figure B-23

406 ❘ Appendix B USinG the android emUlator

mAking phone cAllS

Besides sending SMS messages to the emulator, you can also use the Telnet client to make a phone
call to the emulator. To do so, simply use the following commands.

To Telnet to the emulator, use this command:

C:\telnetlocalhost5554

To make a phone call to the emulator, use this command:

gsmcall+651234567

The syntax of the gsm send command is as follows:

gsmcall<phone_number>

Figure B-26 shows the emulator receiving an incoming call.

Likewise, you can also use the DDMS perspective to make a phone call to the emulator. Figure B-27
shows how to make a phone call using the Telephony Actions section.

As with sending SMS, you can also make phone calls between AVDs by using their port numbers as
phone numbers.

Figure B-24 Figure B-25

Transferring Files into and out of the emulator ❘ 407

Figure B-26

Figure B-27

trAnSFerring FileS into And out oF the emulAtor

Occasionally, you may need to transfer files into or out of the emulator. The easiest way is to use the
DDMS perspective. From the DDMS perspective, select the emulator (or device if you have a real
Android device connected to your computer) and click the File Explorer tab to examine its file sys-
tems (see Figure B-28).

408 ❘ Appendix B USinG the android emUlator

Figure B-28

The two buttons shown in Figure B-28 enable you to both pull a fi le from the emulator and push a
fi le into the emulator.

Alternatively, you can also use the adb.exe utility shipped with the Android SDK to push or pull
fi les to and from the emulator. This utility, like emulator.exe, is located in the <Android_SDK_
Folder>\tools\ folder.

To copy a fi le from the connected emulator/device onto the computer, use the following command:

adb.exepull/data/app/<filename>c:\

NOTE When using the adb.exe utility to pull or push fi les from or into the emula-
tor, ensure that only one AVD is running.

Figure B-29 shows how you can extract an APK fi le from the emulator and save it onto your
computer.

Figure B-29

To copy a fi le into the connected emulator/device, use the following command:

adb.exepushNOTICE.txt/data/app

The preceding command copies the NOTICE.txt fi le located in the current directory and saves it onto
the emulator’s /data/app folder (see Figure B-30).

Resetting the emulator ❘ 409

Figure B-30

If you need to modify the permissions of the files in the emulator, you can use the adb.exe utility
together with the shell option, like this:

adb.exeshell

Figure B-31 shows how you can change the permissions of the NOTICE.txt file by using the chmod
command.

Figure B-31

Using the adb.exe utility, you can issue Unix commands against your Android Emulator.

reSetting the emulAtor

All applications and files that you have deployed to the Android Emulator are stored in a file named
userdata-qemu.img located in the C:\Users\<username>\.android\avd\<avd_name>.avd folder. For
example, I have an AVD named Android_2.2_Emulator; hence, the userdata-qemu.img file is located
in the C:\Users\Wei-MengLee\.android\avd\Android_2.2_Emulator.avd folder.

If you want to restore the emulator to its original state (to reset it, that is), simply delete the
userdata-qemu.img file.

Answers to exercises
This appendix includes the answers to the end of chapter exercises.

chApter 1 AnSWerS

 1 . An AVD is an Android Virtual Device. It represents an Android Emulator, which emu-
lates a particular confi guration of an actual Android device.

 2 . The android:versionCode attribute is used to programmatically check if an application
can be upgraded. It should contain a running number (an updated application should
be set to a higher number than the older version). The android:versionName attribute
is used mainly for displaying to the user. It is a string, such as “1.0.1”.

 3 . The strings.xml fi le is used to store all string constants in your application. This
enables you to easily localize your application by simply replacing the strings and then
recompiling your application.

chApter 2 AnSWerS

 1 . The Android OS will display a dialog from which users can choose which activity they
want to use.

 2 .
Intenti=new
Intent(android.content.Intent.ACTION_VIEW,
Uri.parse(“http://www.amazon.com”));
startActivity(i);

 3 . In an intent fi lter, you can specify the following: action, data, type, and category.

C

412 ❘ Appendix c anSwerS to exerciSeS

 4 . The Toast class is used to display alerts to the user and disappears after a few seconds. The
NotificationManager class is used to display notifications on the device’s status bar. The alert
displayed by the NotificationManager class is persistent and can only be dismissed by the
user when selected.

chApter 3 AnSWerS

 1 . The dp unit is density independent and 160dp is equivalent to one inch. The px unit corresponds
to an actual pixel on screen. You should always use the dp unit because it enables your activity
to scale properly when run on devices of varying screen size.

 2 . With the advent of devices with different screen sizes, using the AbsoluteLayout makes it dif-
ficult for your application to have a consistent look and feel across devices.

 3 . The onPause() event is fired whenever an activity is killed or sent to the background. The
onSaveInstanceState() event is like the onPause() event, except that it is not always called,
such as when the user presses the Back button to kill the activity.

 4 . The three events are onPause(), onSaveInstanceState(), and
onRetainNonConfigurationInstance().

chApter 4 AnSWerS

 1 . You should check the isChecked() method of each RadioButton to determine if it has been
checked.

 2 . You can use the getResources() method.

 3 . The code snippet to obtain the current date is as follows:

//---getthecurrentdate---
Calendartoday=Calendar.getInstance();
yr=today.get(Calendar.YEAR);
month=today.get(Calendar.MONTH);
day=today.get(Calendar.DAY_OF_MONTH);
showDialog(DATE_DIALOG_ID);

chApter 5 AnSWerS

 1 . The ImageSwitcher enables images to be displayed with animation. You can animate the
image when it is being displayed, as well as when it is being replaced by another image.

 2 . The two methods are onCreateOptionsMenu() and onOptionsItemSelected().

 3 . The two methods are onCreateContextMenu() and onContextItemSelected().

 4 . To prevent launching the device’s web browser, you need to implement the WebViewClient
class and override the shouldOverrideUrlLoading() method.

Chapter 9 Answers ❘ 413

chApter 6 AnSWerS

 1 . The former allows the data to be shared among all the activities in an application, whereas
the latter is accessible only to the activity that created it.

 2 . The method name is getExternalStorageDirectory().

 3 . The permission is WRITE_EXTERNAL_STORAGE.

chApter 7 AnSWerS

 1 . The code is as follows:

Cursorc=managedQuery(
allContacts,
projection,
ContactsContract.Contacts.DISPLAY_NAME+“LIKE?”,
newString[]{“%jack%”},
ContactsContract.Contacts.DISPLAY_NAME+“ASC”);

 2 . The methods are getType(), onCreate(), query(), insert(), delete(), and update().

 3 . The code is as follows:

<providerandroid:name=”BooksProvider”
android:authorities=”net.learn2develop.provider.Books”/>

chApter 8 AnSWerS

 1 . You can either programmatically send a SMS message from within your Android application
or invoke the built-in Messaging application to send it on your application’s behalf.

 2 . The two permissions are SEND_SMS and RECEIVE_SMS.

 3 . The Broadcast receiver should fire a new intent to be received by the activity. The activity
should implement another BroadcastReceiver to listen for this new intent.

 4 . The permission is INTERNET.

chApter 9 AnSWerS

 1 . The likely reasons are as follows:

No Internet connection➤➤

Incorrect placement of the ➤➤ <uses-library> element in the AndroidManifest.xml file

Missing ➤➤ INTERNET permission in the AndroidManifest.xml file

 2 . Geocoding is the act of converting an address into its coordinates (latitude and longitude).
Reverse geocoding converts a pair of location coordinates into an address.

414 ❘ Appendix c anSwerS to exerciSeS

 3 . The two providers are as follows:

LocationManager.GPS_PROVIDER➤➤

LocationManager.NETWORK_PROVIDER➤➤

 4 . The method is addProximityAlert().

chApter 10 AnSWerS

 1 . This is because a service runs on the same process as the calling activity. If a service is long-
running, you need to run it on a separate thread so that it does not block the activity.

 2 . The IntentService class is similar to the Service class, except that it runs the tasks in a
separate thread and automatically stops the service when the task has finished execution.

 3 . The three methods are doInBackground(), onProgressUpdate(), and onPostExecute().

 4 . The service can broadcast an intent, and the activity can register an intent using an
IntentFilter class.

chApter 11 AnSWerS

 1 . You specify the minimum Android version required using the minSdkVersion attribute in the
AndroidManifest.xml file.

 2 . You can either use the keytool.exe utility from the Java SDK, or use Eclipse’s Export feature
to generate a certificate.

 3 . Go to the Settings application and select the Applications item. Check the “Unknown
sources” item.D

ow
n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

415

Index

Symbols

. (period), APK naming
convention, 16

- (minus sign), TimePicker, 144
+ (plus sign), TimePicker, 144

A

abd.exe, 367–369, 408
AbsoluteLayout, 82, 87–89, 412
ACTION_PICK, 63
actions

<intent-filter>, 70, 411
intents, 61

ACTION_VIEW, 62, 70
activities, 22, 27–42

AndroidManifest.xml, 28
applications, 47
BroadcastReceiver, 273–280
categories, 71–73
debugging, 31
dialog windows, 34–38
EditText, 54, 55
hiding title, 33–34
intents, 43–78
life cycle, 30–32
orientation, 104–108, 110–111
progress dialog, 39–42
services

binding, 350–356
communication, 346–350

styles, 32–33
themes, 32–33

ViewGroups, 82–83
Views, 82–83

Activities, 32
Activity, 27–29

Context, 38
events, 28
ListActivity, 158
MainActivity, 180
managedQuery(), 242
MapActivity, 307
methods, 114–119
onCreate(), 82
onCreateDialog(), 34, 36
onKeyDown(), 117
setContentView(), 82
setRequestOrientation(),

110–111
<activity>, 33, 110–111
Activity.findViewById(),

132, 134
adb, 367
add(), 188
addCategory(), 72
addProximityAlert(), 327
ADT. See Android Development

Tools
AlertDialog, 37
alias, 364
AnalogClock, 194
anchoring

orientation, 98–100
RelativeLayout, 98

Android 2.3, 22
Android Debug Bridge, 367–369

Android Development Tools
(ADT), 7–11

Android Device Chooser, 21
Android Emulator, 403–407

APK, 408
AVDs, 393–397
debugging, 36, 46, 52, 55, 69,

76, 116, 143, 144, 146,
148, 150, 157, 159, 162,
164, 174, 175, 180, 184,
189, 192, 196, 206–207,
212, 241, 266, 272, 276,
279, 287, 290, 294, 307,
309, 310, 314, 317, 324,
334, 337, 345, 393–409

devices, 398–399
file transfer, 407–409
localhost, 288
orientation, 106
permissions, 409
Phone button, 32
phone calls, 406–407
physical capabilities, 402–403
resetting, 409
screens, 401–402
SD, 399–401
shortcut keys, 404
SMS messaging, 403–406
testing, 18–19, 214

Android Hierarchy Viewer, 8
Android library, 387
Android Market, 6

AndroidManifest.xml, 361
applications, 359, 372–378
developer profile, 372–373

416

Android Packages – BroadcastReceiver

Android Packages (APK), 7, 16
Android Emulator, 408
application publishing, 359
deploying files, 367–378
MIME, 369
SD, 369

Android runtime, 4
Android SDK, 7, 303
Android Virtual Devices (AVDs),

11–14, 411
Android Emulator, 393–397
AVD Manager, 21, 266
customization, 393–397
testing, 21

android.content.Intent

.ACTION_VIEW, 61
android:icon, 361
android:id, 108
android.intent.action.VIEW, 70
android.intent.category.

LAUNCHER, 24
android.jar, 22
android:label, 361
android_layout_x, 88
android_layout_y, 88
android.location, 326
AndroidManifest.xml, 22, 251–252

activities, 28
<activity>, 33, 110–111
Android Market, 361
<application>, 308
<category>, 71
content providers, 241
<intent-filter>, 65–71
IntentService, 344–345
INTERNET, 305, 413
MyBrowserActivity, 70
networking, 284
permissions, 267, 270, 286
services, 333, 335
SMS messaging, 265, 270–271
SMS_SEND, 270
<uses-sdk>, 361

versions, 23, 360
WRITE_EXTERNAL_STORAGE, 216

android:minSdkVersion, 24
android:orientation, 86
android.permission.CALL_PHONE,

62
android:screenOrientation,

110–111
android:theme, 33
android:versionCode, 360, 361,

411
android:versionName, 360, 361
android.view.ViewGroup, 82
animateTo(), 312, 315
anonymous class, 120
Apache License, 2
API key, 303–305
apiKey, 306
APK. See Android Packages
.apk, 369
<application>, 308, 361
applications, 4

activities, 47
anatomy, 22–25
Android Market, 359, 372–378
built-in

intents, 56–65
SMS messaging, 269

creating, 14–22
databases, 231–233
DDMS, 368
digital certificates, 359, 362–366
Export Android Application,

363–366
framework, 4
Gmail/Email, 281
icons, 375
launcher, 20
Manage applications, 48
market, 4
permissions, 280–281
publishing, 359–379
versions, 360–362
web servers, 369–372

Application name, 21
app_name, 24
architecture, 3–4
arguments, 61, 77
ArrayAdapter, 143, 165
assets, 22, 199, 231
asynchronous calls, 296–297
asynchronous services, 338–341,

343–346
AsyncTask, 296–297, 340
attributes

Button, 99
RelativeLayout, 92

AutoCompleteTextView, 141–144
ArrayAdapter, 143
debugging, 143
EditText, 141
MainActivity.java, 142
setThreshold(), 144
simple_dropdown_item_line, 143

Available Packages, 12
AVD Manager, 21, 266
AVDs. See Android Virtual

Devices

B

Back button, 32, 164
BackgroundTask, 297
Barnes and Noble, 4
BaseAdapter, 176, 181
binary data downloads, 286–288

debugging, 287
MainActivity.java, 287
main.xml, 286

Binder, 354
bindService(), 356
Bitmap, 287
BitmapFactory, 287
BooksProvider.java, 248–251
boolean, 118
breakpoints, 389–390
BroadcastReceiver, 269, 350

activities, 273–280

417

Browser – Dalvik Debug Monitor Service

intents, 276
MainActivity, 279–280
MainActivity.java, 277–278
main.xml, 279
onDestroy(), 280
onPause(), 277, 279–280
onResume(), 277, 279–280
sendBroadcast(), 272
SMSReceiver.java, 278–279

Browser, 237
Browser.BOOKMARKS_URI, 243
Browser.SEARCHES_URI, 243
browser.xml, 68
Builder, 37
built-in applications

intents, 56–65
SMS messaging, 269

built-in zoom controls, 196
debugging, 309, 310
Google Maps, 308–310
MainActivity.java, 309–310
multi-touch, 197
onKeyDown, 310

Bundle

getExtras(), 56, 351
Intent, 56
key/value pairs, 56
onReceive(), 272
onSaveInstanceState, 108–109
putExtras(), 56

Button, 85, 113, 127–135
android_layout_x, 88
android_layout_y, 88
attributes, 99
DatePicker, 152
events, 117
FrameLayout, 93–94
id, 132
layout_width, 130
LinearLayout, 95–96
main.xml, 98–99
setOnCreateContextMenu

Listener(), 192
TimePicker, 146

byte stream, 213

C

CA. See certificate authority
callbacks

onCreateDialog(), 37
setOnClickListener(), 134
showDialog(), 37

CallLog, 237
CallLog.CONTENT_URI, 243
cancel(), 78
categories

activities, 71–73
Intent, 65
<intent-filter>, 70, 411

<category>, 71–73
cell tower triangulation, 322
certificate authority (CA), 362
character array, 213
CheckBox, 127–135
chmod, 409
classes

Android library, 387
anonymous, 120
MainActivity.java, 46
Notification, 77

Clear defaults button, 48
<com.google.android.maps

.MapView>, 307
commit(), 208
component name, 64
configuration change, orientation,

108–109
Confirm Perspective Switch

dialog, 390
connectivity, 3
constructors

Intent, 61
Notification, 77

Contacts, 238, 242, 243
contacts, 221
ContactsContract.Contacts

.CONTENT_URI, 243
ContactsContract.Contacts

.DISPLAY_NAME, 245

ContactsContract.Contacts

.HAS_PHONE_NUMBER, 246
ContactsContract

.Contacts._ID, 245
Content, 242
content providers, 237–262

AndroidManifest.xml, 241
creating, 247–260
data sharing, 237–238
debugging, 241
MainActivity(), 257–258
MainActivity.java, 240
main.xml, 239–240, 256–257
queries, 238

ContentProvider, 247
ContentResolver, 253, 255
ContentUris, 243
ContentValues, 223
Context, 38

Toast, 38
Context menu, 185, 190–193

debugging, 192
MainActivity.java, 191–192

CopyDB(), 232–233
counter, 343
Create Activity, 21
createFromPdu(), 272
CreateMenu()

Menu, 188
onCreateContextMenu(), 192
Options menu, 189

cursor, 242
Cursor, 244

moveToFirst(), 226
queries, 223, 254

customization
AVDs, 393–397
ListView, 159–161
ProgressBar, 139–141

d

Dalvik Debug Monitor Service
(DDMS), 8

Android Emulator, 403–407

418

Dalvik Debug Monitor Service – DoBackgroundTask

applications, 368
databases, 233
internal storage, 214
Location Controls, 324
perspectives, 387
screenshots, 375
SMS messaging, 272, 276, 279

Dalvik virtual machine, 4
data

<intent-filter>, 70, 411
intents, 61
path, 238
persistence, 203–235

databases, 218–233
files, 209–218

sharing, 237–238
types

ContentValues, 223
getType(), 253
Intent, 64–65
<intent-filter>, 411

data, 54
/data/app, 368, 408
databases

applications, 231–233
data persistence, 218–233
DDMS, 233
methods, 222–223
pre-creating, 230–233

Database Browser, 230
DATABASE_CREATE, 221
databases, 224
DATABASE_VERSION, 222, 230
DatePicker, 149–156

Button, 152
debugging, 150
dialog windows, 153–156
MainActivity.java, 150–151,

153–155
onDateSet(), 156

DatePickerDialog, 156
day, 156

DBAdapter, 218–223
deleteContact(), 228–229
getAllContacts(), 225–226
getContact(), 226–227
onCreate(), 221–222
onUpgrade(), 221–222
SQLiteOpenHelper, 221
updateContact(), 227–228

DDMS. See Dalvik Debug Monitor
Service

debugging. See also Dalvik Debug
Monitor Service

activities, 31
Android Debug Bridge, 367–369
Android Device Chooser, 21
Android Emulator, 36, 46, 52, 55,

69, 76, 116, 137, 143, 144,
146, 148, 150, 157, 159, 162,
164, 174, 175, 180, 184, 189,
192, 196, 206–207, 212, 241,
266, 272, 276, 279, 287, 290,
294, 307, 309, 310, 314, 317,
324, 334, 337, 345, 393–409

Android SDK, 303
AutoCompleteTextView, 143
binary data downloads, 287
built-in zoom controls, 309, 310
certificate, 303–304
content providers, 241
Context menu, 192
DatePicker, 150
Eclipse, 389
Gallery, 174
getSharedPreferences(),

206–207
Google Maps, 307, 314, 317
GridView, 184
ImageSwitcher, 180
ImageView, 175
IntentService, 345
internal storage, 212
ListView, 157, 159
Location Manager, 324
Options menu, 189

perspectives, 387
ProgressBar, 137
services, 334, 337
SMS messaging, 266, 272,

276, 279
SpinnerView, 164
strings.xml, 162
text file downloads, 290
TimePicker, 144, 146, 148
views, 128–129
Web services, 294
WebView, 196

debug.keystore, 304, 364–365
decodeStream(),

BitmapFactory, 287
<Definition>, 295–296
delete(), 413

content providers, 252, 255
deleteContact(), 228–229
deliveryIntent, 267
Dell, 4
density-independent pixel. See dp
Desire HD, 4
destinationAddress, 267
developer profile, 372–373
devices, 4–5

Android Emulator, 398–399
devices, 367
Devices tab, 325
dialog windows

activities, 34–38
DatePicker, 153–156
showDialog(), 148
TimePicker, 147–149

Dictionary Web service, 291
digital certificates

applications, 359, 362–366
keytool.exe, 362

DigitalClock, 194
Display, 110
Display Notification button, 76
DisplayContact(), 226
DistributionKeyStoreAlias, 364
DoBackgroundTask, 341

Dalvik Debug Monitor
Service (continued)

419

Document – getService()

Document, 294–295
DocumentBuilder, 294
DocumentBuilderFactory, 294
doInBackground(), 297, 340, 414
doSomethingRepeatedly(), 343
doSomeWork()

progressStatus, 141
run(), 138

download, 369
downloads

binary data, 286–288
text file, 288–291
XML, 291

DownloadFile(), 337
DownloadImage(), 287
DownloadText(), 291
dp, 85, 412
drawable, 23
drawable-<resolution>, 22

e

Eclipse, 381–392
Android Device Chooser, 21
breakpoints, 389–390
code completion, 388
debugging, 389
editors, 385–386
exceptions, 390–392
IDE for Java EE Developers, 6–7
Package Explorer, 382–383
perspectives, 387
refactoring, 388–389
R.java, 24
workspaces, 381–382

eclipse.exe, 7
Editor, 207
editors, Eclipse, 385–386
EditText, 127–135

activities, 54, 55
AutoCompleteTextView, 141
events, 117
internal storage, 212
LinearLayout, 95–96

onFocusChange(), 120–121
orientation, 106, 108
SeekBar, 207
setHint(), 56

e-mail, 281–283
Intent, 283
MainActivity.java, 282–283
main.xml, 282
putExtra(), 283
setData(), 283
setType(), 283

Emulator Control tab, 325
emulator.exe, 408
e-reader devices, 4–5
events

Activity, 28
Button, 117
EditText, 117
handlers, 120
views, 119–121, 133–135

exceptions, 390–392
execute(), 341, 351

onStartCommand(), 355
Export Android Application,

363–366
Export dialog, 363
external storage, 214–216

F

features, 3
files

data persistence, 209–218
transfer, 407–409

File Explorer tab, 407
FILE_DOWNLOAD_ACTION, 349
FileInputStream, 213
FileOutputStream, 213
fill_parent, 84, 130
filtering. See also <intent-filter>

IntentFilter, 349, 414
ListView, 160
setTextFilterEnabled(), 160

finish(), 53

Flash support, 3
flush(), 213
FrameLayout, 82, 93–95
fromPixels(), 319

G

Galaxy Tab, 4
Gallery, 170–176

debugging, 174
MainActivity.java, 172–174
main.xml, 171, 176

gen, 22
Geocoder, 320–321
geocoding, 320–322, 413
GeoPoint, 314, 318, 319
GET, 291
get(), 351
getAction(), 319
getActivity(), 77
getAllContacts(), 225–226
getBaseContext(), 38
getContact(), 226–227
getCurrentHour(), 146–147
getCurrentMinute(), 146
getData(), 54
getDayOfMonth(), 153
getDefault(), 267
getDefaultDisplay(), 110
getExternalStorageDirectory(),

215, 413
getExtras(), 56, 351
getFromLocation(), 320–321
getFromLocationName(), 321
getIntent(), 56
getListView(), 160
getMonth(), 153
getOriginatingAddress(),

272–273
getPackageInfo(), 360–361
getPreferences(), 208–209
getProjection(), 319
getResources(), 162, 412
getService(), 354, 356

420

getSharedPreferences() – IntentService

getSharedPreferences(), 204–208
debugging, 206–207
MainActivity.java, 205–206
main.xml, 204–205

getString(), 56
getSystemService(), 326
getType(), 413

content providers, 253
data types, 253
MIME, 252

getYear(), 153
Gmail/Email application, 281
GONE, 138
Google Maps, 13, 302–322

Android SDK, 303
API key, 303–305
built-in zoom controls, 308–310
debugging, 307, 314, 317
displaying, 305–308
geocoding, 320–322
INTERNET, 307
MainActivity.java, 306–307,

313–317
main.xml, 306
markers, 315–318
navigation, 312–315
reverse geocoding, 318, 320–322
views, 310–312

Google TV, 4
GridView, 181–185
groupId, 188

H

hardware support, 3
helper methods, 186–188
hint text, 55
Home button, 19, 32
horizontal, 132
HTC, 4, 398
HTML, 198–199
HTTP, 284–286

GET, 291
WordDefinition(), 294

http://, 70
HTTP_OK, 286
HttpURLConnection, 286

I

icon.png, 23, 385
icons

android:icon, 361
applications, 375

id, 238
Button, 132

IDE. See integrated development
environment

IIS. See Internet Information
Server

ImageAdapter

BaseAdapter, 176, 181
GridView, 184–185
ImageView, 181

ImageButton, 127–135
ImageSwitcher, 177–181, 412

debugging, 180
MainActivity.java, 178–180
main.xml, 177
makeView(), 180
onCreate(), 181
View, 181
ViewFactory, 180

ImageView, 170–176
AsyncTask, 296
debugging, 175
FrameLayout, 93
GridView, 181
ImageAdapter, 181
MainActivity.java, 175
main.xml, 171, 176

import, namespaces, 387
InputStream, 233, 286
InputStreamReader, 213, 291
insert(), 252, 254–255, 413
insertContact(), 224
Install button, 281, 370

integrated development
environment (IDE), 6

Intent, 64–65
addCategory(), 72
arguments, 61
bindService(), 356
Bundle, 56
categories, 65
constructors, 61
data types, 64–65
e-mail, 283
key/value pairs, 77
MainActivity.java, 355
NotificationView, 76
Object, 351
onStartCommand(), 351
passing data, 54–56
request code, 53
setData(), 53, 64
SMS messaging, 272, 276
startActivityForResult(), 63
URL, 350–351

intents
actions, 61
activities, 43–78
BroadcastReceiver, 276
built-in applications, 56–65
data, 61
notifications, 73–78
resolution, 48–49, 64
results, 50–54
SMS messaging, 269–270

TextView, 277
IntentFilter, 349, 414
<intent-filter>, 24, 411

actions, 70
AndroidManifest.xml, 65–71
categories, 70
data, 70
intent resolution, 48–49
services, 335

Intent.FLAG_ACTIVITY

_NEW_TASK, 280
IntentService, 343–346, 414

421

internal storage – MainActivity

internal storage
DDMS, 214
debugging, 212
EditText, 212
MainActivity.java, 210–212
main.xml, 209
save, 209–214

INTERNET

AndroidManifest.xml, 305, 413
Google Maps, 307
permissions, 286, 413

Internet Information
Server (IIS), 369

Internet TVs, 4–5
invalidate(), 315
INVISIBLE, 138
isChecked(), 135, 412
isRouteDisplayed(), 307
itemId, 188

J

JAR, 303
.java, 22, 385
Java EE, 6–7, 387
Java SE Development Kit (JDK), 7
java.io, 209
JDK. See Java SE Development Kit

K

KeyEvent.KEYCODE_DPAD_CENTER, 47
keystores, 304, 363–364
keytool.exe, 304–305

digital certificates, 362
key/value pairs

Bundle, 56
ContentValues, 223
Intent, 77

keywords, 281

L

label view. See TextView

landscape orientation, 97,
102–103, 104

Launch my Browser button, 69
Launch Options dialog, 396
layout, 101–102
Layout view, 17
layout_alignLeft, 92
layout_alignParentBottom, 99
layout_alignParentLeft, 92, 99
layout_alignParentRight, 99
layout_alignParentTop, 92, 99
layout_alignRight, 92
layout_below, 92
layout_centerHorizontal, 92, 99
layout_centerVertical, 99
layout_gravity, 84, 85–86
layout_height, 83, 131
layout-land, 102–103
layout_marginBottom, 83
layout_marginLeft, 83
layout_marginRight, 83
layout_marginTop, 83
LayoutParams, 112, 113
layout_weight, 84, 85–86
layout_width, 83

Button, 130
fill_parent, 130
RadioButton, 132
wrap_content, 84, 130, 132

layout_x, 84
layout_y, 84
LBS. See location-based services
LG, 4
libraries, 4, 305, 387, 413
LinearLayout, 82, 83–87, 112–114

Button, 95–96
EditText, 95–96
layout_gravity, 85–86
LayoutParams, 113
layout_weight, 85–86
main.xml, 83
ScrollView, 95–96

<LinearLayout>, 83, 130
Linux kernel, 4

list views, 156–165
ListActivity, 158, 160
listener, 326
ListView, 156–162, 242

customization, 159–161
debugging, 157, 159
filtering, 160
getListView(), 160
ListActivity, 158
MainActivity.java, 157, 159
main.xml, 158
onListItemClick(), 158
ScrollView, 95
setChoiceMode(), 160
simple_list_item_1, 158

Load button, 215–216
loadDataWithBaseURL(), 198–199
loadUrl(), 196, 199
localhost, 288
Location Controls, 324
Location Manager, 281, 322–327

debugging, 324
MainActivity.java, 322–324

location-based services (LBS),
301–329

Google Maps, 13, 302–322
location data, 322–327

LocationListener, 326
LocationManager, 326, 327
LocationManager

.GPS_PROVIDER, 414
LocationManager.NETWORK_

PROVIDER, 414
LogCat, 31, 32, 230

orientation, 106
PrintContacts(), 245
services, 339, 342
Start Service button, 345

M

MainActivity, 22
Activity, 180
BroadcastReceiver, 279–280

422

MainActivity – messaging

ListActivity, 158
onKeyDown(), 117
String, 143

MainActivity(), 257–258
MainActivity.java, 22, 30, 35, 45,

67–68
AutoCompleteTextView, 142
binary data downloads, 287
BroadcastReceiver, 277–278
built-in zoom controls, 309–310
class, 46
content providers, 240
Context menu, 191–192
DatePicker, 150–151, 153–155
e-mail, 282–283
Gallery, 172–174
getSharedPreferences(),

205–206
Google Maps, 306–307,

313–317
GridView, 182–184
ImageSwitcher, 178–180
Intent, 355
IntentService, 345
internal storage, 210–212
ListView, 157, 159
Location Manager, 322–324
LocationManager, 326
networking, 284–285
onKeyDown, 47
OpenHttpConnection(), 285
Options menu, 188–189
orientation, 105–106
ProgressBar, 136–137, 139–140
services, 333–334, 336–337
SMS messaging, 265–266, 274–275
SpinnerView, 163–164
startActivityForResult(), 51
strings.xml, 162
text file downloads, 289–290
TimePicker, 145–148
Web services, 292–294
WebView, 195–196

main.xml, 17, 18, 22, 23, 46,
66–67, 87–88

AutoCompleteTextView, 141–142
binary data downloads, 286
BroadcastReceiver, 279
Button, 98–99
content providers, 239–240,

256–257
copy, 44
e-mail, 282
FrameLayout, 93
Gallery, 171, 176
getSharedPreferences(),

204–205
Google Maps, 306
GridView, 182
ImageSwitcher, 177
ImageView, 171, 176
internal storage, 209
layout, 101–102
layout-land, 102–103
LinearLayout, 83
ListView, 158
ProgressBar, 136, 139
<ProgressBar>, 138
RelativeLayout, 91–92
res/layout, 81–82, 126,

127–128, 136, 141–142,
144, 163, 386

R.layout.main, 25
ScrollView, 95–96
services, 333
setContentView(), 25
SMS messaging, 265, 273
SpinnerView, 163
startActivityForResult(), 50
TableLayout, 89–90
<TextView>, 126
TimePicker, 144
UI, 112
WebView, 195

Make Calls button, 59
makeView(), 180

Manage applications, 48
managed cursor, 242
managedQuery()

Activity, 242
ORDER BY, 247
projections, 246
WHERE, 246

<manifest>, 361
Manual tab, 325
MapActivity, 307
MapController, 310

animateTo(), 312, 315
MapView, 314

MapOverlay, 318, 319
maps.jar, 303
MapView, 310

invalidate(), 315
MapController, 314
MapOverlay, 318
onTouchEvent(), 319
setSatellite(), 310–311
UI, 305

markers, 315–318
MD5

debug.keystore, 364–365
Keytool.exe, 304–305

measurement units, 85
media support, 3
MediaStore, 238
MediaStore.Images.Media

.EXTERNAL_CONTENT_URI, 243
MediaStore.Images.Media

.INTERNAL_CONTENT_URI, 243
Menu

CreateMenu(), 188
setQuertyMode(), 193

menus
helper methods, 186–188
views, 185–193

MENU button, 189, 190
MenuChoice(), 188, 189, 193
MenuItem, 188
messaging. See SMS messaging

MainActivity (continued)

423

methods – onStartCommand()

methods
Activity, 114–119
add(), 188
databases, 222–223

MIME, 369
getType(), 252
setType(), 64–65
SMS messaging, 269

Min SDK Version, 21
minDistance, 326
minSdkVersion, 414
minTime, 326
mksdcard.exe, 400
MMS, 3
MODE_PRIVATE, 207, 213
MODE_WORLD_WRITEABLE, 213
month, 156
MotionEvent, 319
moveToFirst(), 226
MP4 players, 4–5
multi-tasking, 3
multi-touch, 3

built-in zoom controls, 197
MyBrowserActivity, 70, 72
MyBrowserActivity.java, 65, 68–69
MyDB, 221, 224
MyLocationListener, 326

n

Name, 56
namespaces, 387
navigation, 312–315
netbooks, 4–5
net.learn2develop.MyBrowser, 70
networking, 284–297

AndroidManifest.xml, 284
asynchronous calls, 296–297
binary data downloads, 286–288
HTTP, 284–286
MainActivity.java, 284–285
text file downloads, 288–291
Web services, 291–296

NOOKcolor, 4
NOTICE.txt, 409
NotifcationManager, 73–78
Notification, 77
notifications

intents, 73–78
UI, 114–121

notification bar. See status bar
NotificationManager, 77, 412
NotificationView, 76, 78
NotificationView.java, 73
notification.xml, 73
notify(), 78
notifyChange(), 255

O

Object, 351
onBind(), 335, 354
onCheckedChanged(), 135
onClick()

Load button, 215–216
Save button, 214
SD, 214
Start Service button, 356
views, 135

onContextItemSelected(), 193
onCreate(), 25, 28, 413

Activity, 82
content providers, 252, 254
DBAdapter, 221–222
ImageSwitcher, 181
onRestoreInstanceState(), 108
orientation, 97, 111
setContentView(), 158
setListAdapter(), 158
UI, 29, 82
views, 134

onCreateContextMenu(), 192
onCreateDialog(), 34, 36

callbacks, 37
showDialog(), 148

onCreateOptionsMenu(), 189, 412

onDateSet(), 156
onDestroy(), 28, 32

BroadcastReceiver, 280
stopService(), 335

onFocusChange(), 120–121
onHandleIntent(), 346
onKeyDown(), 114

Activity, 117
boolean, 118
built-in zoom controls, 310
MainActivity, 117
MainActivity.java, 47

onKeyUp, 114
onListItemClick(), 158
onLocationChanged(), 326
onMenuItemSelected, 114
onMenuOpened, 114
onNothingSelected(), 164
onOptionsItemSelected(), 189, 412
onPause(), 28, 412

BroadcastReceiver, 277, 279–280
orientation, 106, 108

onPostExecute(), 297, 340, 414
onProgressUpdate(), 340, 414
onProviderDisabled(), 326
onProviderEnabled(), 326
onReceive(), 269

Bundle, 272
SMSReceiver, 280

onRestart(), 28, 32
onRestoreInstanceState(), 108
onResume(), 28, 32

BroadcastReceiver, 277, 279–280
onRetainNonConfiguration

Instance(), 109, 412
onSaveInstanceState(), 412

Bundle, 108–109
orientation, 108

onServiceConnected(), 356
onServiceDisconnected(), 356
onStart(), 28, 32
onStartCommand(), 335

execute(), 355
Intent, 351

424

onStatusChanged() – RadioButton

onStatusChanged(), 326
onStop(), 28
onTimeSet(), 149
onTouchEvent(), 319
onUpgrade(), 221–222
Open button, 370
openFileOutput(), 213
OpenHttpConnection()

DownloadImage(), 287
InputStream, 286
MainActivity.java, 285

Optimus One, 4
Options menu, 185, 188–190

CreateMenu(), 189
debugging, 189
MainActivity.java, 188–189

order, 188
ORDER BY, 247
orientation, 86

activities, 104–108, 110–111
anchoring, 98–100
Android Emulator, 106
configuration change, 108–109
EditText, 106, 108
landscape, 97, 102–103, 104
LogCat, 106
MainActivity.java, 105–106
managing changes, 104–108
onCreate(), 97, 111
onPause(), 106, 108
onSaveInstanceState(), 108
persisting state, 108–109
portrait, 97, 103
resizing and repositioning,

101–104
res/layout, 101
UI, 97–111
WindowManager, 109
XML, 104

orientation, 132
OutputStream, 233
Overlay, 317–318

P

Package Explorer, 16, 382–383
Package name, 21
PackageManager, 360–361
parse(), 61
Paste, 44
PDU, 272
PendingIntent, 267, 269

getActivity(), 77
People of Lava, 4
permissions

Android Emulator, 409
AndroidManifest.xml, 267,

270, 286
android.permission

.CALL_PHONE, 62
applications, 280–281
Install button, 281
INTERNET, 286, 413

persisting state, 108–109
perspectives, 387
Phone application, 59
Phone button, 32
phone calls, 406–407
physical capabilities, 402–403
picker views, 144–156
pictures, 169–185
pixel. See px
placeholder text, 55
point. See pt
portrait, 111
portrait orientation, 97, 103
predefined constants, 243–246
PrintContacts(), 245
private keys, 364
progress dialog, 39–42
ProgressBar, 135–141

customization, 139–141
debugging, 137
MainActivity.java, 136–137,

139–140
setMax, 141

style, 141
Visibility, 138

<ProgressBar>, 138
ProgressDialog, 41
progressStatus, 141
Project name, 21
projections, 246
provider, 326
pt, 85
publishing applications, 359–379
Push a file onto the device

button, 368
put(), 223
putBoolean(), 207
putExtra(), 269, 350

e-mail, 283
PutExtras(), 56
putFloat(), 208
putInt(), 208
putLong(), 207
putString(), 207
px, 85, 401

Q

queries. See also managedQuery()
Contacts, 243
content providers, 238
Cursor, 223, 254
strings, 238

predefined constants, 243–246
title, 254

query(), 413
content providers, 252, 254

R

RadioButton, 127–135
horizontal, 132
isChecked(), 135
layout_width, 132
onCheckedChanged(), 135
orientation, 132

425

RadioGroup – setPositiveButton()

RadioGroup, 131
setOnCheckedChange

Listener(), 135
RadioGroup, 127–135

RadioButton, 131
setOnCheckedChange

Listener(), 135
read(), 213
RECEIVE_SMS, 413
refactoring, 388–389
registerReceiver, 349
RelativeLayout, 82, 91–92

anchoring, 98
attributes, 92
FrameLayout, 93

<RelativeLayout>, 98–99
Remember Password checkbox, 90
request code, 53
requestLocationUpdates(), 326
requestWindowFeature(), 33
res, 22
Research In Motion (RIM), 1
res/layout, 25, 44

main.xml, 81–82, 126, 127–128,
136, 141–142, 144, 163, 386

notification.xml, 73
orientation, 101
UI, 28

Resolver getContentResolver(), 242
res/raw, 217–218
results, 50–54
RESULT_CANCELLED, 53
RESULT_OK, 53
res/values, 23

strings.xml, 161, 163
reverse geocoding, 318, 320–322
RIM. See Research In Motion
R.java, 18, 22, 24
R.layout.main, 25
RSS Reader, 288
run(), 343

doSomeWork(), 138

Runnable, 138
runtime, 4

S

-s, 367
Samsung, 4
satellite view, 310–311
save

external storage, 214–216
internal storage, 209–214
onSaveInstanceState(),

108–109, 412
user preferences, 203–209

Save button, 214
scAddress, 267
scale-independent pixel. See sp
Scandinavia Android TV, 4
scheduleAtFixedRate(), 343
screens. See also orientation

Android Emulator, 401–402
screenshots, 375
ScrollView, 82, 95–97

FrameLayout, 95
LinearLayout, 95–96
ListView, 95
main.xml, 95–96

SD. See secure digital
secure digital (SD), 12, 214–216

Android Emulator, 399–401
APK, 369
onClick(), 214

SeekBar, 207
self-signed certificates, 359, 362
Send button, 325
Send Email button, 283
sendBroadcast(), 348–349

BroadcastReceiver, 272
SEND_SMS, 413
sendTextMessage(), 267
sensor, 111
sentIntent, 267
Service, 335, 344, 414

service, 356
services, 331–356

activities
binding, 350–356
communication, 346–350

AndroidManifest.xml, 333, 335
asynchronous, 338–341

IntentService, 343–346
debugging, 334, 337
<intent-filter>, 335
LogCat, 339, 342
long-running tasks, 336–341
MainActivity.java, 333–334,

336–337
main.xml, 333
repeated tasks, 341–343

serviceBinder, 355, 356
ServiceConnection, 355

bindService(), 356
setAlphabeticShortcut(), 188
setBuiltInZoomControls(),

196, 309
setChoiceMode(), 160
setContentView()

Activity, 82
main.xml, 25
onCreate(), 158
UI, 112

setData(), 62
e-mail, 283
Intent, 53, 64

SetHint(), 56
setIs24HourView(), 146
setLatestEventInfo(), 78
setListAdapter(), 158
setMax, 141
setMultiChoiceItems(), 38
setNegativeButton(), 38
setOnCheckedChangeListener(), 135
setOnClickListener(), 134
setOnCreateContextMenu

Listener(), 191, 192
setPositiveButton(), 38

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

426

setProgress() – Telnet

setProgress(), 141
setQuertyMode(), 193
setRequestOrientation(), 110–111
setResult(), 53
setSatellite(), 310–311
setStreetView(), 311–312
setTextFilterEnabled(), 160
setThreshold(), 144
Settings, 238

Manage applications, 48
Settings.CONTENT_URI, 243
setTraffic(), 311–312
setType()

e-mail, 283
MIME, 64–65

setZoom(), 315
shared preferences, 203

XML, 208
SharedPreferences, 203–209
shortcut keys

Android Emulator, 404
setAlphabeticShortcut(), 188
setQueryMode(), 193

shouldOverrideUrlLoading(), 412
Show Map button, 59
showDialog(), 37

callbacks, 37
dialog windows, 148
onCreateDialog(), 148

SimpleCursorAdapter, 242
simple_dropdown_item_line, 143
simple_list_item_1, 158
smartphones, 4–5
SMS messaging, 3, 263–281, 413

Android Emulator, 403–406
AndroidManifest.xml, 265,

270–271
AVD Manager, 266
built-in applications, 269
DDMS, 272, 276, 279
debugging, 266, 272, 276, 279
feedback, 267–269
Intent, 272, 276

intents, 269–270
TextView, 277

keywords, 281
MainActivity.java, 265–266,

274–275
main.xml, 265, 273
MIME, 269
receiving, 270–280
sending programmatically,

264–267
TextView, 273, 276, 277
Toast, 272

SMS_DELIVERED, 269
SmsManager, 267
SMSReceiver, 280
SMSReceiver.java, 273–274

BroadcastReceiver, 278–279
src, 271

SMS_SEND, 270
SMS_SENT, 269
Sony, 4
sp, 85
SpinnerView, 162–165

debugging, 164
MainActivity.java, 163–164
main.xml, 163
strings.xml, 163

SQLite, 3, 218
Database Browser, 230

SQLiteOpenHelper, 253
DBAdapter, 221

src, 22
ImageButton, 131
NotificationView.java, 73
SMSReceiver.java, 271

standard prefix, 238
Start Service button, 342

LogCat, 345
onClick(), 356
Toast, 337, 339, 348

startActivity(), 47, 48, 70
Intent.FLAG_ACTIVITY_NEW_

TASK, 280

startActivityForResult(),
50–54, 70

Intent, 63
MainActivity.java, 51
main.xml, 50

startService(), 335, 343
START_STICKY, 335
static resources, 217–218
status bar, 73–78

Display Notification button, 76
NotificationView, 76
ticket text, 77

Stop Service button, 334
stopSelf(), 341, 343
stopService(), 341, 343

onDestroy(), 335
storage, 3

external, 214–216
internal, 209–214

Streak, 4
street view, 311–312
String, 213

InputStreamReader, 291
MainActivity, 143

@string, 23
strings.xml, 23, 161–162, 411

app_name, 24
debugging, 162
getResources(), 162
MainActivity.java, 162
res/values, 163
SpinnerView, 163

style, 141
styles, 32–33
Switch Workspace, 383–385

T

TableLayout, 82, 89–91
<TableRow>, 89
tablets, 4–5
Telephony Actions, 406
Telnet, 403, 405

427

testing – WindowManager

testing. See also debugging
Android Emulator, 18–19, 214
AVDs, 21

tethering, 3
text, 267
text file downloads, 288–291

debugging, 290
MainActivity.java, 289–290

textfile.txt, 217–218
TextView, 85, 113, 126

Context, 38
SimpleCursorAdapter, 242
SMS messaging, 273, 276

intents, 277
<TextView>, 90

<TextView>, 83
fill_parent, 84
main.xml, 126
TextView, 90

themes, 32–33
Thread, 138
Thread.Sleep(), 337
ticket text, 77
TimePicker, 144–149

Button, 146
debugging, 144, 146, 148
dialog windows, 147–149
MainActivity.java, 145–148
onTimeSet(), 149
UI, 146

TimePickerDialog, 149
Timer, 343
TimerTask, 343
title, 188

queries, 254
Toast, 36, 174, 188, 412

Context, 38
Geocoder, 321
SMS messaging, 272
Start Service button, 337, 339,

348
ToggleButton, 127–135
tools, 400

U

UI. See user interface
update(), 413

content providers, 252, 255–256
updateContact(), 227–228
URI, 238
Uri, 61
UriMatcher, 253
URL

Intent, 350–351
Object, 351

urls, 355
user interface (UI), 81–123

AbsoluteLayout, 88
creating programmatically,

111–114
main.xml, 17, 22, 23, 46,

87–88, 112
MapView, 305
notifications, 114–121
onCreate(), 29, 82
orientation, 97–111
res/layout, 28
setContentView(), 112
TimePicker, 146
views, 125–168
XML, 82, 386

user preferences, 203–209
user-data-qemu.img, 409
<uses-library>, 305, 413
<uses-sdk>, 24, 361

V

values, 22
versions, 2

AndroidManifest.xml, 23, 360
android:minSdkVersion, 24
android:versionCode, 360,

361, 411
android:versionName, 360, 361
applications, 360–362

DATABASE_VERSION, 222, 230
Min SDK Version, 21
minSdkVersion, 414

View, 181
views. See also specific views

activities, 82–83
debugging, 128–129
events, 119–121, 133–135
Google Maps, 310–312
list, 156–165
menus, 185–193
onClick(), 135
onCreate(), 134
picker, 144–156
pictures, 169–185
UI, 125–168

ViewFactory, 180
View.findViewById(), 132
ViewGroups, 82–83
Visibility, 138
vnd.android-dir/mms-sms, 269

W

Web Browser button, 59
web servers, 369–372
Web services

debugging, 294
MainActivity.java, 292–294
networking, 291–296

WebSettings, 196
WebView, 194–200

debugging, 196
HTML, 198–199
loadUrl(), 196, 199
MainActivity.java, 195–196
main.xml, 195

WebViewClient, 412
WHERE, 246
while, 141
Wi-Fi triangulation, 322
Window.FEATURE_NO_TITLE, 33
WindowManager, 109

428

withAppendedId() – zoomOut()

withAppendedId(), 243
WordDefinition(), 294
<WordDefinition>, 295–296
workspaces

Eclipse, 381–382
Switch Workspace, 383–385

wrap_content

layout_height, 131
layout_width, 84, 130, 132

write(), 213

WRITE_EXTERNAL_STORAGE, 413
AndroidManifest.xml, 216

x

XML
downloads, 291
orientation, 104
shared preferences, 208
UI, 82, 386

Y

yr, 156

Z

zoom. See built-in zoom controls
zoomIn(), 309, 310
zoomOut(), 309, 310

	WroxBooks
	Beginning Android Application Development
	Introduction
	Chapter 1: Getting Started with Android Programming
	What Is Android?
	Obtaining the Required Tools
	Summary

	Chapter 2: Activities and Intents
	Understanding Activities
	Linking Activities Using Intents
	Calling Built-In Applications Using Intents
	Displaying Notifications
	Summary

	Chapter 3: Getting to Know the Android User Interface
	Understanding the Components of a Screen
	Adapting to Display Orientation
	Managing Changes to Screen Orientation
	Creating the User Interface Programmatically
	Listening for UI Notifications
	Summary

	Chapter 4: Designing Your User Interface Using Views
	Basic Views
	Picker Views
	List Views
	Summary

	Chapter 5: Displaying Pictures and Menus with Views
	Using Image Views to Display Pictures
	Using Menus with Views
	Some Additional Views
	Summary

	Chapter 6: Data Persistence
	Saving and Loading User Preferences
	Persisting Data to Files
	Creating and Using Databases
	Summary

	Chapter 7: Content Providers
	Sharing Data in Android
	Using a Content Provider
	Creating Your Own Content Providers
	Summary

	Chapter 8: Messaging and Networking
	SMS Messaging
	Sending E‑Mail
	Networking
	Summary

	Chapter 9: Location-Based Services
	Displaying Maps
	Getting Location Data
	Summary

	Chapter 10: Developing Android Services
	Creating Your Own Services
	Communicating between a Service and an Activity
	Binding Activities to Services
	Summary

	Chapter 11: Publishing Android Applications
	Preparing for Publishing
	Deploying APK Files
	Summary

	Appendix A: Using Eclipse for Android Development
	Getting Around in Eclipse
	Debugging

	Appendix B: Using the Android Emulator
	Uses of the Android Emulator
	Installing Custom AVDs
	Emulating Real Devices
	SD Card Emulation
	Emulating Devices with Different Screen Sizes
	Emulating Physical Capabilities
	Sending SMS Messages to the Emulator
	Making Phone Calls
	Transferring Files into and out of the Emulator
	Resetting the Emulator

	Appendix C: Answers to Exercises
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers

	Index

