
 Mobile Application Development

 Unit-1

 Android Introduction

 Android is an operating system based on Linux kernel, developed by Google. Linux
 is an Open Source and free operating system and with some modifications on the
 Linux operating system, android OS was developed. Linux OS is majorly used in
 server and Desktop operating system so the android operating system is focused on
 touch screen mobile devices like smartphones and tablets

 Various Platform for Mobile

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Android OS: The Android operating system is the most popular operating system
 today. It is a mobile OS based on the Linux Kernel and open-source software. The
 android operating system was developed by Google. The first Android device was
 launched in 2008.

 BlackBerry OS: The BlackBerry operating system is a mobile operating system
 developed by Research In Motion (RIM). This operating system was designed
 specifically for BlackBerry handheld devices.

 iPhone OS / iOS : The iOS was developed by the Apple inc for the use on its device.
 The iOS operating system is the most popular operating system today. It is a very
 secure operating system. The iOS operating system is not available for any other
 mobiles.

 Windows Mobile OS : The window mobile OS is a mobile operating system that was
 developed by Microsoft. It was designed for the pocket PCs and smart mobiles.

 Android API

 An Application Programming Interface (API) is a particular set of rules (‘code’)
 and specifications that programs can follow to communicate with each other .
 APIs are growing exponentially every year.
 The world of software moves fast. In earlier days data entered and processed in the
 same system, but now the origin of the data and processing place is entirely
 different. We should be able to access the data from anywhere at any time , that’s
 why we store this data in cloud storage .
 For sending and receiving data from/to the server ,we want a middle man who is
 platform independent.That middleman handles the requests and serves the
 response to the user .The below diagram illustrates this better than words.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 The End user sends a request , API executes the instruction then gets the data
 from the server and responds to the user.

 Types of API :

 ● SOAP API (Simple object Access Protocol)

 ● REST API (Representational state transfer)

 Andriod Architecture

 Android architecture contains a different number of components to support any
 android device needs. Android software contains an open-source Linux Kernel
 having a collection of C/C++ libraries which are exposed through an application
 framework services.
 Among all the components Linux Kernel provides main functionality of
 operating system functions to smartphones and Dalvik Virtual Machine (DVM)
 provides a platform for running an android application.

 The main components of android architecture are following:-

 ● Applications
 ● Application Framework
 ● Android Runtime
 ● Platform Libraries
 ● Linux Kernel

 Pictorial representation of android architecture with several main components and
 their sub components –

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Applications –

 Applications is the top layer of android architecture . The pre-installed
 applications like home, contacts, camera, gallery etc and third party applications
 downloaded from the play store like chat applications, games etc. will be installed on
 this layer only.
 It runs within the Android run time with the help of the classes and services
 provided by the application framework.

 Application framework –

 Application Framework provides several important classes which are used to
 create an Android application . It provides a generic abstraction for hardware
 access and also helps in managing the user interface with application
 resources. Generally, it provides the services with the help of which we can create a
 particular class and make that class helpful for the Applications creation.
 It includes different types of services activity manager, notification manager,
 view system, package manager etc. which are helpful for the development of our
 application according to the prerequisite.

 Application runtime –

 The Android Runtime environment is one of the most important part of Android .
 It contains components like core libraries and the Dalvik virtual machine(DVM).
 Mainly , it provides the base for the application framework and powers our
 application with the help of the core libraries .
 Like Java Virtual Machine (JVM), Dalvik Virtual Machine (DVM) . It depends on
 the layer Linux kernel for threading and low-level memory management. The core
 libraries enable us to implement android applications using the standard JAVA or
 Kotlin programming languages.

 Platform libraries –

 The Platform Libraries include various C/C++ core libraries and Java based
 libraries such as Media, Graphics, Surface Manager, OpenGL etc. to provide
 support for android development.

 ● Media library provides support to play and record audio and video formats.
 ● Surface manager responsible for managing access to the display subsystem.
 ● SGL and OpenGL both cross-language, cross-platform application program

 interface (API) are used for 2D and 3D computer graphics.
 ● SQLite provides database support and FreeType provides font support.
 ● Web-Kit This open source web browser engine provides all the functionality

 to display web content and to simplify page loading.
 ● SSL (Secure Sockets Layer) is security technology to establish an encrypted

 link between a web server and a web browser.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Linux Kernel –

 Linux Kernel is the heart of the android architectu re. It manages all the
 available drivers such as display drivers, camera drivers, Bluetooth drivers,
 audio drivers, memory drivers, etc . which are required during the runtime.
 The Linux Kernel will provide an abstraction l ayer between the device hardware
 and the other components of android architecture. It is responsible for
 management of memory, power, devices etc.
 The features of Linux kernel are:

 ● Security: The Linux kernel handles the security between the application and
 the system.

 ● Memory Management: It efficiently handles the memory management
 thereby providing the freedom to develop our apps.

 ● Process Management : It manages the process well, allocates resources to
 processes whenever they need them.

 ● Network Stack : It effectively handles the network communication.
 ● Driver Model: It ensures that the application works properly on the device

 and hardware manufacturers responsible for building their drivers into the
 Linux build.

 Android Runtime

 Android Runtime (ART) is an application runtime environment used by the
 Android operating system .
 ART performs the translation of the application's bytecode into native
 instructions that are later executed by the device's runtime environment.

 When we build our app and generate APK, part of that APK are .dex files . Those
 files contain the source code of our app including all libraries that we used in
 low-level code designed for a software interpreter — the bytecode .

 When a user runs our app the bytecode written in .dex files is translated by
 Android Runtime into the machine code — a set of instructions that can be
 directly understood by the machine and is processed by the CPU.

 Android Runtime also manages memory and garbage collection but, to not make
 this article too long I’ll focus here only on a compilation .

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Dalvik Virtual Machine
 The Dalvik Virtual Machine (DVM) is an android virtual machine optimized for
 mobile devices. It optimizes the virtual machine for memory , battery life and
 performance .

 The Dex compiler converts the class files into the .dex file that runs on the Dalvik
 VM. Multiple class files are converted into one dex file.

 There are 2 types of files:

 ● .dex(Dalvik Executable file) file is an android’s compiled code file .
 ● These .dex files are then zipped into a single .apk file.
 ● .odex file is created by the Android operating system to save space and

 increase the boot speed of an Android app (a .apk file).

 DALVIK VIRTUAL MACHINE ANDROID RUNTIME

 Faster Booting time Rebooting is significantly longer

 Cache builds up overtime The cache is built during the first boot

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Occupies less space due to JIT Consumes a lot of storage space
 internally due to AOT

 Works best for small storage
 devices Works best for Large storage devices

 Stable and tested virtual machine Experimental and new – not much app
 support comparatively

 Longer app loading time
 Extremely Faster and smoother Faster
 and app loading time and lower processor
 usage

 Uses JIT compiler(JIT: Just-In-Time)
 Thereby resulting in lower storage
 space consumption

 Uses AOT compiler(Ahead-Of-Time)
 thereby compiling apps when installed

 Application lagging due to garbage
 collector pauses and JIT

 Reduced application lagging and better
 user experience

 App installation time is
 comparatively lower as the
 compilation is performed later

 App installation time is longer as
 compilation is done during installation

 DVM converts bytecode every time
 you launch a specific app.

 ART converts it just once at the time of
 app installation. That makes CPU
 execution easier.
 Improved battery life due to faster
 execution.

 Features of Android

 ● User Interface: The user interface of the Android operating system is straight
 forward, and these features make it very user friendly.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ● Multiple Language Support: Android supports multiple languages in its
 operating system and one can change the language very easily based on
 one’s requirement, the International languages supported are English,
 Germany, Chinese, Dutch, French, German, Japanese, Korean, Russian, and
 many more also some native language of India is also Supported Like Hindi,
 Marathi, Gujarati, Punjabi and many more.

 ● Multi-tasking: Android provides support to run apps and services in the
 background with ease which allows the users to use multiple apps at the
 same time.

 ● Connectivity : Android has extensive support to the connectivity and it
 supports connectivity such as WiFi, Bluetooth, Hotspot, CDMA, GSM, NFC,
 VOLTE, UBB, VPN, 3G network band, and 4G Network Band.

 ● Extensive Application Support : Android have Play store which is used as
 the major tool to download and update applications on the operating system,
 however, one can download the installer(often called as APK file) and install it
 manually, but it is not much recommended as third party applications could be
 prone to some security breach in the smartphones.

 ANDROID SDK

 Android SDK stands for Android Software Development Kit which is developed
 by Google for Android Platform. With the help of Android SDK, we can create
 Android Apps easily.

 About Android SDK
 Android SDK is a collection of libraries and Software Development tools that are
 essential for Developing Android Applications. Whenever Google releases a new
 version or update of Android Software, a corresponding SDK also releases
 with it .

 Components of Android SDK

 Android SDK Components play a major role in the Development of Android
 applications. Below are the important components:

 1. Android SDK Tools
 Android SDK tool is an important component of Android SDK. It consists of a
 complete set of development and debugging tools. Below are the SDK developer
 tools:

 ● Android SDK Build tool.
 ● Android Emulator.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ● Android SDK Platform-tools.
 ● Android SDK Tools.

 2. Android SDK Build-Tools
 Android SDK build tools are used for building actual binaries of Android App . The
 main functions of Android SDK Build tools are built, debug, run and test
 Android applications.

 3. Android Emulator
 An Android Emulator is a device that simulates an Android device on your
 system. . In Android Emulator the virtual android device is shown on our
 system on which we run the Android application that we code.

 4. Android SDK Platform-tools
 Android SDK Platform-tools is helpful when we are working on a Project and they will
 show the error messages at the same time. It is specifically used for testing . I

 5. Android SDK Tools
 Android SDK tool is a component of SDK tool. It consists of a set of tools which and
 other Utilities which are crucial for the development of Android Application. It
 contains the complete set of Debugging and Development tools for android.

 6. SDK Platforms
 For Each Android Software, one SDK platform is available as shown below :
 Like in this Android 11.0(R) is installed.
 These are numbered according to the android version.

 Android Emulator
 An Android emulator is a tool that creates virtual Android devices (with software and
 hardware) on your computer. Note that:

 ● It is a program (a process that runs on your computer’s operating system).
 ● It works by mimicking the guest device’s architecture (more on that in a

 bit).

 Capabilities
 Data transfer is faster on a virtual device (than a physical device connected via USB).
 The drag-and-drop file upload lets you place .apk files from your computer to the

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 virtual mobile device. It’s particularly great when developers need to quickly test
 apps under context.
 The emulator is also pretty useful when you’re working with physical sensors like the
 accelerometer. If you were testing a specific app feature that relies on the sensors,
 it’ll be easier to configure the settings through the visual, extended controls of the
 emulator.

 ● Limitations
 The most popular chipset for Android smartphones out there is ARM v7a.
 Most PCs/laptops run on Intel (x86). Recall that guest and host CPU
 architectures need to match for faster emulation. Basically, without a
 computer equipped with an ARM processor, you’re stuck with poor emulation
 of most of the commercially-available Android devices.
 The AVD Manager creates separate directories to store each virtual device’s
 user data, SD card data, and cache. A single virtual device can take as much
 as 3.5GB of your disk space. Over time, a library of virtual devices will clam up
 your workstation.
 Virtual devices’ performance is affected by that of your workstation. The
 emulator will crash and burn if you don’t have enough free disk space at
 launch.
 Enabling hardware-acceleration takes care of performance issues. But setting
 up hardware-acceleration is a complex process that even experienced
 developers struggle with. The results often lead to complete system failure.

 Requirement and recommendations

 ● SDK Tools 26.1.1 or higher

 ● 64-bit processor

 ● Windows: CPU with UG (unrestricted guest) support

 ● HAXM 6.2.1 or later (recommended HAXM 7.2.0 or later)

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 UNIT - 2

 Main Components of Andriod APP

 There are some necessary building blocks that an Android application consists of.
 These loosely coupled components are bound by the application manifest file
 which contains the description of each component and how they interact . The
 manifest file also contains the app’s metadata , its h ardware configuration, and
 platform requirements, external libraries, and required permissions.

 There are the following main components of an android app:

 1. Activities
 Activities are said to be the presentation layer of our applications . The UI of our
 application is built around one or more extensions of the Activity class . By
 using Fragments and Views, activities set the layout and display the output and
 also respond to the user’s actions .
 An activity is implemented as a subclass of class Activity.

 ● Java
 ● Kotlin

 Tags :

 public class MainActivity extends Activity {
 }

 2. Services

 Services are like invisible workers of our app. These components run at the
 backend, updating your data sources and Activities, triggering Notification,
 and also broadcast Intents . They also perform some tasks when applications
 are not active.
 A service can be used as a subclass of class Service:

 ● Java
 ● Kotlin

 public class ServiceName extends Service {
 }

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 3. Content Providers
 It is used to manage and persist the application data and also typically interacts
 with the SQL database. They are also responsible for sharing the data beyond
 the application boundaries . The Content Providers of a particular application
 can be configured to allow access from other applications, and the Content
 Providers exposed by other applications can also be configured.
 A content provider should be a subclass of the class ContentProvider.

 ● Java
 ● Kotlin

 public class contentProviderName extends ContentProvider {
 public void onCreate(){}

 }

 4. Broadcast Receivers
 They are known to be intent listeners as they enable your application to listen to
 the Intents that satisfy the matching criteria specified by us. Broadcast Receivers
 make our application react to any received Intent thereby making them perfect for
 creating event-driven applications.

 REPO (Android Tool Repository)

 Repo is a tool that we built on top of Git . Repo helps us manage the many Git
 repositories, does the uploads to our revision control system , and automates
 parts of the Android development workflow. Repo is not meant to replace Git, only to
 make it e asier to work with Git in the context of Android . The repo command is
 an executable Python script that you can put anywhere in your path.

 Different in REPO and GIT

 Repo uses manifest files to aggregate Git projects into the Android
 superproject . You can put the repo command, which is an executable Python
 script, anywhere in your path . In working with t he Android source files, you can
 use Repo for across-network operations such as with a single Repo working
 directory.

 Git is an open-source version-control system designed to handle very large
 projects that are distributed over multiple repositories. In the context of Android,
 we use Git for local operations such as local branching, commits, diffs, and edits.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Click on the cheatsheet to open it in a new window for easier printing.

 Application manifest file

 Every project in Android includes a Manifest XML file, which is
 AndroidManifest.xml, located in the root directory of its project hierarchy. The
 manifest file is an important part of our app because it defines the structure and
 metadata of our application, its components, and its requirements .

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 This file includes nodes for each of the Activities , Services , Content Providers ,
 and Broadcast Receiver that make the application, and using Intent Filters and
 Permissions determines how they coordinate with each other and other
 applications.

 The manifest file also specifies the application metadata, which includes its icon,
 version number, themes, etc ., and additional t op-level nodes can specify any
 required permissions, unit tests, and define hardware, screen, or platform
 requirements. The manifest comprises a root manifest t ag with a package
 attribute set to the project’s package . It should also include an xmls:android
 attribute that will supply several system attributes used within the file. The
 versionCode attribute is used to define the current application version in the
 form of an integer that increments itself with the iteration of the version due to
 update. Also, the versionName attribute is used to specify a public version that will
 be displayed to the users.

 A manifest file includes the nodes that define the application components ,
 security settings, test classes, and requirements that make up the application.

 Some of Its Nodes are

 1. manifest

 The main component of the AndroidManifest.xm l file is known as manifest.
 Additionally, the package field describes the activity class’s package name. It
 must contain an <application> element with the xmlns:android and package attribute
 specified.

 XML :

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android=" http://schemas.android.com/apk/res/android "

 xmlns:tools=" http://schemas.android.com/tools "
 package="com.example.geeksforgeeks">

 <!-- manifest nodes -->
 <applicataion>

 </applicataion>
 </manifest>

 2. Uses-sdk

 It is used to define a minimum and maximum SDK version by means of an API
 Level integer that must be available on a device so that our application functions

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 properly , and the target SDK for which it has been designed using a combination of
 minSdkVersion, maxSdkVersion, and targetSdkVersion attributes, respectively.
 It is contained within the <manifest> element.

 ● XML

 <uses-sdk
 android:minSdkVersion="18"
 android:targetSdkVersion="27" />

 3. uses-permission

 It outlines a system permission that must be granted by the user for the app to
 function properly and is contained within the <manifest> element. When an
 application is installed (on Android 5.1 and lower devices or Android 6.0 and higher),
 the user must grant the application permissions.

 ● XML

 <uses-permission
 android:name="android.permission.CAMERA"
 android:maxSdkVersion="18" />

 4. Application

 A manifest can contain only one application node. It uses attributes to specify the
 metadata for your application (including its title, icon, and theme) . During
 development, we should include a debuggable attribute set to true to enable
 debugging, then be sure to disable it for your release builds. The application node
 also acts as a container for the Activity, Service, Content Provider, and
 Broadcast Receiver nodes that specify the application components . The name
 of our custom application class can be specified using the android:name attribute.

 ● XML

 <application
 < android:name =".GeeksForGeeks"

 android:icon ="@drawable/gfgIcon"
 >

 <!-- application nodes -->

 </application>

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 5. uses-library

 It defines a shared library against which the application must be linked . This
 element instructs the system to add the library’s code to the package’s class
 loader. It is contained within the <application> element.

 ● XML

 <uses-library
 android:name="android.test.runner"
 android:required="true" />

 6. Activity

 The Activity sub-element of an application refers to an activity that needs to be
 specified in the AndroidManifest.xml file . It has various characteristics, like label,
 name, theme, launchMode, and others . In the manifest file, all elements must be
 represented by <activity>. Any activity that is not declared there won’t run and
 won’t be visible to the system. It is contained within the <application> element.

 ● XML

 <activity
 android:name=".MainActivity"
 android:exported="true">

 </activity>

 7. Intent-filter

 It is the sub-element of activity that s pecifies the type of intent to which the
 activity, service, or broadcast receiver can send a response. It allows the
 component to receive intents of a certain type while filtering out those that are
 not useful for the component . The intent filter must contain at least one <action>
 element.

 ● XML

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter >

 8. Action

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 It adds an action for the intent-filter . It is contained within the <intent-filter>
 element.

 ● XML

 <action android:name=" android.intent.action.MAIN " />

 9. Category

 It adds a category name to an intent-filter . It is contained within the <intent-filter>
 element.

 ● XML

 <category android:name=" android.intent.category .LAUNCHER" />

 10. Uses-configuration

 The uses-configuration components are used to specify the combination of input
 mechanisms that are supported by our application . It is useful for games that
 require particular input controls.

 ● XML

 <uses-configuration
 android:reqTouchScreen=”finger”
 android:reqNavigation=”trackball”
 android:reqHardKeyboard=”true”
 android:reqKeyboardType=”qwerty”/>

 11. uses-features

 It is used to specify which hardware features your application requires . This
 will prevent our application from b eing installed on a device that does not
 include a required piece of hardware such as NFC hardware, as follows:

 ● XML

 < uses-feature android :name=”android.hardware.nfc” />

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 12. permission

 It is used to create permissions to restrict access to shared application
 components . We can also use the existing platform permissions for this purpose or
 define your own permissions in the manifest.

 ● XML

 <permission
 android: name=”com.paad.DETONATE_DEVICE”
 android:protectionLevel=“dangerous”
 android:label=”Self Destruct”
 android:description=”@string/detonate_description”>

 </permission>

 DDMS (Dalvik Debug Monitor Server)
 Android ships with a debugging too l called the Dalvik Debug Monitor Server
 (DDMS), which provides port-forwarding services, screen capture on the device,
 thread and heap information on the device, logcat, process, and radio state
 information, incoming call and SMS spoofing, location data spoofing, and
 more . it is not an exhaustive exploration of all the features and capabilities.
 DDMS ships in the tools/ directory of the SDK . Enter this directory from a
 terminal/console and type ddms (or ./ddms on Mac/Linux) to run it. DDMS will work
 with both the emulator and a connected device . If both are connected and running
 simultaneously, DDMS defaults to the emulator.
 DDMS stands for Dalvik Debug Monitor Server. It gives the wide array of debugging
 features:

 1. Port forwarding services
 2. Screen capture
 3. Thread and heap information
 4. Network traffic tracking
 5. Location data spoofing

 File Explorer
 With the File Explorer, you can vi ew the device file system and perform basic
 management, like pushing and pulling files . This circumvents using the adb push
 and pull commands, with a GUI experience.

 With DDMS open, select Device > File Explorer... to open the File Explorer window.
 You can drag-and-drop into the device directories, but cannot drag out of them. To
 copy files from the device, select the file and click the Pull File from Device button in
 the toolbar. To delete files, use the Delete button in the toolbar.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 If you're interested in using an SD card image on the emulator, you're still required to
 use the mksdcard command to create an image, and then mount it during emulator
 bootup. For example, from the /tools directory, execute:
 $ mksdcard 1024M ./img
 $ emulator -sdcard ./img

 Now, when the emulator is running, the DDMS File Explorer will be able to read and
 write to the sdcard directory. However, your files may not appear automatically. For
 example, if you add an MP3 file to the sdcard, the media player won't see them until
 you restart the emulator. (When restarting the emulator from command line, be sure
 to mount the sdcard again.)

 Android Activity Lifecycle

 Android Activity Lifecycle is controlled by 7 methods of android.app .
 Activity class. The android Activity is the subclass of ContextThemeWrapper class .
 An activity is the single screen in android.
 It is like a window or frame of Java.
 By the help of activity, you can place all your UI components or widgets in a single
 screen.
 Th e 7 lifecycle method of Activity describes how activity will behave at different
 states.

 Android Activity Lifecycle methods

 Let's see the 7 lifecycle methods of android activity.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Method Description

 onCreate called when activity is first created.

 onStart called when activity is becoming visible to the user.

 onResume called when activity will start interacting with the user.

 onPause called when activity is not visible to the user.

 onStop called when activity is no longer visible to the user.

 onRestart called after your activity is stopped, prior to start.

 onDestroy called before the activity is destroyed.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Android Activity Lifecycle Example

 It provides the details about the invocation of life cycle methods of activity . In this
 example, we are displaying the content on the logcat.

 package example.javatpoint.com.activity lifecycle;

 import android.app.Activity;
 import android.os.Bundle;
 import android.util.Log;

 public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Log.d("lifecycle","onCreate invoked");

 }
 @Override
 protected void onStart() {

 super.onStart();
 Log.d("lifecycle","onStart invoked");

 }
 @Override
 protected void onResume() {

 super.onResume();
 Log.d("lifecycle","onResume invoked");

 }
 @Override
 protected void onPause() {

 super.onPause();
 Log.d("lifecycle","onPause invoked");

 }
 @Override
 protected void onStop() {

 super.onStop();
 Log.d("lifecycle","onStop invoked");

 }
 @Override
 protected void onRestart() {

 super.onRestart();
 Log.d("lifecycle","onRestart invoked");

 }
 @Override
 protected void onDestroy() {

 super.onDestroy();
 Log.d("lifecycle","onDestroy invoked"); } }

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 LOGCAT WINDOW

 LogCat Window is the place where various messages can be printed when
 an application runs . Suppose, you are running your application and the
 program crashes, unfortunately. Then, Logcat Window is going to help you
 to debug the output by collecting and viewing all the messages that your
 emulator throws.

 So, this is a very useful component for the app development because this
 Logcat dumps a lot of system messages and these messages are
 actually thrown by the emulator.

 This means, that when you run your app in your emulator, then you will see a
 lot of messages which i nclude all the information, all the verbose
 messages, and all the errors that you are getting in your application .
 Suppose, an application of about 10000 lines of code gets an error. So, in that
 10000 line codes, to detect the error Logcat helps by displaying the error
 messages.

 Errors in different modules and methods can be easily detected with the
 help of the LogCat window.

 Using LogCat window:

 The LogCat prints an error using a Log Class . The class which is used to
 print the log messages is actually known as a Log Class. So, this class is
 responsible to print messages in the Logcat terminal.

 There are lots of methods that are present in the log class:

 v(String, String)
 verbose

 d(String, String) debug

 i(String, String) information

 w(String, String) warning

 e(String, String) error

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 All these methods contain two parameters in them. The first and second both are
 the string. When you print the log messages with these different methods , then
 you will get a corresponding color according to the method.

 Method The output will be printed in

 verbose black

 debug blue

 information green

 warning red

 error orange

 The verbose method is of very lesser priority and erro r is of higher priority.
 Thus, the method’s priorit y increases from verbose to error.

 Syntax:
 // for verbose Log.v ("TAG", "MESSAGE");
 // for debug Log.d ("TAG", "MESSAGE");
 // for information Log.i ("TAG", "MESSAGE");
 // for warning Log.w ("TAG", "MESSAGE");
 // for error Log.e ("TAG", "MESSAGE");

 For Example, A verbose log message can be written as:

 Log.v("MainActivity", "We are under the Main Activity");

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 UNIT - 3

 Andriod layouts

 Android Layout is used to define the user interface that holds the UI controls or
 widgets that will appear on the screen of an android application or activity screen.
 Generally, every application is a combination of View and ViewGroup. As we know,
 an android application contains a large number of activities and we can say each
 activity is one page of the application. So, each activity contains multiple user
 interface components and those components are the instances of the View and
 ViewGroup. All the elements in a layout are built using a hierarchy of View and
 ViewGroup objects.

 A View is defined as the user interface which is used to create interactive UI
 components such as TextView , ImageView , EditText , RadioButton , etc., and is
 responsible for event handling and drawing. They are Generally Called Widgets.

 A ViewGroup act as a base class for layouts and layouts parameters that hold other
 Views or ViewGroups and to define the layout properties. They are Generally Called
 layouts.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 The Android framework will allow us to use UI elements or widgets in two ways:

 Use UI elements in the XML file
 Create elements in the Kotlin file dynamically

 Types of Android Layout
 ● Android Linear Layout: LinearLayout is a ViewGroup subclass, used to

 provide child View elements one by one either in a particular direction either
 horizontally or vertically based on the orientation property.

 ● Android Relative Layout: RelativeLayout is a ViewGroup subclass, used to
 specify the position of child View elements relative to each other like (A to the
 right of B) or relative to the parent (fix to the top of the parent).

 ● Android Constraint Layout: ConstraintLayout is a ViewGroup subclass, used
 to specify the position of layout constraints for every child View relative to
 other views present. A ConstraintLayout is similar to a RelativeLayout, but
 having more power.

 ● Android Frame Layout: FrameLayout is a ViewGroup subclass, used to
 specify the position of View elements it contains on the top of each other to
 display only a single View inside the FrameLayout.

 ● Android Table Layout: TableLayout is a ViewGroup subclass, used to display
 the child View elements in rows and columns.

 ● Android Web View: WebView is a browser that is used to display the web
 pages in our activity layout.

 ● Android ListView: ListView is a ViewGroup, used to display scrollable lists of
 items in a single column.

 ● Android Grid View: GridView is a ViewGroup that is used to display a
 scrollable list of items in a grid view of rows and columns.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 UI resource

 Resources are the additional files and static content that your code uses, such as
 bitmaps, layout definitions, user interface strings, animation instructions, and more.
 You should always externalize app resources such as images and strings from your
 code, so that you can maintain them independently

 Android UI Controls
 There are number of UI controls provided by Android that allow you to build the

 graphical user interface for your app.

 Sr.N

 o.

 UI Control & Description

 1 TextView

 This control is used to display text to the user.

 2 EditText

 EditText is a predefined subclass of TextView that includes rich editing

 capabilities.

 3 AutoCompleteTextView

 The AutoCompleteTextView is a view that is similar to EditText, except

 that it shows a list of completion suggestions automatically while the user

 is typing.

 4 Button

 A push-button that can be pressed, or clicked, by the user to perform an

 action.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 5 ImageButton

 An ImageButton is an AbsoluteLayout which enables you to specify the

 exact location of its children. This shows a button with an image (instead

 of text) that can be pressed or clicked by the user.

 6 CheckBox

 An on/off switch that can be toggled by the user. You should use check

 box when presenting users with a group of selectable options that are not

 mutually exclusive.

 7 ToggleButton

 An on/off button with a light indicator.

 8 RadioButton

 The RadioButton has two states: either checked or unchecked.

 9 RadioGroup

 A RadioGroup is used to group together one or more RadioButtons.

 10 ProgressBar

 The ProgressBar view provides visual feedback about some ongoing

 tasks, such as when you are performing a task in the background.

 11 Spinner

 A drop-down list that allows users to select one value from a set.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 12 TimePicker

 The TimePicker view enables users to select a time of the day, in either

 24-hour mode or AM/PM mode.

 13 DatePicker

 The DatePicker view enables users to select a date of the day.

 Create UI Controls
 Input controls are the interactive components in your app's user interface. Android

 provides a wide variety of controls you can use in your UI, such as buttons, text

 fields, seek bars, check box, zoom buttons, toggle buttons, and many more.

 As explained in previous chapter, a view object may have a unique ID assigned to it

 which will identify the View uniquely within the tree. The syntax for an ID, inside an

 XML tag is −

 android : id = "@+id/text_id"

 To create a UI Control/View/Widget you will have to define a view/widget in the

 layout file and assign it a unique ID as follows −

 <? xml version = "1.0" encoding = "utf-8" ?>
 <LinearLayout xmlns:android = "http://schemas.android.com/apk/res/android"

 android:layout_width = "fill_parent"
 android:layout_height = "fill_parent"
 android:orientation = "vertical" >

 <TextView android:id = "@+id/text_id"
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:text = "I am a TextView" />

 </LinearLayout>

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Navigate Between Activities in Android
 Studio

 Switching between pages in an application is one of the basic

 features of an app. We can do that by adding few lines of code.

 For that open android studio and create a new project.

 create new project > Empty Activity >Next > Enter name

 of the project > Finish

 Create two activies that we can navigate in using a button.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 (We can navigate between pages using pretty much every element,

 not necessarily button).

 activity_main.xml

 <?xml version="1.0" encoding="utf-8"?>

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <Button

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 android:id="@+id/page1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This Is the First Page"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 </androidx.constraintlayout.widget.ConstraintLayout>

 activity_main2.xml

 <?xml version="1.0" encoding="utf-8"?>

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity2">

 <Button

 android:id="@+id/page2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 android:text="This Is the Second Page"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 </androidx.constraintlayout.widget.ConstraintLayout>

 Don’t forget to give id’s to the buttons which we will need in

 MainActivity.java file.

 To navigate from activity_main.xml to activity_main2.xml we

 have to write the code in MainActivity.java file .

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 We have to set an onClickListner to the element which we are

 going to use to navigate between pages (in this case button).

 package com.example.navigation;

 import android.content.Intent;

 import android.view.View;

 import android.widget.Button;

 import androidx.appcompat.app.AppCompatActivity;

 import android.os.Bundle;

 public class MainActivity extends AppCompatActivity {

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Button b1 ;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout. activity_main);

 b1 = findViewById(R.id. page1);

 b1.setOnClickListener(

 new View.OnClickListener() {

 @Override

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 public void onClick(View v) {

 Intent i = new
 Intent(MainActivity.this,MainActivity2.class);

 startActivity(i);

 }

 }

);

 }

 }

 Now after clicking the button in the first page the second page is

 opened.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Thank You , Happy Coding!

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ACTion bar

 n Android applications, ActionBar is the element present at the top of the
 activity screen. It is a salient feature of a mobile application that has a
 consistent presence over all its activities. It provides a visual structure to the
 app and contains some of the frequently used elements for the users. Android
 ActionBar was launched by Google in 2013 with the release of Android
 3.0(API 11) . Before that, the name of this top most visual element was
 AppBar . AppBar contains only the name of the application or current activity.
 It was not very much useful for the users and developers also have negligible
 option to customize it.

 Google announced a support library along with the introduction of ActionBar.
 This library is a part of AppCompat and its purpose is to provide backward
 compatibility for older versions of Android and to support tabbed interfaces. All
 applications that use the default theme provided by the
 Android(Theme.AppCompat.Light.DarkActionBar), contains an ActionBar by
 default. However, developers can customize it in several ways depending
 upon their needs. Components included in the ActionBar are:

 ● App Icon: Display the branding logo/icon of the application.

 ● View Controls: Section that displays the name of the application or

 current activity. Developers can also include spinner or tabbed

 navigation for switching between views.

 ● Action Button: Contains some important actions/elements of the

 app that may be required to the users frequently.

 ● Action Overflow: Include other actions that will be displayed as a

 menu.

 Advantages of ActionBar

 ● Provides a customized area to design the identity of an app

 ● Specify the location of the user in the app by displaying the title of

 the current Activity.

 ● Provides access to important and frequently used actions

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ● Support tabs and a drop-down list for view switching and navigation.

 Disadvantages of ActionBar

 ● All features of the ActionaBar are not introduced at once but were

 introduced with the release of different API levels such as API 15,

 17, and 19.

 ● The ActionBar behaves differently when it runs on different API

 levels.

 ● The features that were introduced with a particular API does not

 provide backward compatibility.

 Step 1: Default ActionBar

 As mentioned earlier, every android app contains an ActionBar by default.
 This pre-included ActionBar display title for the current activity that is
 managed by the AncdroidManifest.xml file. The string value of the
 application’s title is provided by @string/app_name resource present under
 the application nodes .

 <application

 …..

 …..

 android:label=”@string/app_name”

 …..

 </application>

 Output:

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Event Handling in Android
 Events are the actions performed by the user in order to interact with the
 application, for e.g. pressing a button or touching the screen. The events are
 managed by the android framework in the FIFO manner i.e. First In – First
 Out. Handling such actions or events by performing the desired task is called
 Event Handling.

 Overview of the input event management

 ● Event Listeners: It is an interface in the View class. It contains a

 single callback method. Once the view to which the listener is

 associated is triggered due to user interaction, the callback methods

 are called.

 ● Event Handlers: It is responsible for dealing with the event that the

 event listeners registered for and performing the desired action for

 that respective event.

 ● Event Listeners Registration : Event Registration is the process in

 which an Event Handler gets associated with an Event Listener so

 that this handler is called when the respective Event Listener fires

 the event.

 ● Touch Mode: When using an app with physical keys it becomes

 necessary to give focus to buttons on which the user wants to

 perform the action but if the device is touch-enabled and the user

 interacts with the interface by touching it, then it is no longer

 necessary to highlight items or give focus to particular View. In such

 cases, the device enters touch mode and in such scenarios, only

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 those views for which the isFocusableInTouchMode() is true will be

 focusable, e.g. plain text widget.

 For e.g . if a button is pressed then this action or event gets registered by the
 event listener and then the task to be performed by that button press is
 handled by the event handler, it can be anything like changing the color of the
 text on a button press or changing the text itself, etc.

 Listeners

 An event listener is an interface in the View class that contains a single callback
 method . These methods will be called by the Android framework when the View to
 which the listener has been registered is triggered by user interaction with the item in
 the UI.

 Event Listeners and their respective event handlers

 ● OnClickListener() – This method is called when the user clicks,

 touches, or focuses on any view (widget) like Button, ImageButton,

 Image, etc. Event handler used for this is onClick().

 ● OnLongClickListener() – This method is called when the user

 presses and holds a particular widget for one or more seconds.

 Event handler used for this is onLongClick().

 ● OnMenuItemClickListener() – This method is called when the user

 selects a menu item. Event handler used for this is

 onMenuItemClick().

 ● OnTouch() – This method is called either for a movement gesture on

 the screen or a press and release of an on-screen key. Event

 handler used for this is onTouch().

 Event Listeners & Event Handlers

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Event Handler Event Listener & Description

 onClick()

 OnClickListener()

 This is called when the user either clicks or touches or

 focuses upon any widget like button, text, image etc. You

 will use onClick() event handler to handle such event.

 onLongClick()

 OnLongClickListener()

 This is called when the user either clicks or touches or

 focuses upon any widget like button, text, image etc. for

 one or more seconds. You will use onLongClick() event

 handler to handle such event.

 onFocusChange()

 OnFocusChangeListener()

 This is called when the widget looses its focus ie. user goes

 away from the view item. You will use onFocusChange()

 event handler to handle such event.

 onKey()

 OnFocusChangeListener()

 This is called when the user is focused on the item and

 presses or releases a hardware key on the device. You will

 use onKey() event handler to handle such event.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 onTouch()

 OnTouchListener()

 This is called when the user presses the key, releases the

 key, or any movement gesture on the screen. You will use

 onTouch() event handler to handle such event.

 onMenuItemClick()

 OnMenuItemClickListener()

 This is called when the user selects a menu item. You will

 use onMenuItemClick() event handler to handle such event.

 onCreateContextMe

 nu()

 onCreateContextMenuItemListener()

 This is called when the context menu is being built(as the

 result of a sustained "long click)

 What is Toast in Android?

 A Toast is a feedback message. It takes a very little space for displaying while
 overall activity is interactive and visible to the user. It disappears after a few
 seconds. It disappears automatically. If user wants permanent visible
 message, Notification can be used.

 Toast class : Toast class provides a simple popup message that is displayed
 on the current activity UI screen (e.g. Main Activity).

 Constants of Toast class

 Constants Description

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 public static final int LENGTH_LONG displays for a long time

 public static final int LENGTH_SHORT displays for a short time

 Methods of Toast class

 Methods Description

 public static Toast makeText(Context
 context, CharSequence text, int
 duration)

 makes the toast message
 consisted of text and time
 duration

 public void show() displays a toast message

 public void setMargin (float
 horizontalMargin, float verticalMargin)

 changes the horizontal and
 vertical differences

 Full code of activity class displaying Toast

 Let's see the code to display the toast.

 File: MainActivity.java

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 1. package example.javatpoint.com.toast;

 2.

 3. import android.support.v7.app.AppCompatActivity;

 4. import android.os.Bundle;

 5. import android.widget.Toast;

 6.

 7. public class MainActivity extends AppCompatActivity {

 8.

 9. @Override

 10. protected void onCreate(Bundle savedInstanceState) {

 11. super .onCreate(savedInstanceState);

 12. setContentView(R.layout.activity_main);

 13.

 14. //Displaying Toast with Hello Javatpoint message

 15. Toast.makeText(getApplicationContext(), "Hello

 Javatpoint" ,Toast.LENGTH_SHORT).show();

 16. }

 17. }

 Output:

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 UNIT - 4

 Thread in Andriod

 Thread is one of the important concepts in Android. Thread is a lightweight
 sub-process that provides us a way to do background operations without interrupting
 the User Interface (UI). When an app is launched, it creates a single thread in which
 all app components will run by default. The thread which is created by the runtime
 system is known as the main thread. The main thread’s primary role is to handle the
 UI in terms of event handling and interaction with views in the UI. If there is a task
 that is time-consuming and that task is run on the main thread, then it will stop other
 tasks until it gets completed, which in turn may result in displaying a warning
 “Application is unresponsive” to the user by the operating system. So we need
 different threads for such tasks and some other tasks.

 All threading components belong to one of two basic categories.

 ● The fragment or activity attached threads: This category of threads are bound

 to the lifecycle of the activity/fragment and these are terminated as soon as

 the activity/fragment is destroyed.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Thread components:

 AsyncTask, Loaders.

 ● The fragment or activity not attached threads: These types of threads can

 continue to run beyond the lifetime of the activity or fragment from which they

 were spawned.

 Threading Components: Service, Intent Service.

 For the two threading components, there are five types of thread used in Android

 mobile development.

 ● Main Thread: When we launch our app on Android, it creates the first thread of

 execution called the “Main Thread”. The communication between the

 components from the Android UI toolkit and the dispatching of events to their

 appropriate UI widgets is handled by the main thread. We should avoid

 network operations, database calls, and the loading of certain components in

 the main thread. Because the main thread is called synchronously when

 executed, that means the user interface will remain completely unresponsive

 until the performance completes.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ● UI Thread: Every app in Android has its own thread which is responsible for

 running the UI objects, like view objects. Such a thread is known as the UI

 thread. The UI thread is the main thread of execution for our app as this is

 where most of the app code is run. The UI thread is where all of our app

 components (like activities, services, content providers, and broadcast

 receivers) are created. This thread allows our tasks to perform their

 background work and then move the results to UI elements such as bitmaps.

 All objects running on our UI thread will be able to access other objects which

 are also running on the same UI thread. The tasks that we run on a thread

 from a thread pool do not run on our UI thread, so they will not have access to

 UI objects. The data moves from a background thread to the UI thread, using a

 handler that runs on the UI thread.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ● Worker Thread: The worker thread is a background thread. The worker threads

 are created separately, other than threads like the UI thread. As we know from

 the rules, we cannot block a UI thread so this is where the worker thread

 comes into play since we can use them to run the child processes and tasks.

 ● Any Thread:

 1
 2
 3
 4
 5
 6
 7
 8
 @Target ([

 AnnotationTarget.FUNCTION, AnnotationTarget.PROPERTY_GETTER,
 AnnotationTarget.PROPERTY_SETTER,

 AnnotationTarget.CONSTRUCTOR,
 AnnotationTarget.CLASS, AnnotationTarget.FILE,
 AnnotationTarget.VALUE_PARAMETER

])

 class AnyThread

 In Any thread, the annotated method can be called from any thread. If the annotated
 element is a class, then all methods in the class can be called from Any Thread.

 ● Binder Thread: Binder thread represents a separate thread of service. The

 binder is a mechanism that provides inter-process communication. The binder

 thread is used in service binding with interprocess communication. This

 concept is mainly related to service calls with interfaces defined by Android

 Interface Definition Language (AIDL).

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 MUltmedia

 The Android multimedia framework includes support for playing variety of common
 media types, so that you can easily integrate audio, video and images into your
 applications. You can play audio or video from media files stored in your application's
 resources (raw resources), from standalone files in the filesystem, or from a data
 stream arriving over a network connection, all using MediaPlayer APIs.

 Method Description

 public void setDataSource(String path) sets the data source (file path or

 http url) to use.

 public void prepare() prepares the player for playback

 synchronously.

 public void start() it starts or resumes the playback.

 public void stop() it stops the playback.

 public void pause() it pauses the playback.

 public boolean isPlaying() checks if media player is playing.

 public void seekTo(int millis) seeks to specified time in

 miliseconds.

 public void setLooping(boolean looping) sets the player for looping or

 non-looping.

 public boolean isLooping() checks if the player is looping or

 non-looping.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 public void selectTrack(int index) it selects a track for the specified

 index.

 public int getCurrentPosition() returns the current playback

 position.

 public int getDuration() returns duration of the file.

 public void setVolume(float leftVolume,float

 rightVolume)

 sets the volume on this player.

 //package com.java2s;
 import java.io. File ;

 import android.content. Context ;
 import android.content.Intent;
 import android.net.Uri;

 public class Main {
 public static void PlayAudio(Context context, String audioPath) {

 Intent intent = new Intent();
 intent.setAction(android.content.Intent.ACTION_VIEW);
 File file = new File (audioPath.toString());
 intent.setDataAndType(Uri.fromFile(file), "audio/*");
 context.startActivity(intent); / / f r o m w w w . j a v a 2 s . c o m

 }

 Android Video Player
 MediaController class

 The android.widget.MediaController is a view that contains media controls like
 play/pause, previous, next, fast-forward, rewind etc.

 VideoView class

 The android.widget.VideoView class provides methods to play and control the video
 player. The commonly used methods of VideoView class are as follows:

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Method Description

 public void

 setMediaController(MediaController controller)

 sets the media controller to the

 video view.

 public void setVideoURI (Uri uri) sets the URI of the video file.

 public void start() starts the video view.

 public void stopPlayback() stops the playback.

 public void pause() pauses the playback.

 public void suspend() suspends the playback.

 public void resume() resumes the playback.

 public void seekTo(int millis) seeks to specified time in

 miliseconds.

 1. <RelativeLayout

 xmlns:androclass = "http://schemas.android.com/apk/res/android"

 2. xmlns:tools = "http://schemas.android.com/tools"

 3. android:layout_width = "match_parent"

 4. android:layout_height = "match_parent"

 5. tools:context = ".MainActivity" >

 6.

 7. <VideoView

 8. android:id = "@+id/videoView1"

 9. android:layout_width = "wrap_content"

 10. android:layout_height = "wrap_content"

 11. android:layout_alignParentLeft = "true"

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 12. android:layout_centerVertical = "true" />

 13.

 14. </RelativeLayout>

 Fragment / cycle

 A Fragment is a piece of an activity which enable more modular activity
 design. A fragment encapsulates functionality so that it is easier to reuse
 within activities and layouts.
 Android devices exists in a variety of screen sizes and densities. Fragments
 simplify the reuse of components in different layouts and their logic. You can
 build single-pane layouts for handsets (phones) and multi-pane layouts for
 tablets. You can also use fragments also to support different layout for
 landscape and portrait orientation on a smartphone

 In Android , the fragment is the part of Activity which represents a portion of
 User Interface(UI) on the screen. It is the modular section of the android
 activity that is very helpful in creating UI designs that are flexible in nature and
 auto-adjustable based on the device screen size. The UI flexibility on all
 devices improves the user experience and adaptability of the application.
 Fragments can exist only inside an activity as its lifecycle is dependent on the
 lifecycle of host activity. For example, if the host activity is paused, then all the
 methods and operations of the fragment related to that activity will stop
 functioning, thus fragment is also termed as sub-activity . Fragments can be
 added, removed, or replaced dynamically i.e., while activity is running.

 <fragment> tag is used to insert the fragment in an android activity layout. By
 dividing the activity’s layout multiple fragments can be added in it.

 Below is the pictorial representation of fragment interaction with the activity:

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Types of Android Fragments

 1. Single Fragment: Display only one single view on the device

 screen. This type of fragment is mostly used for mobile phones.

 2. List Fragment: This Fragment is used to display a list-view from

 which the user can select the desired sub-activity. The menu drawer

 of apps like Gmail is the best example of this kind of fragment.

 3. Fragment Transaction: This kind of fragments supports the

 transition from one fragment to another at run time. Users can switch

 between multiple fragments like switching tabs.

 Fragment Lifecycle

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Each fragment has it’s own lifecycle but due to the connection with the Activity
 it belongs to, the fragment lifecycle is influenced by the activity’s lifecycle.

 Methods of the Android Fragment

 Methods Description

 onAttach()
 The very first method to be called when the fragment
 has been associated with the activity. This method
 executes only once during the lifetime of a fragment.

 onCreate() This method initializes the fragment by adding all the
 required attributes and components.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 onCreateView()

 System calls this method to create the user interface of
 the fragment. The root of the fragment’s layout is
 returned as the View component by this method to draw
 the UI.

 onActivityCreated(
)

 It indicates that the activity has been created in which
 the fragment exists. View hierarchy of the fragment also
 instantiated before this function call.

 onStart() The system invokes this method to make the fragment
 visible on the user’s device.

 onResume() This method is called to make the visible fragment
 interactive.

 onPause()
 It indicates that the user is leaving the fragment. System
 call this method to commit the changes made to the
 fragment.

 onStop() Method to terminate the functioning and visibility of
 fragment from the user’s screen.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 onDestroyView()
 System calls this method to clean up all kinds of
 resources as well as view hierarchy associated with the
 fragment.

 onDestroy() It is called to perform the final clean up of fragment’s
 state and its lifecycle.

 onDetach() The system executes this method to disassociate the
 fragment from its host activity.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 UNIT - 5

 SQL Lite Database

 SQLite is another data storage available in Android where we can store data
 in the user’s device and can use it any time when required. In this article, we
 will take a look at creating an SQLite database in the Android app and adding
 data to that database in the Android app. This is a series of 4 articles in which
 we are going to perform the basic CRUD (Create, Read, Update, and Delete)
 operation with SQLite Database in Android

 What is SQLite Database?

 SQLite Database is an open-source database provided in Android which is
 used to store data inside the user’s device in the form of a Text file. We can
 perform so many operations on this data such as adding new data, updating,
 reading, and deleting this data. SQLite is an offline database that is locally
 stored in the user’s device and we do not have to create any connection to
 connect to this database.

 What is SQLite Database?

 SQLite Database is an open-source database provided in Android which is
 used to store data inside the user’s device in the form of a Text file. We can
 perform so many operations on this data such as adding new data, updating,
 reading, and deleting this data. SQLite is an offline database that is locally
 stored in the user’s device and we do not have to create any connection to
 connect to this database.

 How Data is Being Stored in the SQLite Database?

 Data is stored in the SQLite database in the form of tables . When we stored
 this data in our SQLite database it is arranged in the form of tables that are
 similar to that of an excel sheet. Below is the representation of our SQLite
 database which we are storing in our SQLite database.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Important Methods in SQLite Database

 Below are the several important methods that we will be using in this SQLite
 database integration in Android.

 Method Description

 getColumnNames() This method is used to get the Array of
 column names of our SQLite table.

 getCount() This method will return the number of rows in
 the cursor.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 isClosed() This method returns a Boolean value when
 our cursor is closed.

 getColumnCount() This method returns the total number of
 columns present in our table.

 getColumnName(int
 columnIndex)

 This method will return the name of the
 column when we passed the index of our
 column in it.

 getColumnIndex(String
 columnName)

 This method will return the index of our
 column from the name of the column.

 getPosition() This method will return the current position of
 our cursor in our table.

 What we are going to build in this article?

 We will be building a simple application in which we will be adding data to the
 SQLite database. We will be creating a database for adding course name,
 course description, course duration, and course tracks. We will be saving all
 this data in our SQLite database. A sample video is given below to get an idea
 about what we are going to do in this article. Note that we are going to
 implement this project using the Java language.

 Video Player
 00:00
 00:30

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Step by Step Implementation

 Step 1: Create a New Project

 To create a new project in Android Studio please refer to How to Create/Start
 a New Project in Android Studio . Note that select Java as the programming
 language.

 Step 2: Adding permissions to access the storage in the
 AndroidManifest.xml file

 Navigate to the app > AndroidManifest.xml and add the below code to it.

 ● XML

 <uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE" />

 Step 3: Working with the activity_main.xml file

 Navigate to the app > res > layout > activity_main.xml and add the below
 code to that file. Below is the code for the activity_main.xml file.

 ● XML

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout

 xmlns:android=" http://schemas.android.com/apk/res/android "
 xmlns:tools=" http://schemas.android.com/tools "
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".MainActivity">

 <!--Edit text to enter course name-->
 <EditText

 android:id="@+id/idEdtCourseName"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:hint="Enter course Name" />

 <!--edit text to enter course duration-->
 <EditText

 android:id="@+id/idEdtCourseDuration"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:hint="Enter Course Duration" />

 <!--edit text to display course tracks-->
 <EditText

 android:id="@+id/idEdtCourseTracks"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:hint="Enter Course Tracks" />

 <!--edit text for course description-->
 <EditText

 android:id="@+id/idEdtCourseDescription"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:hint="Enter Course Description" />

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 <!--button for adding new course-->
 <Button

 android:id="@+id/idBtnAddCourse"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:text="Add Course"
 android:textAllCaps="false" />

 </LinearLayout>

 Step 4: Creating a new Java class for performing SQLite operations

 Navigate to the app > java > your app’s package name > Right-click on it >
 New > Java class and name it as DBHandler and add the below code to it.
 Comments are added inside the code to understand the code in more detail.

 ● Java

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 import android.content.ContentValues;
 import android.content.Context;
 import android.database.sqlite.SQLiteDatabase;
 import android.database.sqlite.SQLiteOpenHelper;

 public class DBHandler extends SQLiteOpenHelper {

 // creating a constant variables for our database.
 // below variable is for our database name.
 private static final String DB_NAME = "coursedb";

 // below int is our database version
 private static final int DB_VERSION = 1;

 // below variable is for our table name.
 private static final String TABLE_NAME = "mycourses";

 // below variable is for our id column.
 private static final String ID_COL = "id";

 // below variable is for our course name column
 private static final String NAME_COL = "name";

 // below variable id for our course duration column.
 private static final String DURATION_COL = "duration";

 // below variable for our course description column.
 private static final String DESCRIPTION_COL =

 "description";

 // below variable is for our course tracks column.
 private static final String TRACKS_COL = "tracks";

 // creating a constructor for our database handler.
 public DBHandler(Context context) {

 super(context, DB_NAME, null, DB_VERSION);
 }

 // below method is for creating a database by running
 a sqlite query

 @Override

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 public void onCreate(SQLiteDatabase db) {
 // on below line we are creating
 // an sqlite query and we are
 // setting our column names
 // along with their data types.
 String query = "CREATE TABLE " + TABLE_NAME + " ("

 + ID_COL + " INTEGER PRIMARY KEY
 AUTOINCREMENT, "

 + NAME_COL + " TEXT,"
 + DURATION_COL + " TEXT,"
 + DESCRIPTION_COL + " TEXT,"
 + TRACKS_COL + " TEXT)";

 // at last we are calling a exec sql
 // method to execute above sql query
 db.execSQL(query);

 }

 // this method is use to add new course to our sqlite
 database.

 public void addNewCourse(String courseName, String
 courseDuration, String courseDescription, String
 courseTracks) {

 // on below line we are creating a variable for
 // our sqlite database and calling writable method
 // as we are writing data in our database.
 SQLiteDatabase db = this.getWritableDatabase();

 // on below line we are creating a
 // variable for content values.
 ContentValues values = new ContentValues();

 // on below line we are passing all values
 // along with its key and value pair.
 values.put(NAME_COL, courseName);
 values.put(DURATION_COL, courseDuration);
 values.put(DESCRIPTION_COL, courseDescription);
 values.put(TRACKS_COL, courseTracks);

 // after adding all values we are passing

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 // content values to our table.
 db.insert(TABLE_NAME, null, values);

 // at last we are closing our
 // database after adding database.
 db.close();

 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int

 oldVersion, int newVersion) {
 // this method is called to check if the table

 exists already.
 db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
 onCreate(db);

 }
 }

 Step 5: Working with the MainActivity.java file

 Go to the MainActivity.java file and refer to the following code. Below is the
 code for the MainActivity.java file. Comments are added inside the code to
 understand the code in more detail.

 ● Java

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 import android.os.Bundle;
 import android.view.View;
 import android.widget.Button;
 import android.widget.EditText;
 import android.widget.Toast;

 import androidx.appcompat.app.AppCompatActivity;

 public class MainActivity extends AppCompatActivity {

 // creating variables for our edittext, button and
 dbhandler

 private EditText courseNameEdt, courseTracksEdt,
 courseDurationEdt, courseDescriptionEdt;

 private Button addCourseBtn;
 private DBHandler dbHandler;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // initializing all our variables.
 courseNameEdt =

 findViewById(R.id.idEdtCourseName);
 courseTracksEdt =

 findViewById(R.id.idEdtCourseTracks);
 courseDurationEdt =

 findViewById(R.id.idEdtCourseDuration);
 courseDescriptionEdt =

 findViewById(R.id.idEdtCourseDescription);
 addCourseBtn = findViewById(R.id.idBtnAddCourse);

 // creating a new dbhandler class
 // and passing our context to it.
 dbHandler = new DBHandler(MainActivity.this);

 // below line is to add on click listener for our
 add course button.

 addCourseBtn.setOnClickListener(new
 View.OnClickListener() {

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 @Override
 public void onClick(View v) {

 // below line is to get data from all edit
 text fields.

 String courseName =
 courseNameEdt.getText().toString();

 String courseTracks =
 courseTracksEdt.getText().toString();

 String courseDuration =
 courseDurationEdt.getText().toString();

 String courseDescription =
 courseDescriptionEdt.getText().toString();

 // validating if the text fields are empty
 or not.

 if (courseName.isEmpty() &&
 courseTracks.isEmpty() && courseDuration.isEmpty() &&
 courseDescription.isEmpty()) {

 Toast.makeText(MainActivity.this,
 "Please enter all the data..", Toast.LENGTH_SHORT).show();

 return;
 }

 // on below line we are calling a method
 to add new

 // course to sqlite data and pass all our
 values to it.

 dbHandler.addNewCourse(courseName,
 courseDuration, courseDescription, courseTracks);

 // after adding the data we are displaying
 a toast message.

 Toast.makeText(MainActivity.this, "Course
 has been added.", Toast.LENGTH_SHORT).show();

 courseNameEdt.setText("");
 courseDurationEdt.setText("");
 courseTracksEdt.setText("");
 courseDescriptionEdt.setText("");

 }
 });

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 }
 }

 CRUD

 Data from the app can be saved on users’ devices in different ways. We can
 store data in the user’s device in SQLite tables, shared preferences, and
 many more ways. In this article, we will take a look at saving data, reading,
 updating, and deleting data in Room Database on Android. We will perform
 CRUD operations using Room Database on Android. In this article, we will
 take a look at performing CRUD operations in Room Database in Android.

 As the heading tells you here, we are going to learn the CRUD
 operation in SQLite Database.

 But what is CRUD? CRUD is nothing but an abbreviation for the
 basic operations that we perform in any database. And the
 operations are

 ● C reate
 ● R ead
 ● U pdate
 ● D elete

 Android SQLite Database Example App
 Apk

 ● Before moving ahead on this tutorial if you want to know
 what we will be building, you can get the final apk of this
 tutorial from the link given below.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Android SQLite Database Example App Apk Download

 Android SQLite Database Example

 Creating a new Android Studio Project

 ● As always we will create a new Android Studio Project.
 For this example, I have a new project named
 SQLiteCRUDExample.

 ● Once your project is loaded, we can start working on it.

 The Database Structure

 ● The first thing needed is the database structure. We
 create database structure according to the system. But
 here we are not building an application, and it is only an
 example demonstrating the use of SQLite Database. So
 for this, I will use the following table structure.

 Database Structure

 ● Now we have only a single table, but in real-world
 scenarios, you will have multiple tables with some
 complex relationships. Also, remember one thing
 whenever you create a table create a column named id
 with int as PRIMARY KEY and AUTOINCREMENT. (If you

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 are confused don’t worry we will see now how do we
 create tables in database using SQL).

 SQL Queries

 ● Now let’s see how we can create the above table in our
 SQLite database.

 Creating the Table

1

2

3

4

5

6

7

8

9

REATE TABLE employees (

 id INTEGER NOT NULL CONSTRAINT employees_pk PRIMARY KEY AUTOINCREMENT,

 name varchar(200) NOT NULL,

 department varchar(200) NOT NULL,

 joiningdate datetime NOT NULL,

 salary double NOT NULL

 Creating a new Record

1

2

3

4

5

6

NSERT INTO employees

name, department, joiningdate, salary)

ALUES

Belal Khan', 'Technical', '2017-09-30 10:00:00', '40000');

 Reading All Existing Records

1

2

3

ELECT * FROM employees;

 Reading Specific Record

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

1

2

3

ELECT * FROM employees WHERE id = 1;

 Note: * means selecting all the columns, if you want a specific
 column or multiple columns but not all you can write names of the
 columns like SELECT name, department.

 Updating a Record

1

2

3

4

5

6

7

8

PDATE employees

ET

ame = 'Belal Haque',

epartment = 'Research and Development',

alary = '100000'

HERE id = 1;

 Deleting a Record

1

2

3

ELETE FROM employees WHERE id = 1;

 These are just some simple basics operations, but we can perform
 many tasks in our database. For this, you need to learn SQL in
 detail.

 Note: SQL Queries are not case sensitive.

 User Interface Design

 ● To implement all the above-given queries in our
 application, we need an Interface from where we can
 accomplish these tasks. Now, lets think about the

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 screens that we need to make an app that will perform all
 the above-given queries with user interaction.

 Adding a new Employee

 ● The first thing is adding a new record to our database,
 and for this, we can use the following screen.

 Creating Record

 ● As you can see we have EditText, Button, Spinner and
 some TextViews. To create the above interface, you can
 use the following XML code. You need to paste the
 following code inside activity_main.xml which is
 generated by default in any project because this will be
 the first screen for our application.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

ml version="1.0" encoding="utf-8"?>

lativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="net.simplifiedlearning.sqlitecrudexample.MainActivity">

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_centerVertical="true"

 android:orientation="vertical"

 android:padding="16dp">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginBottom="12dp"

 android:text="Add a new Employee"

 android:textAlignment="center"

 android:textAppearance="@style/Base.TextAppearance.AppCompat.Large"

 <EditText

 android:id="@+id/editTextName"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="Enter Employee Name" />

 <TextView

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="10dp"

 android:paddingLeft="6dp"

 android:text="Select Department" />

 <Spinner

 android:id="@+id/spinnerDepartment"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:entries="@array/departments" />

 <EditText

 android:id="@+id/editTextSalary"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:digits="0123456789"

 android:hint="Enter Employee Salary"

 android:inputType="number" />

 <Button

 android:id="@+id/buttonAddEmployee"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Add Employee" />

 <TextView

 android:id="@+id/textViewViewEmployees"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:padding="16dp"

 android:text="View Employees"

 android:textAlignment="center"

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

67

68

69

70

71

72

 android:textAppearance="@style/Base.TextAppearance.AppCompat.Medium"

 android:textStyle="bold" />

 </LinearLayout>

elativeLayout>

 ● For the spinner that we used in the above screen, we
 need to define an Array as the entries for the spinner. So
 go inside values->strings.xml and modify it as below.

1

2

3

4

5

6

7

8

9

10

11

12

13

sources>

 <string name="app_name">SQLiteCRUDExample</string>

 <array name="departments">

 <item>Technical</item>

 <item>Support</item>

 <item>Research and Development</item>

 <item>Marketing</item>

 <item>Human Resource</item>

 </array>

esources>

 Fetching All the Employees

 ● Now after storing employee to the database, we also
 need to see all the stored employee from the database.
 For this, we can use a ListView.

 ● So, to create a new EmptyActivity in your project named
 EmployeeActivity. It will create a java file named

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 EmployeeActivity.java and a layout file called
 activity_employee.xml.

 Creating an Empty Activity

 ● For this screen we can use the following design.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 ● This screen contains a only a ListView . The xml for the
 above screen is below

 RESTful Web Services are basically REST Architecture based Web Services. In

 REST Architecture everything is a resource. RESTful web services are light weight,

 highly scalable and maintainable and are very commonly used to create APIs for

 web-based applications. This tutorial will teach you the basics of RESTful Web

 Services and contains chapters discussing all the basic components of RESTful Web

 Services with suitable examples.

 Audience

 This tutorial is designed for Software Professionals who are willing to learn RESTful

 Web Services in simple and easy steps. This tutorial will give you great

 understanding on RESTful Web Services concepts and after completing this tutorial

 you will be at intermediate level of expertise from where you can take yourself at

 higher level of expertise.

 Prerequisites

 Before proceeding with this tutorial, you should have a basic understanding of Java

 Language, Text Editor, etc. Because we are going to develop web services

 applications using RESTful, so it will be good if you have understanding on other

 web technologies like HTML, CSS, AJAX, etc.

 JSON or JavaScript Object Notation is a lightweight text-based open standard

 designed for human-readable data interchange. The JSON format was originally

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 JSON

 specified by Douglas Crockford, and is described in RFC 4627. The official Internet

 media type for JSON is application/json. The JSON filename extension is .json. This

 tutorial will help you understand JSON and its use within various programming

 languages such as PHP, PERL, Python, Ruby, Java, etc.

 Audience

 This tutorial has been designed to help beginners understand the basic functionality

 of JavaScript Object Notation (JSON) to develop the data interchange format. After

 completing this tutorial, you will have a good understanding of JSON and how to

 use it with JavaScript, Ajax, Perl, etc.

 Prerequisites

 Before proceeding with this tutorial, you should have a basic understanding of the

 web application’s work over HTTP and we assume that you have a basic knowledge

 of JavaScript

 Learn about Google Play services
 Google Play services is core system software that enables key functionality on every certified
 Android device. There are three types of core device features Google Play services provides:

 Security and reliability

 Google Play services helps to ensure the security and reliability of an Android device, and keep
 devices updated with the latest security features . This includes:

 Google Play Protect , which can warn users if an app contains known malware.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Identification and validation of secure connections, such as allowing a device to safely
 and automatically recognize and connect to other devices, or share files or apps with
 Android devices nearby.

 Protection of apps from fraud and security threats through SafetyNet .
 End to end encrypted backup of your data when users have a lock screen passcode.
 Management and protection of your passwords.

 Developer APIs

 Google Play services provides developers thousands of continually updated APIs that enable
 them to deliver high-quality experiences in their apps, such as:

 Streaming media using Google Cast .
 Integrating Google Maps to enhance app functionality.
 Providing accurate location information through the fused location provider when apps

 have permission to access location.
 Enabling services that allow developers to build advertising constructs according to user

 and app settings.
 Sending timely notifications via a messaging transport layer .

 Core device services

 Google Play services enables core services on Android devices. For example:

 When users make an emergency call to a supported emergency number, Google helps
 local emergency services directly receive the device’s location.

 Google’s autofill services help users save time and reduce typing errors.
 Nearby Share allows users to send and receive files with their contacts or anonymously.
 Find My Device makes it easy to locate, lock, or wipe a lost device.
 Fast Pair makes it easy to connect Bluetooth accessories using your Google account.

 Additionally, when a user signs into their Google account on their device, they are able to update
 their Google settings , manage the security of their account, and sync important data, such as
 their Google Contacts, across devices.

 Why Google Play services collects data
 Google Play services collects data on certified Android devices to support core device features.
 Collection of limited basic information, such as an IP address, is necessary to deliver content to a
 device, app, or browser. Device manufacturers also provide Google Play services with permission
 to access certain data on a device, such as location and contacts, to support these features.

 Actual data collection varies depending on device settings configured by a user, the apps and
 services installed or used on a device, the device manufacturer, and a user's Google account
 settings. In many instances, Google Play services will access data locally on the device without
 collecting data off the device.

 To support each of the functions described above, Google Play services may collect information
 for the following reasons:

 Security and fraud prevention

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Google collects data through Google Play services to help protect users, Google services, and
 third party developers' apps and services from fraud, spam, and abuse. This includes:

 Information to validate that a request is coming from a real user and information about
 installed apps, including the results of malware scans.

 Google Account and login information if a user is signed in on a device or moves their
 data to a new device.

 Google may collect a device's phone number to provide account recovery services and to
 log users into phone number based services (like Google Duo).

 Hardware identifiers such as IMEI, MAC addresses, and serial numbers, to update
 devices with the latest security patches and to monitor trends across the Android
 ecosystem, such as how long different types of devices stay in service. Google’s Device
 Configuration Service , which collects data to ensure that devices remain up-to-date and
 are working as well as possible, is part of Google Play services.

 Support and improve the Android ecosystem

 As described above, Google Play services provides a number of APIs and core device services
 that enable Android to be a feature-rich, connected platform. Google may collect data about
 these services and APIs to help provide, maintain and improve them. Depending on device
 settings, Google may collect additional information about a device. Examples include:

 Google collects data to understand how these APIs are used and to help ensure that they
 function correctly.

 If Google Location Accuracy is enabled, in addition to providing more accurate location
 on a device, location information may be used in an anonymous way to improve
 location-based services.

 If a device’s usage and diagnostics control is enabled, Google collects information about
 device usage and how well a device is working to improve products and services, like
 Google apps and Android devices.

 Provide Google services

 If a user uses Google apps and services on Android, Google collects data through Google Play
 services to provide and improve those apps and services. For example:

 Depending on a user’s settings, Google collects data like contacts and bookmarks to
 sync them across devices and the cloud.

 Google Play services syncs a user’s Google account settings across devices, and collects
 information to help protect their account.

 Google Play services may collect data to enable embedded app functionality like Google
 Maps.

 Google Play services are used to enable the COVID-19 Exposure Notifications system.
 Google Play services help users interact and send messages directly to businesses .
 When using Google Pay , Google Play services helps users manage their payment info,

 make contactless payments , or use a digital car key securely

 Location vased service

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 This becomes possible with the help of Google Play services, which facilitates

 adding location awareness to your app with automated location tracking,

 geofencing, and activity recognition.

 This tutorial shows you how to use Location Services in your APP to get the current

 location, get periodic location updates, look up addresses etc.

 The Location Object
 The Location object represents a geographic location which can consist of a latitude,

 longitude, time stamp, and other information such as bearing, altitude and velocity.

 There are following important methods which you can use with Location object to

 get location specific information −

 Sr.N

 o.

 Method & Description

 1 float distanceTo(Location dest)

 Returns the approximate distance in meters between this location and the

 given location.

 2 float getAccuracy()

 Get the estimated accuracy of this location, in meters.

 3 double getAltitude()

 Get the altitude if available, in meters above sea level.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 4 float getBearing()

 Get the bearing, in degrees.

 5 double getLatitude()

 Get the latitude, in degrees.

 6 double getLongitude()

 Get the longitude, in degrees.

 7 float getSpeed()

 Get the speed if it is available, in meters/second over ground.

 8 boolean hasAccuracy()

 True if this location has an accuracy.

 9 boolean hasAltitude()

 True if this location has an altitude.

 10 boolean hasBearing()

 True if this location has a bearing.

 11 boolean hasSpeed()

 True if this location has a speed.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 12 void reset()

 Clears the contents of the location.

 13 void setAccuracy(float accuracy)

 Set the estimated accuracy of this location, meters.

 14 void setAltitude(double altitude)

 Set the altitude, in meters above sea level.

 15 void setBearing(float bearing)

 Set the bearing, in degrees.

 16 void setLatitude(double latitude)

 Set the latitude, in degrees.

 17 void setLongitude(double longitude)

 Set the longitude, in degrees.

 18 void setSpeed(float speed)

 Set the speed, in meters/second over ground.

 19 String toString()

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Returns a string containing a concise, human-readable description of this

 object.

 Get the Current Location
 To get the current location, create a location client which is LocationClient object,

 connect it to Location Services using connect() method, and then call its

 getLastLocation() method. This method returns the most recent location in the form

 of Location object that contains latitude and longitude coordinates and other

 information as explained above. To have location based functionality in your activity,

 you will have to implement two interfaces −

 ● GooglePlayServicesClient.ConnectionCallbacks

 ● GooglePlayServicesClient.OnConnectionFailedListener

 These interfaces provide following important callback methods, which you need to

 implement in your activity class −

 Sr.N

 o.

 Callback Methods & Description

 1 abstract void onConnected(Bundle connectionHint)

 This callback method is called when location service is connected to the

 location client successfully. You will use connect() method to connect to

 the location client.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 2 abstract void onDisconnected()

 This callback method is called when the client is disconnected. You will

 use disconnect() method to disconnect from the location client.

 3 abstract void onConnectionFailed(ConnectionResult result)

 This callback method is called when there was an error connecting the

 client to the service.

 You should create the location client in onCreate() method of your activity class, then
 connect it in onStart(), so that Location Services maintains the current location while
 your activity is fully visible. You should disconnect the client in onStop() method, so that
 when your app is not visible, Location Services is not maintaining the current location.
 This helps in saving battery power up-to a large extent.

 Get the Updated Location
 If you are willing to have location updates, then apart from above mentioned

 interfaces, you will need to implement LocationListener interface as well. This

 interface provide following callback method, which you need to implement in your

 activity class −

 Sr.N

 o.

 Callback Method & Description

 1 abstract void onLocationChanged(Location location)

 This callback method is used for receiving notifications from the

 LocationClient when the location has changed.

 Location Quality of Service

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 The LocationRequest object is used to request a quality of service (QoS) for location

 updates from the LocationClient. There are following useful setter methods which

 you can use to handle QoS. There are equivalent getter methods available which

 you can check in Android official documentation.

 Sr.N

 o.

 Method & Description

 1 setExpirationDuration(long millis)

 Set the duration of this request, in milliseconds.

 2 setExpirationTime(long millis)

 Set the request expiration time, in millisecond since boot.

 3 setFastestInterval(long millis)

 Explicitly set the fastest interval for location updates, in milliseconds.

 4 setInterval(long millis)

 Set the desired interval for active location updates, in milliseconds.

 5 setNumUpdates(int numUpdates)

 Set the number of location updates.

 6 setPriority(int priority)

 Set the priority of the request.

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

 Now for example, if your application wants high accuracy location it should create a

 location request with setPriority(int) set to PRIORITY_HIGH_ACCURACY and

 setInterval(long) to 5 seconds. You can also use bigger interval and/or other

 priorities like PRIORITY_LOW_POWER for to request "city" level accuracy or

 PRIORITY_BALANCED_POWER_ACCURACY for "block" level accuracy.

 Activities should strongly consider removing all location request when entering the
 background (for example at onPause()), or at least swap the request to a larger interval
 and lower quality to save power consumption.

 Displaying a Location Address
 Once you have Location object, you can use Geocoder.getFromLocation() method to

 get an address for a given latitude and longitude. This method is synchronous, and

 may take a long time to do its work, so you should call the method from the

 doInBackground() method of an AsyncTask class.

 The AsyncTask must be subclassed to be used and the subclass will override

 doInBackground(Params...) method to perform a task in the background and

 onPostExecute(Result) method is invoked on the UI thread after the background

 computation finishes and at the time to display the result. There is one more

 important method available in AyncTask wh

Downloaded by Studocu (studocu350@gmail.com)

lOMoARcPSD|37347388

