Structure

A structure can be defined as a single entity holding variables of different
data types that are logically related to each other.

Structure is a user-defined data type in C language which allows us to
combine data of different types together.

Structure is a collection of variables of similar or different types under a
single name.

A structure is a collection of related data items (not necessarily of the
same type) in which each identified by its own identifier, each of which is
known as a member of the structure."

Defining Structure:-

Structure defines a new data type which is a collection of primary (int,
float, char etc.,) and derived data types (arrays and pointers).

The struct keyword is used to define the structure.

The syntax of defining a structure is:-

struct <structure name>
{

data-type memberl;

data-type member2;

Description of the Syntax:-

Keyword struct: The keyword struct is used at the beginning while
defining a structure.

structure_name: This is the name of the structure which is specified
after the keyword struct.

data-type: The data type indicates the type of the data members of the
structure. A structure can have data members of different data types.
member: This is the name of the data member of the structure. Any
number of data members can be defined inside a structure. Each data
member is allocated a separate space in the memory.

Example 1:-

struct emp

{

char ename[20];
int eno;
float esal;

¥

Example 2:-

struct address

{
char name [30];
char street [20];
char city [15];
char state [15];
int pincode;

¥

Declaring Structure Variables:-

e The structure definition does not actually create variables. Instead, it
defines data type only.

e When a structure is defined, no storage or memory is allocated.

e To allocate memory of a given structure type and work with it, we need to
create variables.

e Structure variable declaration is similar to the declaration of any normal
variable of any other data type.

e Structure variables can be declared in many two ways:

1. Declaration of Structure Variables with Structure Definition:-

This way of declaring a structure variable is suitable when there are few
variables to declared.

Syntax:-

struct <structure name>

{

data-type memberl;

data-type member2;

} struct varl, struct var2;

Example:-

struct emp
{
char ename[20];
int eno;
float esal;
}el,e2;

2. Declaration of Structure Variables Separately:-

This way of creating structure variables is preferred when multiple variables are
required be declared. The structure variables are declared outside the structure.

Syntax:-

struct <structure name>

{

data-type memberl;
data-type member2;

53

struct <structure name> struct varl, struct var2,;

Example:-

struct emp
{
char ename[20];
int eno;
float esal;
K

struct emp el, €2, e3;

The structure variables can be declared inside a main() function as shown
below:

void main()

{

struct emp el, €2, e3;

b

Initializing Members of Structure:-

e Structure members cannot be initialized like other variables inside the
structure definition.

e This is because when a structure is defined, no memory is allocated to the
structure's data members.

e Memory is allocated only when a structure variable is declared. Let us
consider the below code.

Example:-

struct emp
{
char ename[20]="Naveen" ; // COMPILER ERROR
int eno=1001; /I COMPILER ERROR
float esal=16500.00; // COMPILER ERROR
}el,e2;

Example:-

#include<stdio.h>
#include<conio.h>
struct emp
{
char ename[20];
int eno,
float esal;

b

void main()

{

struct emp el;

strcpy(el.name, "Naveen");
el.eno=1001;

el. esal-16500.00;
getch();

b

Accessing Members of Structure:-

e The members of a structure are accessed outside the structure by the
structure variables using the dot operator (.).

e The following syntax is used to access any member of a structure by its
variable the general syntax is:
<structure variable>. <structure member>

Example:-

Program To Define, Assign and Access the members of structure:-
#include<stdio.h>

#include<conio.h>

void main()

{

struct emp
{
char ename[20];
int eno;
float easl;

}

struct emp el;

strcpy(el.ename, “SRIKANTH”);

el.eno=511;

el.easl =20000.50;

printf(“employee name of el is %s\n “, el.ename);
printf(“employee number of el is %d\n “, el.eno);
printf(“employee salary of el is %0.2f “, el.esal);
getch();

b

QOutput:-

employee name of el is SRIKANTH
employee number of el is 511
employee salary of el is 20000.50

Conceptual Memory View of Structures and Unions

el i/

Structure Union
structure student ;““0" student
{ .
int age; miage; |
char gender; char gender; |
loat percent; : loat percent; |
)i '
struct student s1; union student s1; 4
Memory Sharing ‘
sl.age s1.gender sl.percent (s1.age, s1.gender, s1.percent) ‘
/——A—\ i ¥ o ~ ,————Aﬁ
T 1]| L1 [| <—Alocas
7000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4000 4001 4002 4003 storage
A A A A equal to
l largest one.
9 bytes 4 bytes
D

Difference between Structure and Union

11.13

Structure Union
1. The union keyword is used to define aT

1. The struct keyword is used to define a
Union

structure

2. Memory is allocated as per largest member
of the union. All members use the same

memory.

2. Memory is allocated for each member of
the structure. Every member has its own

memory.

3. Altering the value of any of the member will
alter the other member values.

3. Altering the value of a member will not affect
other members of the structure

4. The maximum memory size allocated is equal

4. The maximum memory size allocated is
to the size of the larger member.

greater than or equal to the sum of the sizes
memory of all the individual declared.

5. All the individual members can be accessed 5. Only one member can be accessed atatime.

I

atatime.

6. More storage space is required. 6. Minimum storage space is required.

Only its first member may be initialized.
e

7. It may be initialized with all its members 7.

