ool 5457

FUR BULK URDE 43 & LISC ‘)T[.}%\-Jgf
CONTACT +91- 3611185 .3

Vi A
-

SOFTWARE TESTING

As per the New NEP Syllabus for BCA 6% Semester Course of

Bengaluru City University and Bangalore University * .

COMPLFMENT@‘PV P
NOT Fogr SAL: -

Srikanth S

" Ravikiran R.K Murulidhara C
Associate Professor) Associate Professor
Department of Computer Science & Appllcatlon Department of Computer Science & Application
SRN Adarsh College, Chamarajpet, SRN Adarsh College, Chamarajpet,

Bengaluru Bengaluru

Skyward Publishers

#157, 7th Cross, 3rd Main Road, Chamarajpet,

S]-Wmﬂm] Bengaluru-18. Phone : 080-43706620 / 080-26603535
FUBLISHERS Mob: 9611185999

S E-mail: skyward.publishers@gmail.com

Website: www.skywardpublishers.co.in

s - s = o Ftote St = s ; ke 2
A Text Book of “Software Testing” - by Srikanth §, Ravikiran RK & Murulidhara C 35 per the New NEP
Syllabus for VI Semester BCA, Bengaluru City University:& Bangalare University. T et S

© Authors

Copy Right : All rights reserved.: No.part:of this publication inay be repraduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Unauthorized reproduction or dis-
tribution of this book, or any portion of it, may result in severe civil and criminal penalties, and will be
prosecuted to the maximum extent possible under the law. This includes the transmission of this book
in digital form such as images or PDF files. Any such activities will be considered a violation of Indian
Copyright Laws and are highly punishable.

Every effort has been made to avoid errors or omissions in this publication. In spite of this, sore errors
might have crept in. Any mistake, errorir-discreparnicyinoted inay be brought to our notice which shall
be taken care in the next edition. The publishershall#otverify the originality, authenticity, ownership,
non-infringement of the data, content, and information. The Authors are the sole ovriers of the copy:
rights of the Work. It shall be Authors solé responsibility to ensure the lawfulness of the content and
publisher is not responsible for any copyright issties: 1¢is notified that publisher will not be responsible
for any damage or loss of action any one, of any kind, in any manner, there from all disputes are subject
to Bengaluru jurisdiction only. =

Disclaimer: Skyward Publishers. has exercised due care and caution i collecting gll the data before
publishing the book. In spite of this, if any omission, inaccuracy or printing error occurs with regards

to the data contained in this book, Skyward Publishers will not be held responsible or liable. Skyward *

Publishers will be grateful for your suggestions which will be of great help for other readers.

First Edition : 2024

ISBN : 978-93-95085-99-1

Price : 3300/-

Published by:’,

Skyward Publishers

#157, 7th Cross, 3rd Main Road, Chamarajpet
Bangalore-18. Phone: 080-26603535 / 43706620,
Mob: 9611185999 Y
E-mail: skyward.publishers@gmail.com

Website: www.skywardpublishers.co.in

DTP By
Mary & Nirmala, Skyward Team

—— e

PREFACE

—8

We are delighted to present this comprehensive bock on "Software Testing” meticulously r:."a-fted to
align with the National Education Policy (NEF) syllabus for the 6* Semester BCA course of Benga}um City
University and Bangalore University. This book is designed to meet the specific needs of sl:ude.nts ﬂ.l;ld
educators by providing thorough coverage of the syllabus, explained ina systematic and clear manner.

Key Highlights of This Book: :

< Strict Adherence to Syllabus : This book strictly follows the NEP syllébus for th;e 6% Semester. BCA
course to ensure that all required topics are covered comprehensively.

Real-Time Examples : To facilitate a deeper understanding of software testing concepts, we have
included numerous real-time examples. These practical insights help bridge the gap between
theoretical knowledge and its application in real-world scenarios, '

-Detailed Descriptions : Every topic is described in detail to ensure that students gain a thorough

understanding of software testing principles, techniques, and tools, - :

= Review Questions : At the end of each chapter, review questions are provided to help sfudeﬂtr;
assess their understanding and reinforce their learning.] . n

Model Question Papers : Four model question papers are included to give émdents afnp];e ;.)l.'acﬁ'ce
and prepare them for their examinations effectively.

Systematic and Clear : The content is organized systematically, presented in a clear and easy-to-
understand manner, making it accessible to all students regardless of their prior knowledge of the
subject. ' N

This book is not just a learning resource but a comprehensive guide that aims to equip students with the
necessary skills and knowledge to excel in the field of software testing. We believe that the systematic
approach, detailed explanations, and practical examples will make this book an invaluable tool for students.

We welcome your comments and suggestions to help us improve future editions of this bool:c.@le‘a.s.e send
your feedback to [skyward.publisher_s@gmail._com] v -

Thank you for choosing this book as your companion in learning software testing. We wish you the'best in
your academic and professional endeavors.

Happy Learning!

SYLLABUS v

UNIT-1:

‘Introduction: Basic deﬁmuons, A testing life cycle, Test Cases, Fundamental approaches to apply Test
Cases, Levels of Testing, Examples: The NextDate function, Triangle problem and The Commission Problem
and The SATM (Simple Automatic Teller Machine) problem.
Boundary Value Testing: Generalizing Boundary Valite Analysis, Limitations of Boundary Value‘Analysis,
Robustness Testing, Worst-Case Testing, Special Value Testing, Test cases for the Triangle problem, Test
cases for the NextDate function, Test cases for the Commission Problem, Random Testmg and Guidelines for
Bouiidary Value Testing. -

UNIT-1I:

Equivalence Class Testing: Equivalence Classes, Weak Normal Vs Strong Normal Equivalence Class
Testing, Weak Robust Vs Strong Robust; Equivalence Class Testing, Equivalence Class Test Cases for the
Triangle Problem, Equivalence Class Test Cases for the Next Date Function and Equivalence Class Test Cases
for the Commission Problem, Guidelines fol Equivalence Class Testing,

‘Decision Table Based Testing: Decision tables, Test cases for the triangle problern, Test cases for the
Next Date function, Test cases for the commission problem, Guidelines and observations.

Data flow Testing: Deﬁmtlon Use Testing, Examp]e- The Commission Problem, Shce-Based Testing,
Guidelines and Observations.

UNIT-HI:

Levels of Testing: The SATM System, Structural and Behavioural Insights. Integration Testing: A
Closer Look at the SATM System, Decomposition-Based Integration, Top-Down Vs Bottom-Up: Integration,
Sandwich Integration, Call Graph-Based Integration, Pair wise Integration, Neighborhood Integration, Path-
Based lntegzanon

System Testlng Threads, Basic concepts for requirements specrﬁcatron, Finding threads, Structural
strategies and functional strategies for thread testing,

lnteraction Testing A Taxonomy of Interacﬁons, Static Interaction in a Single Processor, Static

Multrple Processors, Clrent-Server Testmg

UNIT-IV :)
Object Oriented Testing: Issues in Object Oriented Testing, Implication of Cemposition and
Encapsulation, Implications of Inheritance, Implications of Polymorphism, GUITesting, Object-Oriented
Integration Testing.

Exploratory Testing: The context-driven school, Exploring exploratory testing, Exploring a familiar
example, Exploratory and context-driven testing observations.

Model-Based Testing: Testing based on models, Appropriate models, Use case-based testing, Commercial
tool support for model-based testing.

Test-Driven Development: Test-then-code cycles, Automated test execution, Java and JUnit example,
Remaining questions, Pros, cons, and open questions of TDD, Retrospective on MDD versus TDD,
Software Testing Excellence: Craftsmanship, Best practice of software testing, Top 10 best practi :
for software testing excellence. ;

CONTENTS

@ Introduction To Solfware Testing

i ﬂ

1.1 Introduction

1,4" Test Cases

1.9 Examples

111 Whatis Software Testing? iz
1.1.2 Why Software Testing is Important ? 1.3
113 Goals or Objectives of Software Testing 1‘4
114 Importance of Software Testing 1‘5
115 Classification of Software Testing 1‘5
1.1.6 Verification and Validation .
1.2 Basic Definitions i
1_.3. A Testing Life Cycle 1 112
14.1 Components of a Test Case Ig
1.4.2 Insights from a Venn Diagram 1'14
1.5 The Traditional Model of the Software Testing Process 1‘16
1.6 Levels of Testing '
1.6.1 Unit Testing i ;";'
1.6.2 Integration Testing 1‘18
1.6.3 System Testing 1'19
1.6.4 Levels of Testing in V-Model 1‘19
1.7 Structural and Behavioural Insights 1'21
1.8 Fundamental Approaches to Apply Test Cases 1‘21
1.8.1 Specification-Based Testing (Functional Testing or Black Bor(Testing) 1:21
| 1.82 Code-Based Testing (Structural Testing or White Box Testing) 1.25
1.9.1 Triangle Problem o
19.2 The NextDate function & iis
1.9.3 The Commission Problem 1'32
194 The SATM (Simple Automatic Teller Machine) Problem 1.34
110 Rewew Questiens '1.37
Eﬂ_{/'? Boundary Value Testing 2123 i
2.1 Boundary Value Testing
2.2 Types of Boundary Value Testing ii
2.3 Normal Boundary Value Testing) 2.4
2.3.1 Generalizing the Boundary Value Analysis 2:7

¥

2.8 Examples

3.1 Introduction

4.1 Introduction

2.3.2 Limitations of Boundary Value Analysis, : - 2.8
2.4 RobustBoundary Value Testing . 2.9
. 2.5 Worst-Case Boundary Value Testing 212
26 Robust Worst-Case Boundary Value Testing (RWCBVT) 214
2.7 Special Value Testing 2.16
2.18
281 Test Cases for the Triangle problem 2.18
282 Test cases for the next date function 2.19
283 Test Cases for the Commission Problem 2.23
2.9 Random Testing 2.24
2.10 Guidelines for Boundary Value Testing 2.27
2.11 Review Questions 2.28
% Equivalence Class Testing 31-332
3.2
3.2 Equivalence Classes 3.2
321 Traditional Equivalence Class Testing 35
3.3 Forms or Variations of Equivalence Class Testing 3.7
‘ 33.1 Weak Normal Equivalence Class Testing 37
3.3.2 Strong Normal Equivalence Class Testing 3.10
333 Weak Robust Equivalence Class Testing 3.13
3.34 Strong Robust Equivalence Class Testing 3.16
3.3.5 Weak Normal Vs Strong Normal Equivalence Class Testing 3.19
3.3.6 Weak Robust Vs Strong Robust Equivalence Class Testing 3.21
3.4 Equivalence Class Test Cases for the Triangle Problem 3.22
3.5 Equivalence Class Test Cases for the NextDate Function 3.24
3.6 Equivalence Class Test Cases for the Commission Problem ' 3.28
3.7 Guidelines and Observations About Equivalence Class Testing - 3.30
3.8 Advantages and Disadvantages of Equivalence Class Testing 3.31
3.9 Review Questions 3.31
@ Decislon Table- Based Testng 11-422]
4.2
4.2 Decision Tables 4.2
4.3 Decision Table Techniques 47
4.4 Test Cases for the Triangle Problem 4.14
4.5 Test Cases for the Next Date Function 4.16
4.6 Test Cases for the Commission Problem 4.18

vi

6.5

Call Graph-Based Integration

4.7 Guidelines and Observations of Decision Table Testing-
4.8 Review Questions 4.21
7 Data Flow Testing 51-520 ||
* 5.1 DataFlow Testing 82
5.1.1 Characteristics of Data Flow Testing 5.2
5.1.2 Benefits of Data Flow Testing .53
5.1.3 Challenges or Limitations of Data Flow Testing 53
5.14 Types of Data Flow Testing 5.4
5.2 Define-Use Testing 5.4
521 Key Concepts and Definitions .55
5.2.2 Define/Use Test Coverage Metrics 5.7
5.2.3 How Def-Use Testing Works? 5.9
5.2.4 Advantages and Disadvantages of Def-Use Testing 511
5.2.5 Example- The Commission Problem using Define-Use Testing 5.12
5.3 Slice-Based Testing 3 5.14
53.1 Characteristics or Features of Slice Based Testing 5.16
5.3.2 Importance or Benefits of Slice-Based Testing 517
5.3.3 Limitations or Disadvantages of Slice-Based Testing . " 5.18
5.4 Guidelines and Observations for Data Flow Testing 5.18
5.5 Review Questions 5.20
@ Infegration Testing i1-62
6.1 Levels of Testing 6.2
© 6.1.1 Levels of Testing in Different Life Cycle Models 6.2
6.2 The SATM System 6.3
6.2.1 Overview of the SATM System 6.3
6.2.2 Testing Strategy 6.7
6.2.3 Structural and Behavioural Insights 6.9
6.3 Introduction to Integration Testing 6.11
6.3.1 Whatis Integration Testing? 6.11
6.3.2 Features (or) Characteristics (or) Importance of Integration Testing 6.11
6.3.3 Types of Integration Testing 6.12
6.4 Decomposition-Based Integration Testing 6.13
6.4.1 Top- Down Integration Testing 6.14
6.4.2 Bottom-Up Integration Testing 6.15
6.4.3 Sandwich Integration Testing 6.16
6.17

6.5.1 Pair wise Integration Testing

6.19

6.5.2 Neighborhood Integration Testing 6.22
6.6 Path-Based Integration Testing 6.25
6.7 Review Questions 627
77 Syslem Testing 11-126 JJ}
7.1 Introduction to System Testing N 7.2
7.1.1 Whatis System Testing? 7.2
7.1.2 Objectives of System Testing 7.2
7.1.3 Features or Characterisers of System Testing 7.3
7.2 Atomic System Function (ASF) 7.4
7.21 Importance of Atomic System Functions (ASFs) 74
7.2.2 Characteristics of Atomic System Functions (ASFs) 7.5
7.3 Concept of Threads in System Testing 7.6
7.3.1 Objectives of a Thread 7.7
7.3.2 Characteristics and Importance of a Thread 7:8
7.3.3 Types of Threads in Systém Testing 7.9
7.3.4 Thread Possibilities in the SATM System 711
7.4 Basic Concepts for Requirements Specification 713
7.5 Finding Threads in System Testing 715
7.5.1 Core Concepts for Finding Threads 7.15
7.5.2 General Procedure for Finding Threads in System Testing 7.16 °
7.5.3 Example - Finding Threads in the SATM System 717
7.6 Structural Strategies for Thread Testing 721
7.7 Functional Strategies for Thread Testing 7.23
7.8 Review Questions 7.25
@ Interaction Testing 81-826 I
8.1 Introduction to Interaction Testing 8.2
8.1.1 Whatis Interaction Testing? 8.2
8.1.2 Key Aspects of Interaction Faults in System Testing 8.2
8.1.3 Importance of Interaction Testing 8.3
8.1.4 Features (or) Characteristics of Interaction Testing 8.4
8.1.5 Advantages and Disadvantages of Interaction Testing 84
8.2 Context of Interaction in Interaction Testing 85
8.3 Taxonomy of nteractions 8.7
8.3.1 Static Interactions in a Single Processor 8.9
8.3.2 Static Interactions in Multiple Processors 8.12

viii

e —— HELSEEaT

8.15

er -9

9.6 GUI Testing

8.3.3 Dynamic Interactions in a Single Processor
8.3.4 Dynamic Interactions in a Multiple Processors 8.18
8.4 Client-Server Testing 8.21
8.5 Review Questions 8.25

Mm Object Orlented Testing & 611 Testing 0.1- 924

9.1 Introduction to Object Oriented Testing ‘9.2
9.1.1 Conventional Testing Vs Object Oriented Testing 9.2
9.2 Issues in Object Oriented Testing 9.3
9.2.1 Units for Object-Oriented Testing 9.3
9.2.2 Implication of Composition and Encapsulation 9.4
9.2.3 Implication of Inheritance 9.7
9.2.4 Implication of Polymorphism 9.9
9.3 Levels of Object-Oriented Testing 9.11
9.4 Object Oriented Unit Testing 9.11
9.5 Object-Oriented Integration Testing 9.13
9.19
9.6.1 Key Objectives of GUI Testing 9.20
9.6.2 Types of GUI Testing 9.20
9.6.3 Examples of GUI Testing 9.21
9.6.4 Tools for GUI Testing: 9.21
9.6.5 GUI Testing Strategies 9.21
9.23

9.7 Review Questions

101-1024]

@m/‘(ﬂl Exploratory Testing & Model Based Tesflng

10.1 Exploratory Testing
10.1.1 What is Exploratory Testing ?
10.1.2 The Context-Driven School
10.1.3 Exploring Exploratory Testing
10.1.4 Exploring a Familiar Example - The Commission Problem
10.1.5 Exploratory and Context-Driven Testing Observations
10.1.6 Advantages and Disadvantages of Exploratory Testing
10.2 Model Based Testing
10.2.1 Key Components of Model Based Testing
10.2.2 Features or Characteristics of Model-Based Testing (MBT)
10.2.3 Testing Based on Models
10.2.4 Appropriate Models
10.2.5 Commercial Tool Support for Model-Based Testing

ix

10.2
10.2
10.2

g 10.3

10.6
10.8
109
10.11
10.11
10.12
10.13
10.15
10.18

10.2.6 Advantages and Disadvantages of Model Based Testing 10.19
10.3 Use Case Based Testing 10.20
10.3.1 Key Concepts of Use Case Based Testing 10.21

10.3.2 Steps in Use Case Based Testi 1021 jeun
1033 Ad:’asr:;ges and Dis:;sdvan::g:sgof Use Case Based Testing ©10.23 T 3 I N T R 0 D U c T I 0 N To
10.4 Review Questions 10.24 =
g Test-Driven Development & Soltware Testing Excellence m-uul] | | SOFTWARE TESTING

11.1 Introduction to Test Driven Development (TDD) S 11.2 4
11.2 Features or Characteristics of TDD 11.2 : Contents
11.3 Test-Then-Code Cycles 113 '
11.4 Automated Test Execution 11.6 = Introduction
1141 Goals and Purpose of Automated Test Execution 11.6 < What is Software Testing?
11.4.2 Common Features of Testing Frameworks 116 = Why Software Testing is Important ?
11.4.3 Importance of Testing Frameworks in TDD 116 = Goals or Objectives of Software Testing
11.4.4 Examples of Testing Frameworks 117 < Importance of Software Testing
11.4.5 Advantages and Disadvantages of Automated Test Execution 117 = Classification of Software Testing
115 Java and JUnit Example 11.9 = Verification and Validation
11.6 Remaining Questions (TDD Considerations and Challenges) 11.12 Basic Definitions
11.6.1 IsTDD Code Based or Specification Based? ot 11.12 A Testing Life Cycle
11.6.2 Is Configuration Management Challenging in TDD? 11.13 : Test Cases
11.6.3 How Does Granularity Affect the TDD Process? 1113 S = Components of a Test Case
11.7 Advantages, Disadvantages and Open Questions of TDD 1114 - _ = Insights from a Venn Diagram
11.8 Retrospective on MDD versus TDD 1115 _ . The Traditional Model of the Software Testing Process
11.9 Software Testing Excellence 11.16) Levels of Testing
11.9.1 Craftsmanship 11.18 S < Unit Testing
11.9.2 Best Practices of Software Testing . 11.19 gl Integration Testing
11.9.3 Top 10 Best Practices for Software Testing Excellence 11.21 System Testing
11.10 Review Questions ’ 11.23 ? = Levels of Testing in V-Model
- 7, Model Question Papers TRy . Structural and Behavioural Insights
Fundamental Approaches to Apply Test Cases
Model Question Paper - 1 Al <= Specification-Based Testing (Functional Testing or Black Box Testing)
Model Question Paper - 2 A2 = Code-Based Testing (Structural Testing or White Box Testing)
Model Question Paper - 3 A3 Examples
Model Question Paper - 4 A4 Triangle Problem

The NextDate function
The Commission Problem
The SATM (Simple Automatic Teller Machine) Problem

Review Questions

I 1.2 ISoﬂwcreTesfing]

1.1 Introduction

Nowadays, software runs all aspects of modern life and accounts for a large and increasing share
. of the world economy. This trend started slowly with the advent of computing in the middle of the
twentieth century and was further precipitated by the emergence of the World Wide Web at the
end of the twentieth and the beginning of the twenty-first century. This phenomenon has spawned a
great demand for software products and services and generated-a market pressure that the software

- industry takes great pains to caterto. "

The success of any software product or application is greatly depgndént onits quaiiiﬁ Today, testing
is seen as the best way to ensure the quality of any product. Quality testing can greatly reduce the
cascading impact of rework of projects, which have the capability of increasing the budgets-and
delaying the schedule. The need for testing is increasing, as businesses face pressure to develop
sophisticated applications in shorter time frames. Testing is a method of investigation conducted to
assess the quality of the software product or service. [tis also the process of checking the correctness
of a product and assessing how well it works. ;

Generally we hear a software probiems like a bank reporting incorrect account balances, software
printing 120 out of 100 marks in marks card, a grocery store scanner charging too-much for grocery
items. Why does this happen? Can't computer programmers figure out ways to make software just
plain work? Unfortunately, no. As software gets more complex, gains more features, and is more
interconnected, it becomes more and more difficult to create a glitch-free program. Despite how geod
the programmers are and how much care is taken, there will always be software problems.

That's where software testing comes in. Many large software companies are so committed to quality
they have one or more testers for each programmer. These jobs span the software spectrum from
computer games to factory automation to business applications.

Software bugs can cause potential monetary and human loss. There are many examples in history that
clearly depicts that without the testing phase in software development lot of damage was incurred.
Below are some examples:
+ 1985: Canada's Therac-25 radiation therapy malfunctioned due to a software bug and resulted
in lethal radiation doses to patients leaving 3 injured and 3 people dead.
+ 1994: China Airlines Airbus A300 crashed due to a software bug killing 264 people.
+ 1996: A software bug caused U.S. bank accounts of 823 customers to be credited with 920
million US dollars.
+ 1999; A software bug caused the failure of a $1.2 billion military satellite launch.
+ 2015: A software bug in fighter plan F-35 resulted in making it unable to detect targets
correctly.
+ 2015: Bloomberg terminal in London crashed due to a software bug affecting 300,000 traders
on the financial market and forcing the government to postpone the 3bn pound debt sale.
+ Starbucks was forced to close more than 60% of its outlet in the U.S. and Canada due to a
software failure in its POS system. :

Introduction to Software Testing 1.3

+ Nissan cars were forced to recall 1 million cars from the market due to a software failure in the
car’s airbag sensory detectors.

———————————

1.1.1 What is Software Testing?
A software bug usually occurs when the software does not do what it is intended to do or does
something that it is not intended to do. Flaws in specifications, design, code or other reasons can
cause these bugs. Identifying and fixing bugs in the early stages of the software is very important as
the cost of fixing bugs grows over time. So, the goal of a software tester is to find bugs and find them
as early as possible and make sure they are fixed.

The process of testing identifies the defects in a product by following a method of comparison, where
the behavior and the state of a particular product is compared against a set of standards which
include specifications, contracts, and past versions of the product. Software testing is anincremental
and iterative process to detect a mismatch, a defect or an error. As pointed by Myers, “Testing is a

fatls 1 b A QO R R 2T TN LA c
Software Testing is a method to assess the functionality of the software program. The process checks whether
the actual software matches the expected requirements and ensures the software is bug-free. The purpose of
software testing is to identify the errors, faults, or missing requirementé in contrast to actual requirements.
It mainly aims at measuring the specification, functionality, and performance of a software program or an
application.

G T T
B

e i e
Gy

R)

o According to Glenford J. Myers, software testing is defined as "the process of executing a program or
system with the intent of finding errors.” ’

o According to IEEE (Institute of Electrical and Electronics Engineers), software testingi$ definedas
"the process of operating a system or component under specified conditions, observing or recording
the results, and making an evaluation of some aspect of the system or component”

« According to Roger S. Pressman, software testing is defined as "“the process of executing a software

- application with the intent to uncover defacts, validate that the system meets its requirements, and
ensure that it operates correctly in its intended environment."

According to Paul C. Jorgensen, software testing is defined as "The process ofredu':iﬁg uncertainty
about the correctness of a software system by execufing the system with the purpose of finding its
defects, if any."

_

1.1.2 Why Software Testing is Important ?
Software Testing is important because if there are any bugs, errors, in completed requirements in the
software, it can be identified early and can be solved before delivery of the software product. Properly
tested software product ensures reliability, security and high performance which further results in
time saving, cost effectiveness and customer satisfaction.

Defects can be 1dent1ﬁed early. Software testing is 1mportant because if there are any bugs they can
be identified early and can be fixed before the delivery of the software.

Improves quality of software: Software Testing uncovers the defects in the software, and fixing them
improves the quality of the software.

Increased customer satisfaction: Software testing ensures reliability, security, and high performance
which results in saving time, costs, and customer satisfaction.

Helps with scalability: Software testing type non-functional testing helps to identify the scalability
issues and the point where an application might stop working.

Cost-Effectiveness: After the application is launched it will be very difficult to trace and resclve the
issues, as performing this activity will incur more costs and time. Thus, it is better to conduct software
testing at regular intervals during software development.

Reduced Risks: Testing helps identify and fix bugs early in development. This s crucial because fixing
bugs later in the process is much more expensive and time- -consuming. Early detection reduces the
risk of project failure,

Enhanced Security: Testing helps identify seqcurity vulnerabilities that could be exploited by attackers.
This is especially important for software that handles sensitive data.

Satisfied Customers: Well-tested software is less likely to crash, have bugs, or exhibit unexpected
behaviour. This leads to a better user experience and increased customer satisfaction.)
Improving Performance: Performance testing evaluates the speed, responsiveness, and stability
of the software under different load cenditions. By conducting performance testing, developers can
optimize the software’s performance and ensure it meets performance requrements.

Compliance and Standards: Testing ensures that the software complies with industry standards,
regulations, and guidelines. It helps in meeting legal requirements, ensuring data privacy, and
maintaining the integrity of the software.

1.1.3 Goals or ObJec‘hves of Sof'rware Testing

e T g T b L T

NN e W N

o«

10.

. To demonstrate that the software meets its requirements and spec1ﬁcauons
. To identify defects, errors, and bugs in the software and ensure that they are fixed before the software

. To ensure that the software is reliable, efficient, and user-friendly.

- To improve the quality of the software and reduce the risk of failure or malfunction.

- To ensure that the software is compatible with different hardware, software, and operating systems.

- To ensure that the software is secure and protects sensitive data from unauthorized access.

. To ensure that the software performs well under different conditions, such as high traffic, heavy load,

. To ensure that the software is easy to maintain and update.
. To ensure that the software is compliant with industry standards and regulations.

is released to end-users.

or stress.

To ensure that the software meets the expectations and needs of end-users.

Introduction to Software Testing | 1.5 I

5 Software testmg ensures quality by ldenufymg defects and errors.
. Testing improves customer satisfaction by meeting user needs and expectations.

. Testing reduces costs by idenﬁfying and fixing issues early in the development process.

. Testing improves reliability by ensuring consistent performance under different conditions.
. Testing minimizes risks by identifying potential issues before they become ¢ostly to fix. : Y
. Testing facilitates compliance with industry standards and legal requirements.

. Testing enhances performance by identifying and addressing performance issues early on.

W N e W N

. Well-tested software is easier to maintain and update.

=

1.1.5 Classification of Software Testing
Software testing can be classified into various types based on different criteria and objectives. Some
common classifications of software testing are listed below.

L. Based on Testing Objed

Functional Testing:
This type of testing ensures that the software functions as intended and meets the specified functional
requirements. Test cases are designed to validate the behavior of individual functlons features, and
user interactions within the software application.
Non-Functional Testing:
¢ Performance Testing: Performance testing evaluates how the software performs under
various conditions such as load, stress, and scalability. It aims to identify performance
bottlenecks and ensure that the software meets performance expectations.
(Security Testing: Security testing focuses on identifying vulnerabilities and weaknesses in
the software to prevent unauthorized access, data breaches, and other security threats.
¢ Usability Testing: Usability testing assesses the user-friendliness and overall user experience
of the software. It involves testing the interface, navigation, and accessibility#to ensure a
positive user experience.
Compatibility Testing: Compatibility testing checks the software's compatibility with different
devices, browsers, operating systems, and environments to ensure seamless operation across

various platforms

'Ni on TL-.tm" i,t vels

Unit Testing: Unit testing involves testing individual units or components of the software in
isolation. It helps identify defects early in the development cycle and ensures that each unit

functions correctly. PER

| | Software Testing =

“¢ Integration Testing: Integration testing verifies the interactions between mwgrated
components to detect interface issues and ensure that the integrated modules work together
as expected.

(System Testing: System testing tests the entire software system as a whole to validate that it
meets the specified requirements and functions correctly in its intended environment.

€ Acceptance Testing: Acceptance testing validates whether the software meets user
requirements and is ready for deployment. It often involves User Acceptance Testing (UAT) by
end-users to ensure that the software meets business needs.

3. Based on Testing Techniques

¢ Manual Testing: Manual testing involves human testers executing test cases manually without
the use of automation tools. It allows for exploratory testing, ad-hoc testing, and detailed
analysis of software behavior.

€ Automated Testing: Automated testing uses automation tools to execute test scripts, compare
actual outcomes with expected results, and improve testing efﬁaency and repeatability, It is
beneﬁc1al for regression testing, performénce testing, and test case execution,

4. Based on Teating .\Ierhods

(Black Box Testing: Black box testing focuses on testing the software's functionality without
knowledge of its internal code structure. Testers validate inputs and outputs based on the
software's specifications and expected behavior. . | o

¢ White Box Testing: White box testing tests the internal logic; code stricture, and paths within
the software. Testers have knowledge of the internal code to design test cases that cover
different code paths and conditions.

5 Baaed on Te:tma Snatedles

¢ Top-Down Testing: Top-down testing starts testing from the highest-level modules and
progresses downwards. It emphasizes early integratioh testing and ensures that higher-level
modules function correctly before integrating with Iower-level modules.

¢ Bottom-Up Testing: Bottom-up testing begins testmg from the lowest-level modules and
moves upwards. It focuses on early unit testing, identifying defects in individual units, and
gradually integrating them to form hlgher-level modules.

2| Software Testing Seenarios

The below examplés illustrate various scenarios where software testing i$ essential to ensure the functionality,
usability, and perforniance of software applications:

1. Testing a game to see if you can beat all the levels without the game crashing: This example
highlights the importance of testing the stability and performance of a game application. Testers would
play through different levels, scenarios, and interactions to identify any bugs, crashes, or parformance
issues that may impact the player experience.

2. Trying out a new drawing app to see if all the colors and tools work properly: This scenario
emphasizes the need for functional testing to validate the features and capabilities of a drawing
application.

Infroduction to Software Testing I 1.7 |

Testers would explore different drawing tools, colors, brushes, and functionalities to ensure they work
as intended and deliver the expected user experience.

3. Makingsurea college website displaysinformation correctly on phonesand laptops: This example
showcases the significance of compatibility testing to verify that a website functions seamlessly across
various devices and screen sizes. Testers would access the school website on different devices such as
phones and laptops to check for respensiveness, layout consistency, and content display.

1.1.6 Verification and Validaﬁon

&

Verification is the process of dlscovermg the possxble failures in the software (not the actual ﬁnal product)
before the commencement of the testing phase. Generally, verification is done during the development
phase of the software development life cycle. It involves reviews, inspections,-meetings, code reviews, and
specifications. Verification is done to determine whether software meet the specified requirements. [t answers
the question.” Are we building the product right?”.

Verification is the process, to ensure that whether we are building the product right ie., to verify the
requirements which we have and to verify whether we are developing the product accordingly or not. It's a
Low-Level Activity. Verification is a static method of checking documents and files.

Verification Techniques or Static Testing Techniques: Below are the verification techniques

1. Reviews 2. Inspections 3. Walk through

1. Reviews: "A review is a systematic examination of document by one or more people with the
main aim of finding and removing errors early in the software development life cycle”

There are two types of reviews held in verification. They are Formal Review and Informal
Review.

(a) Formal Review: Formal reviews follow a formal process. It is well structured and
regulated. It contains: Planning, Kick-off, Preparation, Review meeting, Rework.

(b) Informal Review: Informal reviews are applied many times during the early stages of
the life cycle of the document. A two person team can conduct an informal review. The
most important thing to keep in mind about the informal reviews is that they are not
documented.

2. Inspection: It is the most formal form of reviews, a strategy adopted during static testing
phase.

e lItis the most formal review type.

o Itisled by the trained moderators.

o During inspection the documents are prepared and checked thoroughly by the
reviewers before the meeting.

3. Walkthrough: Awalkthroughisaninformalgrouporindividualreviewmethod.Inawalkthrough,
the author describes and explains work product to his peers or supervisor in an informal
meeting to receive feedback. The validity of the proposed work product solution is checked here.
It is less expensive to make changes while the design is still on paper rather than during
conversion. A walkthrough is a method of quality assurance that is static. Walkthroughs are
casual gatherings with a purpose.

| 1.8 Software Testing e

Validation is the process of evaluating the final product to check whether the software meets the business
needs. In simple words, the test execution which we do in our day to day life is actually the validation activity
which includes smoke testing, functional testing, regression testing, systems testing, etc.

Validation occurs after the verification process and the actual testing of the product happens at a later stage.
Defects which occur due to discrepancies in functionality and specifications are detected in this phase. It
answers the question, “Are we building the right product?”.

Validation is the process, whether we are building the right product i.e, to validate the product which we have
developed is right or not.

Activities involved in this is testing the software application. In simple words, Validation is to validate the
actual and expected output of the software.

ation and Validation (V art and End?

~ When Do Ve
Although some primitive software development processes concentrate testing and analysis at the
end of the development cycle, and the job title “tester” in some organizations still refers to a person
who merely executes test cases on a complete product, today it is widely understood that execution

of tests is a small part of the verification and validation process required to assess and maintain the
quality of a software product.

¢ Testis nota (late) phase of software development.
- Execution of tests is a small part of the verification and validation process.
e V&V start as soon as we decide to build a software product, or even before

¢ V&Vlast far beyond the product delivery aslong as the software is in use, to cope with evolution
and adaptations to new conditions.

Evaluates the intermediary products to check | Evaluates the final product to check whether it meets
whether it meets the specific requirements of the | the business needs.
particular phase.

Checks whether the product is built as per the | It determines whether the software is fit for use and
specified requirement and design specification. satisfies the business needs.

Checks “Are we building the product right”? Checks “Are we building the right product”?

This is done without executing the software. Is done with executing the software.

Involves all the static testing techniques. Includes all the dynamic testing techniques.

Examples include reviews, inspection, and walk | Examples include all types of testing like smoke
through. testing, regression, functional testing, systems and
User Acceptance Testing.

Introduction to Software Testing 1.9 I

e — == ————
1.2 Basic Definitions

Testing software is a critical component of software development that ensures the quality and
functionality of the final product. Essentially, testing involves evaluating software by learning how
it behaves under various conditions to discover any errors and ensure the software performs as
intended. Itis important to understand the key testing terms in software testing process. These terms
are derived from standardized definitions by the International Software Testing Qualification Board

(ISTQB) and the Institute of Electronics and Electrical Englneers (IEEE)

Term

..-: g G

Error

Errors are mistakes made by people durmg the
software development process. When these
mistakes occur while coding, they are commonly
referred to as bugs. Errors can escalate from
requirements to design and further to coding stages.

Suppose during the development of the
e-commerce website, adeveloper mistakenly
codes the checkout process to deduct the
wrong amount from the customer's account.
This coding mistake is an error.

Fault

A fault is the manifestation of an error in the
software. It represents the error in the code. Think
of a fault as the result of an error made during
development. Faults can be elusive and can be
categorized as faults of commission (incorrect
information entered) or faults of omission (missing
information).

The fault in this scenario is the
representation of the error in the code. The
incorrect deduction of the amount from the
customer's account due to the developer's
error is the fault in the system.

Failure

A failure happens when the code associated with
a fault is executed during the software operation.
Failures are observable and indicate that something
went wrong during the execution of the software.
Failures are typically linked to faults of commission.

When a customer proceeds to checkout and
the system deducts an incorrect amount
from their account, it results in a failure. The
failure occurs when the faulty code executes
during the checkout process.’

Incident

An incident is the visible symptom of a failure that
alerts users, customers, or testers to the presence of
a failure. It is the outward indication that something
has gone wrong in the software.

The incident would be when the customer
notices that the amount deducted from their
account is incorrect. The customer reporting
the discrepancy is the incident that alerts
the system to the failure.

Test

Testing involves identifying errors, faults, failures,
and incidents. A test is the process of executing
software with test cases. The primary gbals of
testing are to find failures or to demonstrate correct
execution.

To identify and rectify such errors, faults,
and failures, testing is essential. Testing the
checkout process with various scenarios to
ensure correct deductions is crucial The act
of testing the checkout process.is the test.

Test Case

A test case is a specific test scenario with defined
inputs and expected outputs associated with a
particular program behavior. Test cases help in
systematically validating the functionality of the
software.

A test case for this scenario could involve
a customer placing an order, proceeding
to checkout, and verifying that the correct
amount is deducted from their account.
The test case would include specific inputs
(order details, payment information) and
the expected output (correct deduction
amount).

| 1.10 l Software Testing

In software development and testing, errors in the code or system design can lead to faults when
the flawed code is executed. These faults, if not detected and rectified, can result in failures
where the system deviates from its expected behavior or produces incorrect outcomes. Failures,
when experienced by users or stakeholders, can escalate into incidents that impact the system's
functionality, performance, or security. Understanding this progression from errors to faults, faults
to failures, and failures to incidents is essential for testers to effectively identify, address, and prevent
issues throughout the software development lifecycle, ensuring the delivery of reliable and high-
quality software products.

————————————

1.3 A Testing Life Cycle

The Testing Life Cycle is a critical framework in software development that systematically identifies,
diagnoses, and resolves issues within a seftware product to ensure quality and reliability. By following
a structured approach, teams can effectively address defects, enhance functionality, and meet
specified requirements. This disciplined process helps prevent defects from reaching production,
reducing costs and increasing user satisfaction.,

The Testing Life Cycle in the below diagram illustrates the various stages involved in identifying and
resolving issues during software development. This cycle is an integral part of ensuring software
quality through systematic testing and issue management.

Fault -
Fault
Coding
Fault ™ Incident
Testing

Fig 1.1 : A Testing Life Cycle

Fault
resolution

1. Specification (Spec):
The testing cycle begins at the specification phase, where requirements are defined and
documented. It is crucial to have a clear, thorough, and unambiguous specification because
errors at this stage can propagate through to later stages, leading to more severe issues.

2. Design:

During the design phase, the specifications are transformed into a design plan that outlines
the software architecture and its components. Faults can arise here if the design does not
accurately or efficiently implement the specifications. Such design faults could be logical
errors in flow or inefficient architecture choices.

Introduclion to Software Testing 1.11

3. Coding:
In the coding phase, developers write the actual code based on the design documents. This
stage is prone to introducing faults due to human error in implementing the design logic,
misunderstanding requirements, or syntactical errors in the code. ’

4. Testing:
Once coding is completed, the testing phase begins to check the software for defects (faults)
and ensure that it performs as expected. The goal is to identify and document any incidents
arising from faults in the software.

5. Classify Fault:
When a fault causes an incident, the issue is analyzed and classified. This involves determining
the nature of the fault, such as whether it's due to a requirement misunderstanding, design
error, or coding mistake. Classifying incidents helps in prioritizing them for fixes.

6. Isolate Fault:
Once an incident is reported and classified, the next step is to isolate the specific part of the
code or design that is causing the problem. This precise identification is critical for effectively
addressing the fault without introducing new issues.

7. Fault Resolution:
The final phase in the testing cycle is resolving the fault. This involves modifying the code
or design to fix the issue and verifying that the fix resolves the problem without causing
additional problems. This stage is crucial as inadequately resolved faults can lead to further
errors or even new faults.

Additional Considerations:

o Fault Propagation: Faults in early stages like design can propagate and manifest as more
significant problems in later stages like coding and testing. Each phase builds upon the
previous one, so errors can become compounded.

« Regression Testing: After resolving faults, regression testing is performed. This ensures that
the changes made to fix faults do not adversely affect other parts of the sofiware that were
previously working correctly. [t's vital to ensure that a fix doesn't lead to new, unexpected
behavior or degrade the software's performance.

This testing life cycle not only helps in making the software more reliable and efficient but also
structures the testing process to be as thorough as possible. Proper management and execution of
each phase are crucial for minimizing the risk of high-severity incidents in production Environments,
ultimately leading to a higher quality software product.

=1

1.4 Test Cases

A test case is a vital component of the testing process. It contain all the necessary elements to
perform a test, validate functionality, and ensure compliance with the specifications. A Test Case is
a set of actions performed to verify 2 particular feature of the Software Application. It contains Pre-
conditions, Test Steps, Expected Results, Actual Results, Test Data ete. With the help of Test Cases, 2
Test Engineer can compare the Expected Results and Actual Results to determine whether a Software
Application is working as per the Client’s requirements.

1.12 | Software Testing

E‘fﬁﬁ?‘:’»" Tﬁi“;ﬁ“‘ﬂ it = vpdoEEy R b i Ty ey i TR

e According to IEEE Standard 610, Test cases are defined as “A set of test inputs, execution conditions,
and expected results developed for a particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement.”

¢ According to Ron Patton, “Test cases are the specific inputs that you'll try and the procedures that
you'll follow when you test the software.”

* Boris Beizer defines a test as "A sequence of one or more sub tests executed as a sequence because

the outcome and/or final state of one subtest is the input and/or initial state of the next.”

Test cases are as critical to software development as the source code itself, They need to be carefully
crafted, reviewed, and maintained. Properly developed test cases can:

« Serve as a documentation of what tests have been performed.

+ Provide a basis for performing regression testing to ensure that changes do not adversely
affect existing functionality.

+ Help new team members understand testing procedures and the software’s intended behavior.
e — — = ——1}
1.4.1 Components of a Test Case

R

ﬁ'ﬁﬁqf'i"i’ﬁtcnse : A3 ':R__l;bl_._i?'i-i'hl

203 (ARoEIHLA

A well-structured test case is essential for effective software testing. Each component of a test case plays a

crucial role in ensuring the test is executable, measurable, and repeatzble. The key components of a test case
are listed below.

1. Test Case ID : A unique identifier assigned to each test case. It helps in tracking the test case in test
management tools or documentation and referencing specific tests easily.

2. Purpose : A brief description or statement about what the'test case is intended to verify or validate.

3. Test Created By : The name of the person who created the test case. This is useful for accountability
and for seeking clarification if there are any questions regarding the test case specifics.

4. Test Environment : The specific setup required to run the test, including hardware, operating system,
network configurations, and any installed applications. ’

5. Prerequisites : Any conditions that must be met or steps that need to be performed before the test can
be executed. This might include configurations, data setups, or previous test completions.

- Test Procedure : A detailed step-by-step guide on how to execute the test. It includes actions for
setting up, executing, and shutting down the test, It provides clear instructions on how to conduct the
test to ensure consistency in test execution and results, regardless of the tester.

7. Test Data : Specific data values or inputs that need to be used during testing.

Introduction to Software Testing 1.13

8. Expected Result : The outcome that should occur if the software functions correctly under the test
conditions.

9. Actual Result: What actually happened when the test was executed. The documented outcome thatis
compared with the expected result to determine software performance and correctness.

10. Verdict: Pass/Fail : The outcome of the test case based on the comparison between expected and
actual results.

11. Comments : Additional notes or observations made during the testing, explanations of the results, or
issues encountered that might not be covered by the verdict.

Serial nq| Briefidea| Name | hardware in

igned| .
Assign about | oftest | which the
to test N .
case |creator| testcaseis the test is
case

executed performed

Designing test cases can be time-consuming in a testing schedule, but they are worth for spending
time, because they can prevent unnecessary retesting or debugging or at least lower the rate of such
operations. Organizations can take the test case approach in their own context and according to their
own perspectives. Some follow a general approach while others may opt for a more detailed and
complex approach.

suite, the test cases / scripts are organized in a logical order. For example, the test case for registration will
precede the test case for login.

When we have hundreds / thousands of test cases, a test suite allows to categorize them in a way that matches
our planning or analysis needs. For example, we could have a test suite for each of the core features of the
software or we could have a separate test suite for a particular type of testing (for example, smoke test suite
or security test suite). 2

An example of a test suite for purchasing a product could comprise of the following test cases:
Test Case 1: Login
Test Case 2: Add Products
Test Case 3: Checkout
Test Case 4: Logout

Note that each of the test cases above are dependent on the success of the previous test cases. For instance, it's
no use checking out if one cannot add products. Hence, if we are running a test suite in sequential mode, we

can choose to stop the test suite execution if a single test case does not pass.

1.14 | Software Testing

The execution of a test case involves several steps:
1. Establishing Preconditions: Setting up the system or environment to meet the conditions under
which the test should be run.

2. Providing Inputs: Inputting the defined data or actions into the system.
3. Observing Outputs: Monitoring and recording the system's response to the inputs.

4. Comparing Expected vs. Actual Results: Evaluating whether the actual outputs match the expected
- outputs.

= ————
1.4.2 Insights from a Venn Diagram

The use of Venn diagrams in software testing indeed provides a visual representation of the

relationships between specified, implemented, and tested behaviors in software development. By

illustrating the intersections and differences between these aspects, Venn diagrams offer a clear and

concise way to analyze the completeness and effectiveness of testing strategies.

Through Venn diagrams, software testers can identify areas where specified behaviors have not been
implemented or tested, programmed behaviors that are not covered by test cases, and test cases
that correspond to unspecified behaviors. This visualization helps in pinpointing potential gaps in
testing coverage and understanding the alignment between what is specified, what is implemented,
and what is actually tested. -

This visual tool aids in improving the overall quality and reliability of software systems by providing
a structured approach to evaluating the testing completeness and correctness.

Understanding Specified and Implemented Behaviors through Venn Diagrams

Given a program and its specification, consider the set S of specified
behaviors and the set P of programmed behaviors. The below figure
1.2 shows the relationship between the specified and implemented
programmed behaviors.

Program behaviors

» Specified Behaviors (S): These represent the behaviors expected
from the software, as defined in the requirements or_design
specifications.

Specification Program

+ Implemented Behaviors (P): These are the behaviors actuall)
g e Y (expected) (implemented)

coded or implemented into the software.
 Detailed Analysis:

e S N P: Behaviors that are both specified and correctly implemented. This is the ideal
scenario where implementation aligns perfectly with the specifications.

« S -P: Specified behaviors that are not implemented, known as faults of omission. These
gaps highlight deficiencies in the transition from specification to coding

e P -S : Behaviors that are implemented but were not specified, known as faults
of commission. These may include additional features added by developers or
misinterpretations of the specifications.

Introduction to Software Testing 1.15

| Specified, Implemented and Tested Behaviors through Venn Diagrams

Given a program and its specification, consider the set S of specified behaviors, the set P of programmed
behaviors and the set T of tested behaviors. The below figure 1.3 shows the relationship between the specified,
implemented and tested programmed behaviors.

+ Specified Behaviors (S): These represent
the behaviors expected from the software,
as defined in the requirements or design
specifications.

« Implemented Behaviors (P): These are the AVA

behaviors actually coded or implemented into

Program behaviors

Specification Program
(expected) (implemented)

the software. | % 8
¢ Tested Behaviors (T): These are the behaviors
Test cases
that are actually tested. (verified)

» Detailed Analysis:

« Region 1 (S NP N T):Represents the ideal scenario where behaviors are specified, implemented,
and verified by test cases. This is the target region where testing efforts are often focused to
ensure that specified and implemented behaviors are correctly tested.

« Region 2 (S n P-T): Behaviors that are specified and implemented but not tested. This indicates
gaps in the testing coverage.

« Region 3 (P - S n T): Behaviors that are implemented and tested but were not specified. This
might highlight extra features or potential deviations from the intended design that are being
verified.

« Region 4 (S - P n T): Specifies test cases developed for behaviors that were specified but not
implemented. This can often occur when tests are designed based on specifications without
verifying whether the implementation has been done accordingly.

« Region 5 (Only S): Specified behaviors that are neither implemented nor tested. These are
missed opportunities or oversights in both development and testing.

o Region 6 (Only P): Implemented behaviors that are neither specified nor tested, indicating
possible rogue features or unexpected behaviors that might lead to issues.

&
Region 7 (Only T): Test cases that do not correlate with any specified or implemented behaviors.
These could be erroneous tests or tests designed for functionalities that were removed or never

implemented.
» Region 8 (P - T): [mplemented behaviors that are not tested, suggesting a lack of adequate
testing or oversight in ensuring the program's integrity.
These diagrams help to visually organize the complex relationships between what is expected (specified),
what is done (implemented), and what is verified (tested). They assist in identifying discrepancies between
these aspects, enabling teams to focus on areas needing improvement, such as enhancing test coverage,

rectifying implementation errors, or updating specifications to reflect the actual system behavior.

1.16 | Software Testing

= =
1.5 The Traditional Model of the Software Testing Process
The traditional model of the software testing process for plan-driven development like waterfall
includes a structured sequence of steps to ensure that software behaves as expected and identifying
and rectifying any defects. The process is shown in below diagram.

|
.| Test Test Test Test
“| Cases [Data ’ Results | Reports
y
‘(" Design Test Prepare Test Run Program with Compare Results to]
] Cases Data Test Data Test Cases

Fig 1.2 : Traditional Model of the Software Testing Process

The model comprises the following key stages:

1. Design Test Cases : In this initial phase, specific scenarios or "test cases” are created based
on the software's requirements and design documentation. These test cases are designed to
include typical use cases as well as edge cases that may reveal bugs or inconsistencies.

2. Prepare Test Data : Once the test cases are established, the next step involves preparing
appropriate test data. This data is essential for simulating real-world conditions and inputs
that the software will encounter.

3. Run Program with Test Data : The actual testing phase commences with running the software
using the prepared test data. The software's behavior and outputs are recorded for subsequent
analysis. This step is crucial for identifying any disparities between the expected and actual
software performance.

»

Compare Results to Test Cases : The results obtained from running the tests are compared
to the expected outcomes outlined in the test cases. Any deviations indicate potential issues
that require attention. This comparison is instrumental in verifying that the software meets
the specified requirements and behaves as intended.

5. Test Reports : Finally, the outcomes of the testing process are documented in test reports.
These reports encompass details of the tests performed, the results obtained, and any bugs or
problems identified. They serve as critical resources for developers to understand-the aspects
of the software that require correction.

e e ————————

1.6 Levels of Testing
Levels of testing refer to the different stages or phases of software testing that are conducted to ensure
the quality and functionality of a software product. The levels of testing are organized hierarchically,
with each level focusing on specific aspects of the software, The common levels of testing include:

1. Unit Testing: This is the lowest level of testing where individual units or components of the
software are tested in isolation. Unit testing verifies that each unit works correctly as per the
design specifications. It is typically performed by developers and automated testing tools.

Introduction to Software Testing 117

2. Integration Testing: Integration testing involves testing the interactions between in'?egrated
units or components to ensure they work together as expected. The goal is to detect interface
defects and ensure that the integrated components work correctly as a whole.

3. System Testing: System testing evaluates the behavior of the entire software system as a
whole. It tests the system against the functional and non-functional requirements to verify
that it meets the specified criteria. System testing is usually performed by independent testers.

1.6.1 Unit Testing

Unit testing is a foundational aspect of the software development process where individual
components or modules such as methods or object classes are tested to ensure they work correctly.
This involves calling functions or methods with various parameters and checking for the correct
output to ensure all operations and attributes associated with the object are functioning as expected,
and verifying the object's behavior across different states.

The goal of unit testing is to find errors within that part of the program by testing important control
paths using a descrlptlon of how the component works. Unit testing is limited in scope, which means
it only tests a small part of the program at a time. The focus of umt testing is on how the component
processes 1nformat10n and stores data.

1. Umt testmg isa software testmg technique that mvolves testmg individual units or components or
modules of a software application. A unit can be a single function, method, or class. The goal of unit
testing is to ensure that each unit functions as expected and meets the specified requirements.

2. Unit testing is typically done by developers during the coding phase of software development. The
tests are automated and run frequently to catch errors early in the development process.

’@g‘f‘ | Unit Testing

1. Login Feature : Consider an example of testing a login feature in a web application. The test cases
would include verifying that the login page is displayed correctly, checking that thie user can enter their
credentials, and ensuring that the system validates the credentials and logs the user in successfully.
Additionally, the test cases would cover scenarios such as incorrect login credentials, expired sessions,
and other potential errors that could occur during the login process. By testing each component of the
login feature in isolation and then testing the interaction of these components in sequerice, developers
can ensure that the login feature functions as intended and meets its specified requirements.

2. Messaging Feature : Consider an example of testing. amessaging feature in a social media application.
The test cases would include verifying that users can compose and send messages, ensuring that
messages are delivered to the intended recipients, and checking that the system handles various
scenarios such as message formatting, attachments, and error handling for failed message deliveries.
By testing each aspect of the messaging feature in isolation and then testing the interaction of these
components in sequence, developers can ensure that the messaging feature operates as expected and
can handle a variety of user interactions and potential error conditions.

1.18 | Software Testing

_—

1.6.2 Integration Testing
Integration testing or component testing is a software testing technique that focuses on verifying
the behavior of individual software components or modules. However, in complex software systems,
components are often composite components that are made up of several interacting objects. In such
cases, testing the composite component is essential to ensure that the interactions and interfaces
between the objects within the component behave as expected.

When testing composite components, the focus is on the interface of the combined components rather
than on the individual objects. This is because interface errors in the composite component may
result from interactions between the objects, which may not be detectable by testing the individual
objects.

Consider a scenario where a software system has a component responsible for processing customer
orders. This component interacts with a pricing component to calculate the total cost of the order.
Testing the composite component (order processing) involves verifying that the parameters passed
to the pricing component are correct and that the interface behaves as expected. An error in the way
the order processing component passes paraméters to the pricing component could lead to incorrect
pricing calculations, which may not be apparent when testing the pricing component in isolation.

Therefore, integration testing involves verifying that the interactions between the objects within the
componentare correct and that'the component meetsits functional and non-functional requirements.
It assumes that unit tests for individual objects within the component have been completed, and the
focus is on testing the behavior of the composite component as a whole.

T T I--:-;;"fr"——r:f_ ey i TR R -
o ‘E_t-.a.iuh A B

BiZ) Fil

Integration testing involves testing the interactions between integrated units or components to ensure they
work together as expected. The goal is to detect interface defects and ensure that the integrated components
function correctly as a whole. It involves verifying the behavior of the composite component as a whole,

including its interfaces, interactions, and overall functionality.

while emphasizing the interfaces between them. For instance, when testing the login page component,
it is essential to verify that the page displays correctly and that the user can enter their credentials.
Additionally, the interaction with the user credentials validation component should be tested to
ensure that the entered credentials are correctly passed for validation. This emphasizes the interface
between the login page and the user credentials validation component. Similarly, testing the session
management component should focus on the interface with the validated credentials to initiate and
manage user sessions, including handling session timeouts and termination.

2. Messaging Feature : Component testing for the messaging feature involves testing each individual
component with a focus on the interfaces between them. When testinig the messé‘ge composition
component, it is crucial to verify that users can compose messages with various formatting options and
attachments, emphasizing the interface between the user interface and the message composition logic
Testing the message delivery component should emphasize the interface with the message composition

component to ensure that composed messages are correctly delivered to the intended recipients.

Introduction to Software Testing 1.19

Furthermore, testing the error handling component should emphasize its interface with the message
delivery component to validate the system's ability to handle errors related to failed message deliveries
and provide appropriate user feedback.

e —————— |
1.6.3 System Testing
System testing is a type of software testing that involves testing the entire system as a whole, rather
than testing individual components or modules in isolation. It is a critical phase in the software
development life cycle, where the system is tested to ensure that it meets the specified requirements
and performs as expected in the real-world environment.
The main objective of system testing is to verify that the system is functioning correctly and meets
the business and technical requirements. It involves testing the system's functionality, performance,
reliability, security, and usability. System testing is usually performed after the completion of
component and integration testing, where individual components are integrated and tested as a
group.
System testing is typically performed in a real-world environment that simulates the actual usage of
the system. Itinvolves testing the system from end-to-end, including all the interfaces and interactions
between different components, Test scenarios are created to cover all the possible use cases and
scenarios that the system may encounter in the real world. Test data is also created to simulate the
real-world data that the system will encounter.

¥t =5 0

system functions correctly as a whole and that it performs according to the specified requirements and design.
System testing is typically performed after integration testing and before acceptance testing,

System Testing

E-commerce system testing involves testing the entire e-commerce system to ensure that it meets the specified
requirements and functions as expected in a real-world environment. This includes testing the system's
functionality, perforimance, reliability; security, and usability. The system is evaluated for its ability to handle
various scenarios, such as user registration, product search, adding items to the shopping cart, placing
otders, payment processing, and order fulfillment. [htegration testing is also performed to ensure that all the
corhponents of the system work together seamlessly. By conducting system testing for the e-comikierce system,
we can ensure that it provides a seamiless and secure shopping experience for its users, meets the business and
technical requirements, and performs as expected in the real-world environment.

1.6.4 Levels of Testing in V-Model
The V-Model is a variation of the traditional waterfall model and it enhances the alignment of
development and testing activities by mirroring each phase of software development with a
corresponding testing phase. This structured approach helps in identifying and executing tests that
are particularly relevant to each stage of the software’s creation. The below figure illustrates the
levels of abstraction and testing in V-Model.

| 1.20 | Software Testing

Requirements
specification

Preliminary Integration
design Testing

Detailed
design

Fig 1.3 : Levels of Abstraction and Testing in V-Model

Specification-based testing occurs at three distinct levels which correspond toi;he different stages of
software development:

1. System Testing: This is aligned with the "Requirements Speciﬁcation" phase, system testing
is designed to validate the software against the overall business requirements. It is a high-
level test to ensure that all business processes are functioning as intended, and the software
behaves as an integrated whole.

2. Integration Testing: This corresponds to the "Preliminary Design” phase. Integration tests are
focused on the interactions between integrated units/modules to detect interface defects. This
type of testing is crucial when various software modules are being developed concurrently by
different teams, and it ensures that these modules operate together correctly.

3. Unit Testing: This is linked to the "Detailed Design” phase. This involves testing the smallest
testable parts of the software, typically individual functions or methods. Unit testing is often
conducted by developers themselves and is aimed at ensuring that each function performs as
designed.

This systematic approach to testing at each level of the software development process not only helps
in detecting errors at the earliest possible stage but also aids in mamtalmng a clear focus on meeting
the predefined design and specification objectives. The correspondence between the levels of design
and testing in the V-Model provides a robust framework for quality assurance throughout the
software development lifecycle, making it possible to refine and validate the software continuously
as it progresses from conception to completion. This methodical alignment of design and testing is
instrumental in improving the quality, reliability, and performance of the final software product.

Introduction to Software Testing 1.21

1.7 Structural and Behavioural Insights

Structural and behavioral insights are essential aspects of software testing that focus on dlfferent
aspects of the software system. o
1. Structural Insights: The

e Definition: Structural insights in software testing refer to understanding the internal
structure of the software, including the code, components, modules, and their interactions.

 Focus: It emphasizes analyzing the software at a lower level, such as individual units,
classes, and methods, to ensure that the code functions correctly and adheres to design
specifications.

¢ Techniques: Structural testing techniques such as code based testing or white-box
testing focus on examining the internal logic and structure of the software to design test
cases that exercise specific paths and conditions within the code.

» Goal: Thegoal of structural insightsis to verify the correctness of the code implementation,
identify defects in the logic, and ensure that the software behaves as expected based on
its internal design.

2. Behavioral Insights:

¢ Definition: Behavioral insights in software testing 1nvolve understanding how the
software behaves in response to different inputs, user interactions, and system conditions.

o Focus: It concentrates on the external behavior of the software, including its funcnonahty
performance, usability, and compliance with requirements.

¢ Techniques: Behavioral testing techniques such as specification based testing or
black-box testing focus on testing the software based on its external specifications and
requirements without knowledge of the internal code structure.

* Goal: The goal of behavioral insights is to validate that the software meets user
expectations, functions correctly in different scenarios, and delivers the intended
outcomes as specified in the requirements.

1.8 Fundamental Approaches to Apply Test Cases
The concept of identifying test cases in software testing can be effectively illustrated dsing various
methods and perspectives. The two primary approaches to test case identification are:
1. Specification-Based Testing (Functional Testing or Black Box Testing)
2. Code-Based Testing (Structural Testing or White Box Testing)

1.8.1 Specification-Based Testing (Functional Testing or Black Box Testing)

Specification-Based Testing (Functional Testing or Black Box Testing) is a common activity that we
perform in our daily lives, often without even realizing it. We interact with the system being tested
as if it were a mystery box. We may not know how the system works internally, but we know how

| 1.22 I Software Testing

it should behave. For example, when we test our car or bike, we drive it to ensure that it behaves as
expected. This is an example of black-box testing.

Specification-Based Testing (Functional Testing or Black Box Testing) is a testing technique that tests
the functionality of a software application without knowing the internal structure of the code or
how it has been implemented. In other words, we treat the software as a "black box" and tests its
functionality based on inputs and expected outputs without considering how the software processes
those inputs. Specification-based testing, relies solely on the software specification (requirement
specification, design speciﬁcation etc.,) to identify test cases.

Spec1f1cat10n-based tesnngxs the process of testing asoftwarein accordance withpre- determmed requirements
or specifications. It is a testing technique that tests the functionality of a software application without knowing
the internal structure of the code or how it has been implemented. Specification-based testing (functional
testing) is only concerned with validating if a system works as intended.

It is also called "BlackBox" because software is like a black box inside which tester cannot see.
The main purpose of Black Box testing is to check whether the software is working as expected
and meeting the customer requirements or not. It was designed as a method of analyzing client's
requirements, specifications, and high-level design strategies.

Example: In case of Google or any other
search engine, the user enters text in the
browser. The search engine locates and
retrieves the information. The user is not
aware of the how Google retrieves the
information.

Black Box Testing

[nput Ouput

Black Box

Specification-based testing is the common starting point for designing test cases. Functional
test case design can (and should) begin with requirements specification and continue through
design and interface specification; it's the only technique with such wide and early applicability.
Functional testing methodologies can be applied to any desctiption of programme behaviour, from an
informal partial description to a formal specification, from module to system testing. Functional tests
are cheaper to design and run than white-box tests.

The main objective of functional testing is checking the functionality of the software system. It concentrates
on:

» Functional Testing involves the usability testing of the system. It checks whether a user can navigate
freely without any difficulty through screens.

o Functional testing test the accessibility of the function.
« It focuses on testing the main feature.

* Functional testing is used to check the error condition. It checks whether the error message displayed..

Introduction to Software Testing 1.23

A Specification Based Testing |

. Testmg search engine is a good example for specification based or functional testing. We are not aware
of the processes that work behind the search engine to provide the desired information. While testing
a search engine we provide input in the form of words or characters, and check for output parameters
such as relevance of the search result, time taken to perform the search or the order of listing the search
result.

Testing the functions of an ATM is a good example of specification based or functional testing The tester
acts as a customer who is using the ATM and checks the functions of the machine. He/She does not
know the internal working of the logic. The test cases are developed to check the functions through the
GUI of the ATM such as change in display of the GUI when card is detected, masking the password or
navigating from main menu to a specific function.

Characterlstlcs of Specnﬁcatl n Based Testmg

1. It focuses on testing the software system from the outside, without knowledge of how the
internal code or system architecture works.

2. Itisafunctional testing method that verifies whether the software system meets the functional
requirements specified by the customer or user.

3. Itinvolves testing the software system based on its inputs and outputs without examining the
internal workings of the system.

4. It is user-oriented and focuses on ensuring that the software system works as expected from
the perspective of the end-user.

5. Itis an independent testing method that can be performed by testers who have no knowledge
of the programming language or platform used to develop the system.

6. Itis based on the requirements and specifications provided by the customer or user; and the
test cases are designed to cover all possible scenarios and inputs that the user might encounter
while using the system.

7. It can identify defects or errors that may have been missed during the design or coding phase
of the software development life cycle.

8. It can be performed manually or using automated tools, depending on the complexity of the
software being tested and available resources.

9..It is often performed during later stages of testing, after code based testingzor white-box
testing has been completed.

10. It can ensure that the software meets regulatory or compliance requirements by verifying that
it behaves as expected under different conditions.

The be]owVenn Dxagram (Flgure 1.4) for specification-based methods provides a visual representation
of how different specification-based testing methods cover the set of specified behaviors. In
specification-based or functional testing, the focus is primarily on ensuring that the software meets
its outlined specifications without regard to how these functionalities are implemented.

1.24 | Software Testing

Speci ication

fSpeci ication Program

Fig1.4: Comparing specification based test case identification methods
The two circles within the diagram represents the different specification-based test method:
e Circle A (Test Method A)
« Circle B (Test Method B)

Both circles are within a larger set labeled “Specification,” which include all the behaviors that the
software is expected to exhibit according to its requirements documentation.

Example of Specified Behaviors:

Let's say a software application is supposed to handle user authentication, data processing, and report
generation. The specifications would detail the requirements for each of these functionalities, like:

e Users must be able to log in with a username and password.
¢ The system must process data inputted by the user and provide output within 2 seconds.
¢ Users should be able to generate reports based on selected data.
How Test Methods Cover Specified Behaviors
¢ Test Method A might be designed to cover basic functionalities such as:
¢ User Authentication: Validating correct user credentials and rejecting invalid attempts.
« Basic Data Processing: Ensuring that data input is accepted and correctly processed to
generate an expected output.
o Test Method B might focus on more detailed aspects or additional features such as:
¢ Advanced Data Processing: Checking the system s handling of edge cases in data
processing.
» Report Generation: Verifying that all types of reports can be generated accurately based
on user-selected parameters.
 The overlap between A and B would represent the common functionalities both methods test,
perhaps basic data processing, which is a core requirement.
« Parts of A not overlapping with B could include specific tests unique to basic functionalities
not covered by B, like specific user authentication tests.
e Parts of B not overlapping with A would highlight more complex or additional functionalities
that B tests but A does not, such as comprehensive checks on report generation.
The Venn diagram serves to illustrate visually how different testing methods based on the same
specifications can vary in their focus and coverage. By analyzing these diagrams, stakeholders can

Introduction to Software Testing 1.25

identify potential gaps in testing (where certain specified behaviors are not covered by either ;nettlod),
redundancies (where the same functionalities are being tested by both methods unnecessarily), and
ensure a comprehensive testing strategy that covers all critical specified behaviors effectively.

=——m = = ———————=xi

1.8.2 Code-Based Testing (Structural Testing or White Box Testing)
Code-Based Testing is considered more technical than specification based testing (functional
testing). It attempts to design test cases from the source code and not from the specifications. The
source code becomes the base document which is examined thoroughly in ofder to understand the -
internal structure and other implementation details. It also gives insight in to the source code which
may be used as an essential knowledge for the design of test cases. Code-Based Testing is also known
as White BoxTestmg or Structural Testmg

Code Based Testmg can be deﬁned as a type of software testing that tests the code’s structure and 1ntended
flows. For example, verifying the actual code for aspects like the correct implementation of conditional
statements, and whether every statement in the code is correctly executed; It is also known as Structural
Testing (or) White Box testing or Glass Box testing. This type of testing requires knowledge of the code, usually
done by the developers. »

In simple words, Structural testing is the type of testing carried out to test the structure of code.

Whlte-box testmg (also known as clear box testmg. glass box testing, transparent box testlng. and structural
testing) is a method of software testing that tests internal structures or workings of an application, as opposed
to its functonality (i.e. black-box testing).

To carry out this type of testing, we need to thoroughly understand the code. This is why this testing
is usually done by the developers who wrote the code as they understand it better.

It is more concerned with how system does it rather than the functienality of the system. It provides
more coverage to the testing. For example, to test certain error message in an application, we need
to test the trigger condition for it, but there must be many trigger for it. Itis pi)sbsib‘l'eto’ iniss out
one while testing the requirements drafted in requirement specification. But using this testing, the
trigger is most likely to be covered since structural testing aims to cover all the nodes and paths in
the structure of code.

The intention behind the testing process is finding out how the system works not the functionality
of it. To be more specific, if an error message is popping up in an application there will be a reason
behind it. Structural testing can be used to find that issue and fix it

Code Based Testing is complementary to Specification Based Testing. Using this technique the test
cases drafted according to system requirements can be first analyzed and then more test cases can
be added to increase the coverage. It can be used on different levels such as unit testing, component
testing, integration testing, functional testing etc. Its helps in performing a thorough testing on
software. The structural testing is mostly automated.

1.26 | Software Testing

of Code Ba Testing

T ——

It is focused on the internal workings of the software application, including its code,
architecture, and design.

It is based on how the system carries out the operations instead of how it is perceived by the
users or how functions are carried out.

It involves testing all possible paths through the software application to ensure that every line
of code is executed at least once during testing. This ensures that errors related to control flow
structures such as loops and conditional statements are identified and corrected..

« Itrequires technical expertise in software development and coding to be carried out effectively.
Developers must have a deep understanding of the software's internal workings to identify
potential issues and defects.

o It can be automated using tools such as unit test frameworks or code coverage tools to ensure
thorough test coverage. This can help reduce the time and effort required for manual testing.

o It provides better coverage than many other types of testing approaches because it tests the

whole code in detail, ensuring that errors involved can easily be removed. The chances of

missing out on any error become very low.

It is particularly useful for identifying complex defects that may be difficult to detect using
other types of testing approaches.

It can be time-consuming because it involves testing all possible paths through the software
application. This can make it difficult to achieve complete test coverage in a reasonable amount
of time.

[t may require specialized tools such as code coverage analysis tools or static analysis tools to
identify potential issues and defects in the software application. These tools can help automate
some aspects of structural testing and make it more efficient.

It complements other types of testing approaches such as functional testing and integration
testing by providing additional coverage of the internal workings of the software application.

V

Code-Based Test Case Identification Methods

The below Venn diagram show a comparison of two code-based test case identification methods.
Each diagram consists of two overlapping circles, representing "Specification” and "Program.”

Specification ~ Program
Test
ethcd
B

Specification ~ Program

Introduction to Sofiware Testing | 1.27 |

« Test Method A (Left Diagram): This method séems to focus on identifying test cases that
are relevant to both the program and the specification. The overlap, where "Test Method A"
is placed, indicates that the chosen test cases are those that meet both the criteria set by the
program and the specification. '

« Test Method B (Right Diagram): In this method, the identified test cases overlap slightly
differently with the specification and the program. "Test Method B" is located mostly within
the "Program” circle but still overlaps with the "Specification” circle. This suggests that this
method prioritizes test cases that are primarily relevant to the program but also considers
their applicability to the specification.

These methods approach the selection of test cases from different perspectives. Method A might
be seen as more balanced or conservative, ensuring that tests cover aspects important to both
specification and program equally. Method B seems more program-oriented, but ensuring compliance

R s e E A S S AR e I
Choosing the right testing methods depends on understanding the specific needs of the project and the types
of errors most likely to occur. Testers should aim to employ a mix of methods that cover both functional and

structural aspects of the software, providing a balanced view of its reliability and correctness.

1.9 Examples

Software testing is vital for ensuring software systems work reliably. In the upcoming chapters,
various examples will be used to explain different testing methods. and difficulties at both the unit
and system levels. These examples include basic problems like triangles, more complex functions
like NextDate, and practical applications like commission problems and automated systems such as
ATMs. By looking at these examples, testers can learn how to test different types of software and
make sure they work well.

Examples for Unit Testing

1. Triangle Problem
o A classic example in the testing community.
« This problem involves categorizing a triangle based on the lengths of its sides.
o Itillustrates fundamental testing concepts at the unit level. b

2. NextDate Function
« This function is a complex task that calculates the subsequent date from a given date.
« Represents a logically complex function.
+ Highlights challenges in managing input constraints and leap year calculations.

3. Commission Problem
« Itis typical scenario in Management Information Systems (MIS).
« Involves a mix of computation and decision-making.
« This problem is utilized to discuss testing strategies like data flow and slice-based testing.

| 1.28 | Software Testing

Examples for Higher-Level Testing (System Testing)
1. Simple ATM System (SATM)

* Asimplified version of an automated teller machine.

» Demonstrates testing at a higher level of abstraction.
* Focuses on higher-level testing concerns and their practical implications.
« Focuses on system-level testing considerations.

e e ——— 3
. 1.9.1 Triangle Problem

The Triangle Problem is a famous example in software testing; It shows how important it is to test
software carefully. Many experts have used this example to explain different testing methods and why
it's crucial to have clear instructions when developing software.
> Problem Statement Simple Version:
The triangle program accepts three integers, a, b, and ¢, as input. These are taken to be sides
qf a tﬁangle. The output of the program is the type of triangle determined by the three sides:
Equilateral, Isosceles, Scalene, or NotATriangle.
The program's task is to determine the type of triangle based on these sides: Equilateral (all
sides equal), [sosceles (exactly one pair of sides equal), Scalene (no pair of sides equal), or
NotATriangle (conditions not met).

> Improved Version:

The triangle program accepts three integers, a, b, and ¢, as input. These are taken to be sides of
a triangle. The integers a, b, and ¢ must satisfy the following conditions:

Condition c1: 1 <a <200 Conditionc4: a<b+c
Condition c2: 1 <b <200 Condition ¢5: b<a+c
Condition c3: 1 <c < 200 Condition c6: c<a+b

Inimproved version, specific conditions are set for the input values a, b, and c. These conditions
require that a, b, and c fall within the range of 1 to 200. If the input values meet these criteria,
the program proceeds to classify the triangle type based on the defined rules. If any input value
fails to satisfy the specified conditions, the program provides an output message indicating the
issue encountered. For example, “Value of b isnot in the range of permitted values.”
If values of 3, b, and c satisfy conditions c4, ¢5, and c6, one of four mutually exclusive outputs
is given:

1. Ifall three sides are equal, the program output is Equilateral.

2. If exactly one pair of sides is equal, the program output is Isosceles.

3. Ifno pair of sides is equal, the program output is Scalene.

4. If any of conditions c4, ¢5, and c6 is not met, the program output is NotATriangle.

> Discussion:

The Triangle Problem is popular because it's easy to understand but also has some tricky

parts. It shows why it's important for everyone involved in making software to have clear
instructions. The idea of the triangle inequality rule, which says the sum of two sides must

Introduction to Software Testing 1.29

be greater than the third side, adds a bit of complexity. Choosing 200 as the highest number
is just a convenient way to test different scenarios. By setting boundaries for the input values,
developers can create test cases that cover a wide range of possibilities to ensure thorough
testing of the program's functionality under different conditions. i
Traditional Programming Implementation :
The traditional way of solving the Triangle Problem, often resembling older programming
styles like FORTRAN, involves using a series of steps to figure out the type of triangle based
on its sides. This includes keeping track of side equality using a some variable called match. It
checks if the sides follow the triangle inequality rule to confirm if it's not a triangle, and then
using the match value to decide if the triangle is Equilateral, Isosceles, or Scalene.
How the match Counter Works ?
The match counter is initialized to zero at the start of the program. As the program evaluates
the equality of the triangle's sides, it updates the match counter in the following ways:
= Ifside a equals side b, the match counter is incremented by 1.
* If side a equals side c, the match counter is incremented by 2.
o If side b equals side c, the match counter is incremented by 3.
Using the match Counter to Determine Triangle Type
¢ Equilateral Triangle: This is correctly determined if match equals 3, indicating that all
three conditions (a=b, a = ¢, and b = c) are true.
¢ Isosceles Triangle: The triangle is classified as isosceles if match equals 1 or 2, indicating
that exactly two sides are equal.
« Scalene Triangle: If the match value remains 0 after all checks, it indicates that no sides
areequal (azb#c).
* Not a Triangle: The validation against the triangle inequality theorem (a+b>c,a+c>
b, b + ¢ > a) still applies separately to determine if a valid triangle-can be formed. If any of
these conditions fail, it's not a triangle, irrespective of the match value.
Challenges with the Traditional Programming Implementation
The approach of using batch couter variable is efficient for quickly determining the type of
triangle, but it mixes different logical checks (equality and triangle inequality) in ways that
can be confusing. This can complicate understanding the flow of the program and debugging.
Isolating issues becomes more challenging because changes to how match is calculated or
interpreted might affect multiple parts of the triangle classification Iogic:
Thus, while the match approach is computationally efficient and clever in using unique sums to
identify side equalities, it exemplifies a style of programming where clarity and maintainability
could be compromised, making it harder for new programmers or testers to follow or modify
the code without introducing errors.

Structured Implementations:

The "structured programming” approach (like C, C++) breaks down the program into clearer,
more manageable parts, making it easier to understand, maintain, and test:

| 1.30 | Software Testing

« Input Validation: First, the program checks if the input values (the sides of the trlangle)
are within a valid range, say 1 to 200. This ensures that the sides are not only real,
meaningful numbers but also within expected limits.

Triangle Validation: Next, the program checks if the three sides meet the triangle
inequality conditions (the sum of the lengths of any two sides must be greater than the
length of the third side). This step confirms whether the given sides can actually form a
triangle.

« Type Determination: Finally, the program determines the type of triangle based on how
many sides are equal—if all three sides are the same, it's Equilateral; if two are the same,
it's Isosceles; if none are the same, it's Scalene. If the sides don't form a triangle, it'll
classify it as "Not a Triangle."

These structured steps make the program more robust and maintainable because each part
does a specific task and does it well. It also makes testing easier. Testers can check each part
independently to ensure it works correctly, without worrying about the other parts. This
means bugs can be found and fixed more efficiently, leading to a more reliable program.

S “n‘{.n...u,s. e S =

&I;T‘M& &

Testing a Triangle Problem can mvolve several complexities that need tobe addressed to ensure the accuracy
and reliability of the software. Some complexities in testing a Triangle Problem are:

1. Boundary Testing: Testing the program with boundary values such as the minimum and maximum
allowed side lengths can be complex. Ensuring that the program behaves correctly at these boundaries
is crucial for comprehensive testing.

2. Handling Invalid Inputs: Testing how the program handles invalid inputs such as negative side lengths
or non-numeric values is essential. Verifying that the program provides appropriate error messages
and handles exceptions correctly adds complexity to testing.

3. Validation of Triangle Inequality: The triangle inequality theorem states that the sum of the lengths
of any two sides must be greater than the length of the third side. This must be validated under all input
conditions to ensure that this condition is checked correctly and consistently for all side lengths.

4. Edge Case Testing: Testing edge cases such as triangles with very small or very large side lengths, is
crucial. These edge cases can reveal potential issues in the program'’s logic or calculations. Testing need
to ensure that the program behaves as expected in these scendrios adds complexity to testing,

5. Complex Logic Verification: The logic involved in determining the type of triangle based on the
side lengths, including considerations like the triangle inequality rule, can introduce complexities in
testing. Validating the correctness of the logic and ensuring all possible outcomes are covered require
thorough testing strategies.

1.9.2 The NextDate function

The NextDate function is designed to handle the calculation of the date following a given input date
by considering three variables: month, day, and year. This function showcases a specific type of
complexity related to logical relationships among input variables. It is distinct from the complexity
observed in the Triangle Problem. It highlights the logical relationships between days, months, and
years, where each input variable (month, day, year) influences the output in distinct ways. This

Introduction to Software Jesting 1.31

function serves as a clear example of how a simple and straightforward tasks can b‘ecome' complex
due to the various rules and exceptions in calendar calculations.

4+ Problem Statement :
The NextDate function operates on three integer variables with specific ranges:
o month: Valid values range from 1 to 12,
* day: Acceptable values are between 1 and 31.
e year: The year should fall within the accepted range like (1812 to 2024).

The NextDate function must handle invalid input values and combinations. For.example, an
input like "June 31" would be considered invalid due to june having only 30 days. In case
any of the above conditions (month, day, year) are violated, NextDate signals an out-of-range
error specific to that variable, such as “Value of month not in the range 1...12.” For invalid date
combinations, a generic message "Invalid Input Date" is provided.

4+ Discussion
The complexity of the NextDate function arises from two main aspects:

o Complex Input Domain: Managing a wide range of input values and their valid
combinations peses a significant challenge. It requ1re a thorough validation to ensure
accurate date calculations.

o Leap Year Calculation: The function must accurately handle leap years, which introduce
an extra day in February every four years, with exceptions for certain century years. This
leap year rule is crucial for determining the correct date transition, especially in February.

The implementation of the function reflects this complexity in two key areas:

 Leap Year Handling: A considerable portion of the code is dedicated to precisely
determining leap years to ensure accurate date calculations, particularly in February.

o Input Validation: Substantial code is allocated to validate input values, checking for out-
of-range errors and incorrect day-month combinations. This validation is essential for
the function to provide correct results.

This complexity underscores the importance of thorough software testing to cover all possible

scenarios by aligning with Zipf’s law where a small portion of the code (e.g, leap year
calculation) can significantly impact the funct10n s complex1ty and operatlonal focus.

Tesung the NextDate function involves several complexities due to the nature of date calculations and the
specific requirements of the function. Some key complexities in testing the NextDate function are:

1. Input Domain Complexity: The NextDate function operates within specific ranges for month, day,
and year inputs. Testing all possible combinations within these ranges can be chéllenging and time-
consuming, especially considering edge cases and boundary conditions.

2. Leap Year Handling: Testing the function's behavior around leap years adds complexity. Ensuring
that the function correctly identifies leap years and adjusts the date calculation accordingly requires
thorough testing to cover all scenarios, including leap day (February 29th) considerations.

| 1.32 I Software Testing _

3. Invalid Input Scenarios: Testing for invalid inputs, such as providing a day beyond the valid range for
a specific month or entering an incorrect month number, requires comprehensive test cases to validate
the function's error-handling mechanisms.

4. Boundary Testing: Testing at the boundaries of the input ranges (e.g, the last day of 2 month, the last
month of the year) is crucial to verify the function's accuracy in handling critical transition points.

5. Combination Testing: Verifying the function's behavior for various combinations of valid and invalid
inputs adds complexity. Testing scenarios where multiple input variables interact to determine the
output date is essential to ensure comprehensive coverage.

6. Output Verification: Validating the correctness of the output date generated by the NextDate function
against expected results for a wide range of input scenarios is a key aspect of testing complexity.

7. ErrorHandling: Testing the function's ability to handle errors gracefully, such as providing informative
error messages for invalid inputs or exceptional cases, requires thorough testing to ensure robust error

management.

b= = —— = - — —— |
1.9.3 The Commission Problem

The Commission Problem involves complex computational and decision-making elements. It
is commercial computing scenarios particularly in management information systems (MIS). This
scenario sets the stage for applying advanced software testing techniques like data flow and slice-
based testing.

> Problem Statement :

The Commission Problem involves a scenario where a salesper§6n sells rifle components
(locks, stocks, and barrels) manufactured by a gunsmith in Missouri. The problem statement
includes the following key elements:

Product Costs:
« Locks cost $45 each.
e Stocks cost $30 each.
¢ Barrels cost $25 each, ’
Sales Requirements: .
¢ The salesperson must sell at least one lock, one stock, and one barrel each month,
but they do not necessarily need to be sold as part of a complete rifle.
* There are maximum sales limits due to production constraints: 70 locks, 80 stocks,
and 90 barrels per month.
Sales Reporting:
* After visiting each town, the salesperson sends a telegram to the gunsmith about
the number of locks, stocks, and barrels sold.
* At the end of the month, a final telegram with the figures "-1 locks sold" signals
the completion of that month's sales, prompting the gunsmith to compute the
salesperson's commission.

Introduction to Software Testing 1.33

Commission Calculation:

The commission structure is tiered:
* 10% commission on sales up to and including $1000.
¢ 15% commission on the next $800 of sales.
* 20% commission on any sales beyond $1800.

The Commission Problem revolves around managing sales of rifle components, ensuring
minimum sales requxrements are met, reporting sales data accurately, and calculating the
salesperson’s commission based on a tiered structure of sales revenue.

> Discussion
This problem highlight the computational and logical aspects involved in processing sales data
and calculating commissions. The use of a sentinel value (-1 locks sold) in the communication
process is a classic technique in MIS for signaling the end of data input.

Components of the Problem:

e Input Data Handling: This involves managing the sales data received per town. While
the problem statement omits explicit inpui: data validation, ensuring accurate and valid
data input is critical in real-world appliéat'ions.'

* Sales Calculation: Summing up the total sales from the number of locks, stocks, and
barrels sold, multiplied by their respective prices, to determine the total sales revenue
for the month. '

¢ Commission Calculation: Applying a tiered commission structure to the total sales
revenue to compute the salesperson’s earnings for the month. This requires careful
calculation to ensure commissions are accurately applied at each tier.

Testing Considerations: .
Testing this application would involve validating the correct execution of each step:

* Ensuring accurate calculations of total sales.

* Correctly implementing the commission tiers.

e Proper handling of the sentinel value to terminate monthly data input.]

This problem, although somewhat simplified for clarity, reflects the complexities found in
real-world MIS applications where multiple variables and conditional logic must be carefully
managed to ensure accurate computations.
The Commission Problem exemplifies the challenges in processing sales data and commission
calculations. Testing methodologies play a vital role in validating the system's functionality and
accuracy, ensuring reliable operations in real-world scenarios.

Testing the Commission Problem involves various complexities due to the nature of the problem and the
requirements involved. Some of the complexities of testing the Commission Problem are:
1.

. Boundary Conditions: Handling boundary conditions such as reaching the maximum sales limits for

Data Validation: Ensuring that input data such as the number of locks, stocks, and barrels sold is
validated correctly to prevent errors in calculations.

locks, stocks, and barrels, and ensuring that the commission calculation is accurate in such scenarios.

Introduction to Software Tasting | 1.35 I

A terminal is equipped with various user interaction components like a card slot, keypad, and
screens for displaying messages and options. Customers interact with the SATM by using a
plastic card encoded with a personal account number (PAN). The system progresses through
multiple screens, each corresponding to different stages of transaction processing—from card
insertion, PIN entry, transaction selection, to the final transaction execution.

The SATM interacts with bank customers usinga sequence of 15 interactive screens as depicted
in Figure 1.7. Each screen represents a different stage of the transaction process, capturing all
necessary user interactions and system responses.

3. Commission Tiers: Testing the commission calculation logic for different tiers (10%, 15%, and 20%)
based on the total sales revenue, including scenarios where sales fall within multiple tiers.

4. Sentinel Value Handling: Validating the correct handling of the sentinel value (-1 locks sold) to signal
the end of data input for the month, ensuring it triggers the commission calculation accurately.

5. Integration Testing: Testing the integration of different components of the problem, such as input
data handling, sales calculation, and commission calculation, to ensure they work seamlessly together.

6. Error Handling: Testing error-handling mechanisms for scenarios like invalid input data, exceeding
maximum sales limits, or unexpected data*formats in the input.

1.9.4 The SATM (Simple Automatic Teller Machine) Problem
The Simple ATM System (SATM) serves as a practical example to illustrate the complexities involved
in integration and system testing of a client-server architecture. With a set of functionalities captured
in a series of interactive screens, the SATM system provides an ideal case. to examine how different
components within an ATM interface work together to handle user transactions seamlessly.

> Problem Statement :

The Simple ATM system simulates real-world banking transactions via an interface shown in
Figure 1.6. It demonstrates how various components interact to complete user-driven tasks.

Welcome to
Rock Solid Federal Credit Union

[
[

ra

Screen 1

C Screen 2 W

(" Screen 3 b

Welcome ‘
please insertyour *
ATM card

N

| Please enter your PIN

Your PIN is incorrect.
Please try again

(Screen4

Screen 5

Screen 6

Invalid ATM card.
It will be retained

[Screen 7

Select transaction
balance>
deposit>

ithdrawal>

Balance is
$dddd.dd

e,

(Screen 9

Enter amount.
Withdrawals must
be multiples of $10
e

Insufficient Funds
Please enter a new
amount
\, J

Machine can only
dispense $10 notes

' "

Screen 10

[Screen11 h

Screen 12

Temporarily unable to
process withdrawals
Another transaction?
\, J

Your balance is being
updated. Please take

cash from dispenser
\, y,

Temporarily unable to| |
~ process deposits
Another transaction?
A e

Screen 13

(" Screen14)

([Screen1s)

Please insert deposit
into deposit slot

Your new balance is
being printed. Anoth

Please take your
receipt and ATM card

Please Insert your ATM card

[

[Primedreceit] [1] [Z] [3]

ME G [cer]
[o] [Cancel |

| Cashdispenser | | Depositslot

i
HEE

Fig 1.6 : SATM Terminal

transaction? L Thank you.

L g

Fig 1.7 : SATM Screens

« Initial Interaction: When a customer approaches the SATM, the interface shown
on screen 1 prompts them to insert their ATM card into the card slot. This triggers a
verification process where the system checks the personal account number (PAN)
encoded on the card againstan internal database.

. Authentication: If the PAN is verified, the system advances the customer to screen 2,
asking for a PIN. If the PAN does not match, screen 4 appears, indicating the card is invalid
and will be retained. After correct PIN entry, the customer moves to screen 5; incorrect
entries after three attempts lead to screen 4 where the card is retained.

1.36 | Software Testing

* Transaction Selection: On screen 5, the customer selects from available transactions:
balance inquiry, deposit, or withdrawal, The system then navigates to different screens
based on the selection:

Balance Inquiry: Leads directly to screen 14 showing the account balance.

Deposit: If the deposit slot is operational (as per the terminal control file), the system
proceeds to screen 7 to accept the deposit amount. If there is an issue, it moves to screen
12. Following the deposit, the system processes the transaction and updates the balance
on screen 14.

Withdrawal: The system first checks the status of the withdrawal chute, If it's jammed,
screen 10 is displayed. If it's operational, screen 7 appears for entering the withdrawal
amount. Post this, if the funds are insufficient, screen 8 is shown; otherwise, the system
processes the withdrawal and displays the new balance on screen 14.

> Discussion

The SATM's workflow is designed to ensure secure and efficient transaction processing. Each
step of the interactio from user authentication to the final transactio is handled through
specific screens that guide the user through the process. This system's design allows for clear
separation of functionalities, which is crucial for both integration testing, where different
system compenents are tested together, and system testing, where the entire system's
functionality is evaluated in a real-world scenario.

Integration Challenges:

* Ensuring seamless data flow between screens and the backend database for real-time
updates on user transactions and account balances.

* Handling hardware interactions, such as card reading and cash dispensing, which require
the physical components and the software to work in unison,

System Testing Focus:

* Verifying that all transaction types are processed correctly and under various scenarios,
including edge cases like maximum withdrawal limits or operational failures (e.g, a
jammed deposit slot).

* Testing the system’s response to user inputs across different screens to ensure consistent
and secure handling of transactions.

Testing the Slmp]e ATM System (SATM) involves arange of complexmes due toits 1nteract1ve, mulu-step nature
and the critical need for security and reliability in financial transactions. Here are several key complexities
involved in testing the SATM:

1. Integration of Hardware and Software Components : Testing must ensure that the hardware
(card reader, keypad, cash dispenser, deposit slot} and software components interact flawlessly. Each
component must respond correctly to user inputs and system commands under various scenarios.

Introduction to Software Testing 1.37

- User Interface and Experience : The system involves a series of screens, each designed for specific
. Transaction Logic Accuracy : Each transaction type—withdrawals, deposits, and balance i inquiries—
. Error Handling and Exception Management : The system should gracefully handle errors such as

. Security Testing : Given the sensitive nature of financial transactions, secunty is most 1mportant.
. Concurrency and Session Management : The ATM may handle multiple users sequentially or almost
. Performance and Reliability : The SATM should perform reliably under varying conditions, including

- Usability and Accessibility : Testing must also cover the usability and accessibility of the ATM for

functions like entering a PIN, choosing a transaction, or handling errors. Tests need to verify thét each
screen correctly displays the expected information and that transitions between screens are smoot:h
and logical.

has specific logical paths that need to be thoroughly tested for accuracy. For example, the system must
correctly calculate and update balances, validate transaction conditions (e.g., sufficient funds, correct
PIN), and handle transaction limits.

incorrect PIN entries, unrecogmzed card 1nformat|on hardware malfunctions (like a]ammed cash
dispenser), and other operational issues. Testing should include scenarios where these €frors -are
triggered to ensure the system responds appropriately.

Testing must cover data encryption, secure communication between the ATM and the bank’s servers,
protection against physical and cyber threats, and compliance with financial regulations.

concurrently. Testing needs to ensure that session data from one customer does not leak into another
session, and that the system can manage simultaneous transactions safely and correctly.

high usage periods, network connectivity issues, and under different operational conditions. Stress and
performance testing help verify that the system operates efficiently without crashes or slowdowns.

all types of users, including those with disabilities. This involves checking the clarity of instructions,
the responsiveness of the interface, the physical accessibility of the machine; and the overall user
experience.

1.10 Review Questions

. What is Software Testmg"
. Define Software Testing.
. What is Verification and Validation in Software Testing?

. What is an Error? Give an example.

. What is a Fault? Give an example.

. What is a Failure? Give an example.

. What is an Incident? Give an example.
. Define Test and Testcase.

. What s Test Suite?

I 1.38 | Software Testing

10.
11.
12
13.
14.
15.
16.

= W N =

O O N O

Write the Process of Executing a Test Case.

Write the Levels of Testing.

What is Unit Testing? Give an example.

What is Integration Testing ? Give an example.

What is System Testing ? Give an example.

What is Specification-Based Testing? Give an example.
What is Code Based Testing? Give an example.

Seclion-B

S

. What are the Benefits of Software Testing?

. Write the Goals or Objectives of Software Testing.

. Explain the Importance of Software Testing.

. What i Verification and Validation in Software Testing? Explain the techniques of Verification

and Validation.

. Mention the Differences between Verification and Validation.

. Explain the Components of a Test Case.

. Explain the use of Venn diagrams in software testing.

. Explain the Traditional Model of the Software Testing Process.
. Explain the Levels of Testing in V-Model. '
10.
11
12.
13.
14.
15.
16.

Write a note on Structural and Behavioural Insights.

What is Specification-Based Testing? Write the Characteristics of Specification Based Testing.
What is Code-Based Testing? Write the Characteristics of Code Based Testing.

What is Triangle Problem ? What are the Complexities of Testing a Triangle Problem?

What is NextDate function ? What are the Complexities of Testing the NextDate function?
What is Commission Problem ? What are the Complexities of Testing the Commission Problem?
What is SATM Problem ? What are the Complexitie; of Testing the SATM Problem ?

1.
2.
3.

ST Cartics Eight Marke_
Explain the Classification of Software Testing.

Explain the Testing Life Cycle.

Explain Fundamental Approaches to Apply Test Cases with examples.

BOUNDARY VALUE
TESTING

Contents

- Boundary Value Testing

Types of Boundary Value Testing
Normal Boundary Value Testing
< Generalizing the Boundary Value Analysis ’
= Limitations of Boundary Value Analysis
Robust Boundary Value Testing
Worst-Case Boundary Value Testing
Robust Worst-Case Boundary Value Testing (RWCBVT)
Special Value Testing
Examples
= Test Cases for the Triangle problem
= Test cases for the next date function

= Test Cases for the Commission Problem

= Random Testing
= Guidelines for Boundary Value Testing

= Review Questions

I 2.2 l Software Testing

2.1 Boundary Value Testing

Boundary value testing is an important method in software testing that involves testing the extreme
values at the edges of input ranges. The idea is that errors are more likely to occur at these boundary
points, so testing them can help find potential issues efficiently. By focusing on thiese edge cases, testers
can uncover defects that may not be visible with typical test inputs within the normal range. This
approach is valuable because it aligns with how 2 program functions, mapping inputs to outputs. ita
fundamental component of specification-based testing strategies. We will explore: different strategies
to adapt this technique to various testing situations to identify errors and enhance software quality
effectively. :
Boundary Value Testing (BVT) is a specification based testing method that involves creating test
cases based on the boundary values of input domains. Boundary values are the values at the edges of
an input domain, just inside and just outside the boundaries, where the behavior of a system might
change. This technique is based on the observation that errors tend to occur at the boundaries of
input values rather than in the center.

Key Concepts of Boundary Value Testing:
¥ .

¢ Boundary Values: These are the values at both ends of input ranges. For example, if an input
field accepts values from 1 to 100, the boundary values would be 0, 1, 2, 99, 100, and 101.

¢ Test Cases: Boundary Value Testing focuses on creating test cases for these boundary values
rather than testing with any value within the range. This approach helps to efficiently detect
errors that are related to incorrect handling of data at the edges.

€ Function Mapping;: Just as a mathematical function maps inputs (domain) to outputs (range),
a program takes specific inputs and generates outputs based on those inputs. Understanding
this functional nature helps in designing effective test cases by considering the inputs and
expected outputs.

¢ Cross Products: When a program's inputs or outputs are combinations of different variables,
these can be treated as cross products, which are sets formed by combining each possible
value of one variable with each possible value of another.

Boundary Value Testing

Suppose a function is designed to accept an integer value from 1 to 100 inclusive. Boundary Value Testing
would generate test cases for values at and around the boundaries:

¢ Just below the minimum boundary (e.g,, 0)

e At the minimum boundary (e.g, 1)

* Justabove the minimum boundary (e.g., 2)

e jJust below the maximum boundary (e.g, 99)

¢ At the maximum boundary (e.g., 100)

* Justabove the maximum boundary (e.g, 101)

Boundary Value Testing ' 23]

An input domam function refers to the range of valid input values that can be accepted by a functlon or
program. In the context of software testing, the input domain function is defined by the boundaries within
which input variables must fall to ensure the correct functioning of the program.

Example : If we consider a function F that takes two variables x1 and x2, the input variables x1 and x2 are
constrained by certain boundaries:

asxlsb
csx2<d
These boundaries [a, b] and [c, d] define the valid ranges for x1 and x2

Boundary Value Testmg (BVT) also known as Input domain teslmg isa spec1ﬁcauon-based tesung
technique that focuses on the inputs a program can accept. This type of testing is based on the idea that errors
are most frequent at the edges of an input range, hence testing these boundary values can be more effective
in finding bugs. :

Boundary value testmg is a software testing techmque that involves creating test cases based on the boundary
values of input domains. This method is particularly useful and frequently employed because it effectively
identifies errors that occur at the edges of input ranges, where bugs are most likely to appear.

1. High Error Detection Rate at Boundaries: Many errors in software occur at the boundaries of input
ranges due to off-by-one errors and other boundary-related issues. Boundary value testing specifically
targets these potentially problematic areas, which increases the likelihood of catching bugs that might
not be detected by other testing methods that use values well within the range.

2. Efficiency: Boundary value testing is a cost-effective method in terms of the number of test cases
generated versus the potential defects found. By focusing on the edge cases, it reduces the number of
test cases needed compared to exhaustive testing, which would require much more time and resources.

3. Common Requirement Specifications: Requirements often define operations or behaviors at the
limits of input ranges (e.g., "the age should be between 18 and 60"). Testing these boundary conditions
directly checks the system's adherence to its specified requirements.

4. Usability and Reliability: By ensuring that the software behaves correctly at bo'ﬁndary values,
developers can improve the usability and reliability of their software. This is because handling
boundary conditions gracefully often reflects the software’s ability to handle unexpected or extreme
inputs, which are critical in real-world operations.

5. Early Defect Identification: Identifying defects at the boundaries early in the testing process can lead
to more efficient debugging and resolution, reducing the likelihood of critical issues in later stages of
development.

6. Integrates with Other Test Methods: This method can be effectively combined with other testing
strategies such as equivalence partitioning (where inputs are divided into logically similar groups),
further refining the efficiency and effectiveness of the testing process.

I 2.4 | Software Testing - = : Boundary Value Testing | 25 I

2.2 TYPES Of Boundar'y value TGSﬁHg : I\[ct]mdol()"t |_:|_i__m'm l| Bnund i lil.u TL-.tll'nU
Boundary value testing is a critical technique in-software testing where special focus is placed on the The testing focuses on the boundary values of input variables. This includes:
values at the edge of input domains. The four typés of boundary value testing are: : A Min: The minimum value the variable can take.

N - Wew h
Min+: Just above thé minimum value. .

A
A Nom (Nominal): A typical or expééted value (often the inidpoint).
2. Robust Boundary Value Testing: Robust Boundary Value Testing extends Normal Boundary A Max-: Just below the maximum value.
Value Testing by including values just outside the valid range. It tests the system's ability to A Max: The maximum value the variable car take.
handle inputs slightly beyond the expected boundaries. e

1. Normal Boundary Value Testing : Normal Boundary Value Testing focuses on testmg values
at the boundaries within the valid range.

O'PY

\pplu mun Di '\B\ 4

3. Worst-Case Boundary Value Testing : Worst-Case Boundary Value Testmg examines the.
effects of all combinations of boundary values across multiple variables. It explores mteractm
between variables at their boundary conditions.

1. Slngle Fault Assumption: NBVT often operates under the "single fault” assumptlon ofs W
reliability theory, which indicates that system failures are usually due to a single fault rathey-

: than the interaction of multiple faults. This assumptlon simplifies the testing process bﬁ-— oy
4. Robust Worst-Case Boundary Value Testing: Robust Worst-Case Boundary Value Testmg allowing the focus to be on individual variables one at a time. ‘r‘ O’_

combines ou;-of-range valuc;s1 for muli;lple varllal;les to stress test the system. It includes 2. Test Cases Generation: For a furiction with twi variables, for example, the test cases wouldZ Z O 0
extreme combinations, even those outside the valid input ranges. keep one variable at its nominal value and vary the other through its boundary values. For' -

== example, If we have two variables x1 and x2, then = ?: =
2.3 Normal Boundary Value Testing o Variable x1 is held at its nominal value, and x2 is tested at its min, min+, nom, max-, and ':&_

Normal Boundary Value Testing (NBVT) is a technique that focuses on testing the boundanesof max. =

the input space to uncover potential errors that often occur near extreme values of input variables. o Similarly, x2 is held at its nominal value, and x1 is tested at its min, min+, nom, max-, and 8

The rationale behind NBVT is to test input values at their minimum, just above the minimum, at a
nominal value, just below the maximum, and at the maximum value. This approach helps to identify
common errors such as off-by-one errors, incorrect conditional checks (using < instead of <), and
misunderstandings about where counting should start (from zero or one). Normal boundary value
test cases for two variables are shown in Figure 2.1.

Noraml Boundary Value Testing - Single Variable

Scenario: Consider a system that grants access based on age, where only individuals aged 18 to 65 are allowed
entry.
Boundary Values for Age:

‘:k « Min (18): Test with age 18 to verify that the system grants access.

 Min+ (19): Test with age 19 to ensure access is consistently granted just above the minimum age.
» Nom (42): A nominal test with age 42 (midpoint of the range} to check normal aperation.

o Max- (64): Test with age 64, just below the maximum age limit to ensure accéss is still granted.
 Max (65): Test with age 65 to check that the system still grants access at the upper edge.

Testing at these boundaries helps ensure that the system accurately enforces age restrictions by allowing
access to eligible individuals while denying it to those outside the age range (under 18 or over 55]

L]

¥| Noraml Boundary Value Testing - Two Variables

. Scenario: Businesses are required to pay GST monthly by submitting their total sales and selecting the
applicable GST rate. The rates are variable depending on the type of goods or services provided, commonly 5%,
12%, 18%, and 28%. The system calculates the tax payable and allows businesses to submit their payments
online.

X
a b h Boundary Values for Variables:

) « Total Sales (x1): Input is expected to range from 30 (minimﬁm) to ¥10,00,000 (maximum),
Fig 2.1 : Boundary value analysis test cases for a function of two variables representing the sales amount for the month.

o GST Rate (x2): Standard GST rates applicable: 5% (min), 12%, 18%, and 28% (max).

| 26 | Software Testing

Testing Boundary Values for Total Sales:

* (%0, 5%) - Test case with no sales and the lowest GST rate (5%)

¢ (%1, 5%) - Minimum positive sales amount with the lowest GST rate.

* (%5,00,000, 18%) - Midpoint of the sales range with a commonly used GST rate (18%).

* (%9,99,999, 28%) - Just below the maximum sales limit with the highest GST rate (28%).

» (310,00,000, 28%) - Maximum sales limit with the highest GST rate.
Testing across different GST rates (using a typical sales amount, e.g., ¥50,000):

¢ (50,000, 5%) - Testing with a lower GST rate applied to a typical sales figure. .

. (50,000, 12%) 0

* (350,000, 18%) .

+ (350,000, 28%) - Testing with higher GST rates applied.
By testing the system with these specific boundary values, we can ensure that the GST calculation and payment
submission process works correctly under various scenarios, including nﬁnjmum, maximum, and critical
points of the input ranges. This approach helps identify potential issues related to calculations, tax rates, and
system behavior at the edges of the expected input values.

4% Noraml Boundary Value Testing - Three Variables

Scenario: In the Indian railway ticket booking system, passengers can book tickets for different types of trains
(suchas Express, Superfast, Rajdhani} and different classes (Sleeper, 3AC, 2AC, 1AC] Each train type and class
combination has a specific number of tickets available per day.

Boundary Values for Variables:
¢ Train Type (x1): Express (min), Rajdhani (max)
* Class of Travel (x2): Sleeper (min), 1AC (max)
¢ Number of Tickets Available (x3): Let's assume a range from 0 to 100, (Max 100 tickets)
Testing Boundary Values for Express Train:
« (Express, Sleeper, 0) - Test scenario with no tickets available.
« (Express, Sleeper, 1) - Testing just above the scenario with no availability.
» (Express, Sleeper, 50) - Nominal availability scenario.
¢ (Express, Sleeper, 99) - Testing just below full capacity.
+ (Express, Sleeper, 100) - Test scenario at full capacity.
Test Cases for Rajdhani Train:
» (Rajdhani, 1AC, 0) - Test scenario with no tickets available.
¢ (Rajdhani, 1AC, 1) - Minimal available tickets scenario.
* (Rajdhani, 1AC, 50} - Nominal ticket availability scenario.
« (Rajdhani, 1AC, 99) - Testing almost full capacity.
¢ (Rajdhani, 1AC, 100) - Test scenario at full capacity.

By executing these test cases, we can ensure that the ticket booking system handles different scenarios
related to ticket availability for Express and Rajdhani trains across various classes of travel. This approach
helps in verifying the system'’s functionality and its ability to manage ticket availability based on the specified
constraints and boundaries.

Boundary Value Testing | 27 '

—— —
2.3.1 Generadlizing the Boundary Value Analysis
Generalizing Boundary Value Analysis (BVA) in software testing refers to extending the traditional
boundary value analysis technique to handle a wider range of scenarios, variables, or types of data.
This generalization aims to enhance the applicability and effectiveness of BVA by adapting it to
different contexts and testing requirements. The normal boundary value analysis technique can be
generalized based on the number of variables and the types of ranges.

1. Generalizing by Number of Variables:

® For a function with multiple variables, BVA can be generalized by holding all but one
variable at their nominal (typical or expected) values while the remaining variable is
tested at its boundary values. This is repeated for each variable independently.

¢ For example, in a function with three variables, applyitig boundary value analysis by
varying each variable through min, min+, nom, max-, and max values results in 4n + 1
unique test cases.

¢ This approach ensures comprehensive coverage of different variable combinations and
their boundary conditions.

Generalizing the BVA by Number of Variables

Suppose a function calculates a fee based on three variables: age (10 to 65 years), distange traveled (0
to 100 kilometers), and hours of service (1 to 24 hours] Testing might involve:
° Holdmg distance and hours at their nominal values (50 km and 12 hours), and varying age
_through its boundary values (10 11, 32.5, 64, 65).
¢ Repeating this process for each variable, leading to a series of tests that comprehensively cover
the boundary conditions for each variable.
This method ensures each variable’s influence on the outcome is thoroughly examined, with 4n+1
unique test cases generated where n is the number of variables.

2. Generalizing by Types of Ranges:
Variables can have different types and ranges. The nature of variables determines the ranges
for boundary value analysis.

¢ Discrete and Bounded Variables: Such as months in a year or days in a month, where
boundaries are inherently defined by the domain (e.g., January to December for months).

¢ Variables without Explicit Bounds: These require artificial boundaries. For example,
if there is no upper limit specified for a numeric input, the maximum might be set as the
largest representable integer.

* Boolean and Logical Variables: BVA becomes less useful because they usually have only
two.states (True and False). These types of variables are better suited to other testing
techniques like decision table testing.

¢ Context-Specific Adjustments: For variables like a customer’s PIN or transaction type
in an ATM system, conventional BVA may not be very insightful or practical because these
are typically categorical or have a restricted range of valid inputs.

4

o Discrete and Bounded Variables: A movie ticket booking system allows customers to choose
a month for a special monthly screening event. The variables are Months of the year (January
to December).Test cases would typically include the first month (January), the last month
(December), and a mid-year month like June to cover the boundaries and a nominal value,

e Variables without Explicit Bounds: In the context of the triangle problem where side lengths
are the variables, determining boundary values mvolves setting the lower bound at 1 (as
negative side lengths are invalid) and selecting an upper bound, such as 200 or MAXINT. This
generalization ensures that the testing covers a wide range of scenarios, including extreme
values and boundary conditiors, to validate the behavior of the triangle classification algorithm
accurately.

e Boolean and Logical Variables: software application has a feature that can be toggled on or
off.

Variables: Feature state (True or False).

Since the variable is Boolean, boundary testing directly applies to testing both states: True and
False. BVA is straigtitforward as the tests will explicitly check the system's ‘behavior when the
feature is enabled (True) and disabled (False].

—_—————ae————————moeee—a———o 1

2.3.2 Limitations of Boundary Value Analysis
Boundary Value Analysis (BVA) is a fundamental software testing technique used to identify errors at
the boundaries of input domains. By testing values at the edges of valid ranges, BVA aims to uncover
faults that may arise due to boundary conditions. While BVA is effective for functions withindependent
variables representing bounded physical quantities, it may have limitations when dealing with
complex dependencies or non-physical variables. Understanding the principles and constraints of
BVA is essential for testers to design comprehensive test cases and ensure the reliability and quality
of software systems.
Let us understand the limitations of Boundary Value Analysis (BVA) and liow certain conditions can
make it less effective or inappropriate

1. Requirement for Ordering Relations : BVA is most effective when the variables involved

have a natural ordering, meaning it is logical to determine that:oné value is greater than, less
than, or equal to another. This is crucial for defining boundary values meaningfully.
Example: Temperature and pressure have a natural ordering. For instance, 0°C can be logically
compared to 100°C (0°C < 100°C). In contrast, sets of colors or names of football teams do not
have an intrinsic order. It's not logical to assert that "Red" is less than "Blue" or that "Team A"
is greater than "Team B".

2. Independence of Variables : BVA assumes variables are independent, but this is not always
the case. Dependencies between variables can lead to complex interactions that BVA might not
adequately test.

Example: In the context of the NextDate function, the validity of a date depends on the
interactions between day, month, and year. February 29 is a valid date but only in a leap year,
highlighting a dependency between the day and year that traditional BVA might overlook.

Boundary Value Testing | 29

3. Focus on Physical Quantities : Boundary value analysis is most suitable for:variables
representing physical quantities like temperature, pressure, or air speed, where physical
boundaries play a crucial role.

Example: The closure of Bangalore International Airport due to temperatures exceeding the
maximum value shows how critical physical boundaries are. Here, BVA could have identified
potential issues with instrument settings at extreme temperatures.

4. Challenges with Logical Variables : Logical or categorical variables, such as PIN numbers

or telephone numbers, do not benefit from BVA due to the lack of physical boundaries or
meaningful extremities.
Example: Consideration of logical variables such as Personal Identification Numbers (PINs) or
telephoné numbers may not reveal significant faults through boundary value testing. Testing
PIN values like 0000, 0001, 5000, 9998, and 9999 may not uncover substantial issues due to
the nature of logical, non-physical variables.

5. Inadequacy in Handling Complex Dependencies : BVA may fail to account for complex
dependencies within the system, which could lead to significant oversights in testing.
Example: Imagine a digital thermostat that controls both heating and cooling in a smart home
system. The thermostat is programmed to switch on heating when the temperature drops to
18°C or lower and activate cooling when the temperatire rises to 26°C or higher.

In typical BVA, we might test the thermostat's response at 18°C and 26°C separately to ensure
it triggers the heating and cooling systems correctly. However, suppose the thermostat
experiences rapid temperature changes, fluctuating between 17°C and 27°C in a short period
due to unusual weather conditions or HVAC issues. }

This scenario could test the thermostat's ability to handle quick switching between heating
and cooling, a condition not covered by simple boundary tests for individual temperatures.
If there's a delay or failure in switching modes under rapid fluctuation, the system might fail
to maintain a stable room temperature, potentially causing discomfort or even damaging the
HVAC system due to the rapid cycling of heating and cooling.

——]

2.4 Robust Boundary Value Testing
Robust boundary value testing (RBVT) is a simple extension of normal boundary value testing: in
addition to the five boundary value analysis values of a variable, we see what happens when the
inputs are exceeded with a value slightly greater than the maximum (max+) and a valu&slightly less
than the minimum (min-).
Robust Boundary Value Testing (RBVT) is an extension of Normal Boundary Value Testing (NBVAT)
that aims to enhance test coverage by considering values beyond the boundaries. RBVT includes
values slightly outside the boundary limits to ensure the software behaves robustly even with inputs
that are close to the edges. This approach helps identify potential vulnerabilities and corner cases
that may not be captured by Normal Boundary Value Testing.

This approach is designed to assess the robustness of a system by observing how it handles inputs
that fall outside the expected input range. It aims to uncover potential failures that could occur due
to inputs that users may not typically provide but could potentially be used either maliciously or by
mistake.

Kex Components of RBVT

1. Standard Boundary Values:
¢ Min: The smallest value within the acceptable range.
® Min+: A value just above the minimum to verify edge cases within the operational range.
¢ Nominal: A typical value expected during regular use. v
¢ Max-: A value just below the maximum to test the"upper limits of normal op_eraﬁon.
¢ Max: The largest value within the acceptable range.
2. Extended Test Values:
® Min-: A value slightly less than the minimum accepted input, testing the system's error
handling or validation processes.
® Max+: A value slightly greater than the maximum accepted input, similarly aimed at
probing the robustness of error handling and input validation.

Importance of RBVT

Robust Boundary Value Testing is crucial for systems where input validation directly impacts
functionality and security. By including tests for inputs just outside the accepted ranges, RBVT helps
ensure that the application is secure against unusual or unexpected inputs, enhancing the overall
resilience and reliability of the system. This testing approach is particularly valuable in protecting
against errors that could lead to exceptions, system crashes, or security breaches.

Robust boundary value test cases for two variables are shown in Figure 2.2.

.
&

X,

é b

Fig 2.2 : Robustness test cases for a function of two variables

+| Robust Boundary Value Testing (RBVT) - Single Variable

Scenario: An online application form requires users to enter their age, which should be between 18 and 65
years inclusive.

Define Boundary and Extended Values:
® Min (18 years): Check that the form accepts the minimum age.

¢ Max (65 years): Ensure that the form accepts the maximum age.

Boundary Value Testing 21

[o Min- (17 years): The form should reject this input, ideally with a clear error message.

¢ Max+ (66 years): Similar to Min-, the form should not accept this age and should provide an error
message.

Test Cases:
* AtMinimum (18 years): Verify the form processes this input correctly
¢ Just Above Minimum (19 years): Confirm the form continues to function correctly slightly above the
minimum.
¢ Nominal (42 years): A common age to test the form under typical conditions.
® Just Below Maximum (64 years): Test the upper operational limits.
¢ AtMaximum (65 years): Ensure the maximum boundary is respected.
* Below Minimum (17 years): The system should identify and reject this out-of-bounds input.
* Above Maximum (66 years): Similarly, this should be rejected to confirm robust boundary handling.

; Robust Boundary Value Testing (RBVT) - Two Variables

Scenarw ThlS system allows users to book a certain number of rooms for a specified number of nights. The
valid range for the number of rooms is from 1 to 10, and for the number of nights from 1 to 30.
Variables:

Number of Rooms (x1): Min: 1 room Max: 10 rooms
Number of Nights (x2): Min: 1 night Max: 30 nights
Test Cases:
1. Extended Boundary Values:
e For Number of Rooms:
Min-: 0 rooms (test system's reaction to an invalid lower boundary)
Max+: 11 rooms (test system's reaction to exceeding the maximum room limit)
® For Number of Nights:
Min-: 0 nights (similarly tests for invalid input below the minimum)
Max+: 31 nights (tests for exceeding the maximum night limit)
2. Standard Boundary Values:
¢ For Number of Rooms:

Min (1 room), Min+ (2 rooms), Nominal (5 rooms, assuming a m1d-pomt or typical
selection), Max- (9 rooms), Max (10 rooms)

* For Number of Nights:
Min (1 night), Min+ (2 nights), Nominal (15 nights, assuming a mid-point or typical stay
length), Max- (29 nights), Max (30 nights)
Test Cases Combinations:

By applying RBVT, test cases would be generated by combining these boundary and beyond-boundary
conditions for both variables. Examples of specific test cases might mclude

¢ (1room, 1 night) - Minimum of both variables.

® (10 rooms, 30 nights) - Maximum of both variables.

® (0 rooms, 31 nights) - Beyond the minimum and maximum for both variables.

2.12 | Software Testing

e (11 rooms, 0 nights) - Beyond the maximum for rooms and below minimum for nights:
e (1room, 31 nights) - Minimum rooms but above maximum nights.
e (10 rooms, 0 nights) - Maximum rooms but below minimum nights.

These tests ensure that the booking system can handle not only typical Scenarios but also react appropriately
to edge cases and improper inputs. It tests the system’s error handling capabilities and validates that improper
inputs do not cause crashes or incorrect behavior, which is critical for maintaining system integrity and user
trust.

2.5 Worst-Case Boundary Value Testing

Worst-Case Boundary Value Testing (WCBVT) is a testing approach that goes beyond traditional
boundary value testing by considering extreme values for multiple variables simultaneously. This
method aims to explore scenarios where more than one variable reaches its boundary limits to
assess the software's behavior under such condltlons By analyzmg worst-case scenarios, testers can
uncover potentla] vulnerabilities that may netbe. evident with single-variable boundary testing.
Unlike Robust Boundary Value Testing, which tests each variable independently at and just outsrde
its boundaries, WCBVT involves the Cartesian product of the boundary values of all variables. This
approach is designed to detect issues that may arise specifically from interactions between variables
at their extreme operational limits.

!\e\ Pmnt-

1. Rejecting Single-Fault Assumption: Worst-case boundary value testing challenges the
single-fault assumption by examining the impact of extreme values on multlple variables. This
approach is particularly useful in scenarios where the failure of the software due to extreme
conditions can have severe consequences.

2. Generating Test Cases: To conduct worst-case boundary value testing, testers start with a
five-element set for each variable, including the minimum, sllghtly above minimum, nominal,
slightly below maximum, and maximum values. By taking the Cartesian product of these sets
for multiple variables, a comprehensive set of wor'st-'case test cases is generated.

3. Comparison with Normal Boundary Value Testing: Worst-case boundary value testing
is more exhaustive than normal boundary value testing as it considers extreme values for
multiple variables simultaneously. The number of test cases generated for worst-case testing
is significantly higher (5" for n variables) compared to normal boundary value testing (4n + 1
test cases)

I\ev C mponents ofW(BVT

1. Standard Boundary Values:
¢ Min: The smallest value within the acceptable range for each variable.
e Min+: A value just above the minimum, within the operational range.
¢ Nominal: A typical or average value expected during regular usage.
e Max-: A value just below the maximum, still within the operational limits.
o Max: The largest value within the acceptable range for each variable.

Boundary Value Testing 2.13

2. Cartesian Product of Boundary Values:

This approach multiplies the boundary scenarios of each variable with every boundary scenario
of the other variables, producing a comprehensive set of test cases that explore interactions
between variables at their boundary conditions. '

Importance of WCBVT
1. WCBVT is important in environments where multiple variables interact in complex ways,
potentially impacting the system's behavior under extreme conditions. By systematlcally

testing all combinations of boundary values, WCBVT can uncover issues that might not be
visible when variables are tested in isolation or only within their normal operational ranges.

2. This type of testing is particularly useful in critical systems where failure can result in
significant consequences, ensuring that the system is robust against a wide range of inputs
and conditions. It's essential for ensuring the reliability and stability of systems in real-world
scenarios where multiple factors may affect outcomes simultaneously.

The result of the two-variable version of this is shown in Figure 2.3.

Scenario: A system manages an online promotional campaign where users can enter the number of items they
wish to purchase and select a delivery option. The valid range for the number of items is from 1 to 20, and the
delivery options are categorized into regular (1) and express (2).

Variables:
e Number of Items (x1):

Min: 1 item

Max: 20 items

| 2.14 l Software Testing

® Delivery Option (x2):
Min: 1 (regular)
Max: 2 (express)
Test Cases: Apply the boundary values for each variable and create combinations using the Cartesian product:
¢ Boundary Values for Number of Items: [1 (Min), 2 (Min+), 10 (Nominal), 19 (Max-), 20 Max)]
* Boundary Values for Delivery Options: [1 (Min, regular), 2 (Max, express)]
Test Case Combinations: Each combination of the above boundary values forms a test case, such as:
® (1item, regular)
® (1 item, express)
¢ (20 items, regular)
® (20 items, express)
® (2 items, regular)
® (19 items, express)

-

And so on, through all possible combinations of these boundary values.

= = = =
2.6 Robust Worst-Case Boundary Value Testing (RWCBVT)

Robust Worst-Case Boundary Value Testing (RWCBVT) takes the principles of both Robust Boundary
Value Testing and Worst-Case Boundary Value Testing to create an even more stringent testing
environment. Thisapproach focuses on evaluating the software's behavior under extreme conditions
while also testing for robustness against unexpected inputs and variations in the boundary values of
multlple variables simultaneously.

lic—,\ r’(lif"h

1. Incorporation of Non-valid Inputs: RWCBVT includes values beyond the normal operating
range for each variable, testing how the system handles inputs that are typically considered
invalid.

2. Cartesian Product Including Out-of-Range Values: The approach involves taking the
Cartesian product of extended boundary values (which include values beyond the typical
range) for multiple variables. This extensive combination aims to simulate potential extreme
scenarios that could arise in actual operations. This involves the Cartesian product of the
seven-element sets we used in robustness testing resulting in 7° test cases.

3. Comprehensive Testing Scope: This method is the most exhaustive form of boundary value
testing, examining not only the interactions between variables at their defined limits but also
how these variables behave when pushed beyond these points. The number of test cases
for RWCBVT can be significantly higher, especially when extended boundary conditions are
considered.

Boundary Value Testing 2.15

(S

Key Components of RWCBVT:

1. Standard Boundary Values:
* Min: The smallest value within the acceptable range for each variable.
¢ Min+: A value just above the minimum, to verify the system's behavior just within the
operational range.
¢ Nominal: A typical or average value expected during regular usage.
¢ Max-; A value just below the maximum, testing the near-upper limit operations.
® Max: The largest value considered normal for each variable.
2. Extended Boundary Values:
¢ Min-: A value slightly less than the minimum, testing how the system handles inputs
below the acceptable range.
¢ Max+: A value slightly above the maximum, probing the robustness of the system’s upper
limits
3. Cartesian Product of All Boundary Values:
This methodology multiplies every scenario, including out-of-range scenarios, across all
variables, creating a comprehensive set of test cases to explore how variable interactions
might affect the system under extreme and unexpected conditions.

[mpm 11n|_e of l"“ C ﬂ\ T:

1. Detecting Hidden Vulnerabilities: By pushing the system beyond its intended operational
limits, RWCBVT can uncover hidden issues that might not be evident during standard testing,
This is critical for systems where safety and security are paramount.

2. Ensuring System Resilience: This testing is crucial for ensuring that the system can handle
erroneous inputs without crashing or behaving unpredictably, which is espécially important in
high-stakes environments }ike medical, aerospace, and financial Systems.

The below Figure 2.4 shows the robust worst-case test cases for our two-variable function.

Fig 2.4 : Robust worst-case test cases for a function of two vriables

| Robust Worst Case Boundary Value Testing (RWCBVT)

Scenario: A flight booking system that allows users to select the number of travelers and class of service. The
system typically handles up to S travelers and offers three classes of service (Economy, Business, First Class).

Variables:
¢ Number of Travelers (x1):
Min: 1 traveler
Max: S travelers
¢ (lass of Service (x2):
Min: 1 (Economy)
Max: 3 (First Class)
Test Cases: Apply both the typical and extended boundary vatues for each variable and create combinations
using the Cartesian product:
e Boundary Valﬁes for Number of Travelers: [0 (Min-), 1 (Min), 3 (Nominal), 5 (Max), 6 (Max+)]
¢ Boundary Values for Class of Service: [0 tMin—), 1 (Economy), 2 (Business), 3 (First Class), 4 (Max+)]
Test Case Combinations: Each combination of the above boundary values forms a test case, such as:
e (0 travelers, Economy) - Testing below minimum travelers with the lowest:class.
o (1 traveler, 4 classes) - Minimum travelers with beyond maximum class.
» (6 travelers, 0 class) - Above maximum travelers with non-valid class.
o (5 travelers, First Class) - Maximum valid travelers ahd maximum valid class

And so on, through all possible combinations of these boundary values.These combinations ensure that
every possible extreme and out-of-bound scenario is tested, providing insights into how well the system can
maintain functionality and reliability under adverse conditions.

2.7 Special Value Testing

Special Value Testing also known as ad hoc testing is a form of functional testing that relies on the
tester's domain knowledge, experience with similar programs, and understanding of potential weak
points in the software to design test cases. This approach is highly dependent on the tester's judgment
and expertise as no specific guidelines are followed other than best engineering practices.

Special Value Testing can be valuable in uncovering faults that may not be easily detected by other
testing methods. Testers using this approach often consider unique or critical scenarios that may not
be covered by traditional boundary value testing.

Charactex istics of Specnal Value Testmcr

D ey e

1. Tester-Driven: Special Value Testing heavily relies on the tester's judgment, experience, and
expertise. The effectiveness of this testing approach is highly dependent on the individual
tester's capabilities and insights in identifying critical test scenarios.

Boundary Value Testing - | 2.17 |

2. Domain Knowledge: Testers leverage their in-depth understanding of the apphcanon s
domain to anticipate potential error-prone areas. By applying domain knowledge/ testers can
pinpoint specific functionalities or modules:where.defects.are more likely.to ogeur: and focus
their testing efforts accordingly. ; :

3. Ad Hoc Approach: Special Value Testing follows an ad hoc approach, lacking standardized
procedures or guidelines. Testers have the flexibility to design test cases based on theirintuition,
experience, and knowledge.without strict adherence to predefined testing methodologies.
This creative freedom allows testers to explore unique scenarios that may not be covered by
traditional testing techniques.

4. Targeting "Soft Spots™: Special Value Testing aims to target "soft spots” within the software,
which are-areas known to be prone to errors or vulnerabilities. These soft spots:may include
complex calculations, unusual input types, historically problematic modules, or functionalities
with a higher likelihood of defects. By focusing on these critical areas, testers can uncover
hidden issues that might not be revealed through standard testing methods. |

Importance of Special Value Testing:

This method is particularly valuable for:
1. Uncovering Rare Issues: By focusing on specific, often rare conditions that are not typically
covered by other testing methods.
2. Highly Contextual Applications: Effective in' complex systems where the tester s deep
understanding of the application can guide the testing process. -

3. Areas Prone to Errors: Particularly useful in areas known for their susceptlblllty to bugs,
where testers can apply their insights to explore specific scenarios thought to be risky.

| Special Value Testing

Scenario: The "NextDate" function calculates the next day's date given a specific day, month, and year. This
function can be particularly tricky around the boundaries of months, changes in year, and especially during
leap years.

In the context of the NextDate function, Special Value Testing may involve creating test cases related to specific
dates such as February 28, February 29 in leap years, and other scenarios that are not covered by standard
boundary value testing. While this method may lack the systematic approach of boundary value testmg, it can
be effective in revealing faults and vulnerabilities in the software.

Special Value Test Cases:

¢ February 28 in a Non-Leap Year: Test what happens on the day after February 28. The expected
result should be March 1 of the same year.

¢ February 28 in a Leap Year: Here, the next day should be February 29.

¢ February 29 in a Leap Year: Testing the transition from February 29 to March 1 in a leap year is
crucial since February 29 does not exist in non-leap years.

¢ December 31: Testing the transition from December 31 to January 1 of the following year to verify
that the function handles year changes correctly.

| 2.18 | Software Testing

2.8 Examples

2.8.1 Test Cases for the Triangle problem
IIn the context of the triangle problem, bourdary value testing is a crucial testing technique that
focuses on testirig the boundaries of input ranges to uncover potential defects. When conducting
robust boundary value testing for the triangle problem, it is essential to consider the lower and upper
bounds of the input ranges for the sides of the triangle.

In this case, the lower bound for the sides is set at 1, and an arbitrary upper bound of 200 is chosen.
The test values selected for each side are {1, 2, 100, 199, 200}. Additionally, robust boundary value
test cases will include values just outside the boundaries, such as {0, 201}, to ensure thorough testing.
Itisimportant to note that when designing boundary value test cases, care should be taken to avoid
redundancy and ensure comprehensive coverage of alebssibIe scenarios. Test cases should be diverse
and cover all possible outcomes, including scenarios for equﬂateral 1sosceles scalene triangles, and
cases where a triangle is not formed. . = R : :

The cross-product of test values can result in a large number of test cases, some of w]:uch may be
repeated. It is crucial to manage the test cases effectively to avoid duplication and ensure ‘efficient
testing coverage. Table 2.2 likely presents a subset of the most critical ‘boundary value test cases,
prov1dmg a snapshot of the comprehensive testing approach apphed to the triangle problem.

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral
4 100 200 199 Isosceles

5 100 100 v : 200 Not a triangle
6 100 1 100 Isosceles

7 100 2 : 100 Isosceles

8 100 100 100 Equilateral
9 100 199 100 Isosceles
10 100 200 100 Not a triangle
11 1 100 100 Isosceles
12 2 100 100 [sosceles
13 100 100 100 Equilateral
14 199 100 100 Isosceles
15 200 100 100 Not a triangle

Boundary Value Testing 219

<

1 il 1 1 Equilateral
2 1 1 2 Not a triangle
3 1 1 100 Not a triangle
4 1 1 199 Not a triangle
5 1 1 200 Not triangle
6 1 2 1 Not:atriangle
/A 1 2 2 Isosceles
8 1 2 100 Not a triangle
9 1 2 199 Not a triangle
10 1 2 200 Not a triangle
11 1 100 1 Not a triangle
12 1 100 2 Not a triangle
13 1 100 100 Isosceles
14 il 100 " 199 Not a triangle
15 1 100 200 Not a triangle
16 1 199 1 Not a triangle
17 1 199 2 Not a triangle
18 1 199 100 Not a triangle
19 1 199 199 Isosceles
20 1 199 - 200 Not a triangle
21 1 200 1 _Notatriangle
22 1 200 2 Not a triangle
23 1 200 100 Not a triangle
24 1 200 199 Not a triangle
25 1 200 200 [sosceles
—_———

2.8.2 Test cases for the next date function
When designing test cases for the NextDate function, it is essential to consider various scenarios
to ensure comprehensive testing coverage. Here are some example test cases that can be used to
validate the functionality of the NextDate function:
1. Normal Boundary Value Test Cases:
Test Case 1: Inputting the date "01 01 1812" should return "01 02 1812" as the next date.
Test Case 2: Inputting the date "12 31 2012" should return "01 01 1813" as the next date.
Test Case 3: Inputting the date "02 28 2020" should return "02 29 2020" as the next date (leap

year).

2.20 Software Testing

Test Case 4: Inputting the dite "02-29 2020" should return "03 01 2020" as the néxt date
Test Case 5: Inputting the date’ 04 30 2021" should return "05 01 2021"as the frext date.

2. Invalid Input Test Cases (Robust Boundary Value Testing)
Test Case 6: Inputting the date "13 01 2020" should return an error message indicating an
invalid month.
Test Case 7: Inputting the date "02 30 2021" should return an error message indicating an
invalid day for February.
Test Case 8: Inputting the date. "02 29 2021" should return an error message indicating an
invalid date for a non-leap year.

3. Edge Cases Test Cases:
Test Case 9: Inputting the date "01 01 1812" should return 01 02 1812" as the nextdate.
Test Case 10: Inputting the date "12 31 2012" should return "01 01 1813" as the next date.
Test Case 11: Inputting the date "06 30 2020" should return "07 01 2020" as the next date.
Test Case 12: Inputting the date "09 30.2021" should return "10 01 2021" as the next date.

4. Leap Year Test Cases:
Test Case 13: Inputting the date "02 28 2021" should return "03 01 2021" as the next.date.
Test Case 14: Inputting the date "02 29 2020" should return "03 01 2020" as the next date.

These test cases cover a range of scenarios including boundary values, invalid inputs, edge cases, and
leap year considerations to ensure thorough testing of the NextDate functiori. Additional test cases
can be designed based on specific requirements and functionalities of the function.

There are three variables and worst case boundary value testing requires 53= 125 test cases. All 125
worst-case test cases for NextDate are listed in Table 2.3.

2.21

Boundary-Value Testing

1,16,1813

12 1 15 1813
13 f 15 1912 1,16,1912
14 1 15 2011 1,16,2011
15 1 15 2012 1,16,2012
16 1 30 1812 1,31,1812
17 1 30 1813 1,31,1813
18 1 30 1912 1,31,1912
19 1 30 2011 1,31,2011

.20 __i 30 2012 1,31,2012

1 1 1 1812 1,2,1812
2 1 1 1813 1,2,1813
3 1 1 1912 1,2,1912
4 1 1 2011 1,2,2011
5 1 1 2012 1,2,2012
6 1 2 1812 1,3,1812
7 1 2 1813 1,3,1813
8 1 2 1912 1,3,1912
9 1 2 2011 1,3,2011
10 1 2 2012 1,3,2012
11 1 15 1812 1,16,1812

21 1 31 1812 2,1,1812
22 1 31 1813 2,1,1813
23 1 31 1912 2,1,1912
24 1 31 2011 2,1,2011
25 1 31 2012 . 2,1,2012
26 2 1 "1812 2,2,1812
27 2 1 1813 2,2,1813
28 2 1 1912 2,2,1912
29 2 1 2011 2,2,2011 -
30 2 1 2012 2,2,2012
31 2 2 1812 2,3,1812
32 2 2 1813 2,3,1813
33 2 2 1912 2,3,1912
34 2 2 2011 2,3,2011
35 2 2 2012 2,3,2012
36 2 15 1812 2,16,1812
37 2 15 1813 2,16,1813
38 2 15 1912 2,16,1912
39 2 15 2011 2,16,2011
40 2 15 2012 2, 16,2012
41 2 30 1812 Invalid date
42 2 30 1813 Invalid date
43 2 30 1912 Invalid date
44 2 30 2011 Invalid date
45 2 30 2012 Invalid date
46 2 31 1812 Invalid date

2.22 | Software Testing

47 2 31 1813 Invalid date
48 2 31 1912 Invalid date
49 2 3 2011 Invalid date
50 2 31 2012 Invalid date
51 6 1 1812 6,2,1812
52 6 1 1813 6,2,1813
53 6 1 1912 6,2,1912
54 6 1 2011 6,2,2011
55 6 1 2012 6,2,2012
56 6 2 1812 6,3,1812
57 6 2 1813 6,3,1813
58 6 2 1912 6,3,1912
59 6 2 2011 6,3,2011
60 6 2 2012 6,3,2012
61 6 15 1812 6,16,1812
62 6 15 1813 6,16,1813
63 6 15 1912 6,16,1912
64 6 15 2011 6,16,2011
65 6 15 2012 - 6,16,2012
66 6 30 1812 7,1,1812
67 6 30 1813 7,1,1813
68 6 30 1912 7,1,1912
69 6 30 2011 7,1,2011
70 6 30 2012 7,1,2012
71 6 31 1812 Invalid date
72 6 31 1813 Invalid date
73 6 31 1912 Invalid date
74 6 31 2011 Invalid date
75 6 31 2012 Invalid date
87 11 15 1813 11,16,1813
88 11 15 1912 11,16,1912
89 11 15 2011 11,16,2011
90 11 15 2012 11,16, 2012
91 11 30 1812 12,1,1812
92 11 30 1813 12,1,1813
93 11 30 1912 12,1,1912
94 11 30 2011 12,1,2011

Boundary Value Testing 2.23

95 11 30 2012 12,1,2012
9% 11 31 1812 Invalid date
97 11 31 1813 Invalid date
98 11 31 1912 Invalid date
99 11 31 2011 Inivalid date
100 11 31 2012 Invalid date
101 12 1 1812 12,2,1812
102 12 1 1813 12,2,1813
103 12 1 1912 12,2,1912
104 12 1 2011 12,2,2011
105 12 1 2012 12,2,2012
106 12 2 1812 12,3,1812
107 12 2 1813 12,3,1813
108 12 2 1912 12,3,1912
109 12 2 2011 12,3,2011
110 12 2 2012 12,3,2012
111 12 15 1812 12,16,1812
112 12 15 1813 12,16,1813
113 12 15 1912 12,16,1912
114 12 15 . 2011 12,16,2011
115 12 15 2012 12,16, 2012
116 12 30 1812 12,31,1812
117 12 30 1813 12,31,1813
118 12 30 1912 12,31,1912
119 12 30 2011 12,31,2011
120 12 30 2012 12, 31,2012
121 12 31 1812 1,1,1813
122 12 31 1813 1,1,1814
123 12 31 1912 11,1913
124 12 31 2011 1,1,2012
125 12 31 2012 1,1,2013

2.8.3 Test Cases for the Commission Problem
When creating test cases for the Commission Problem, it is important to cover various scenarios to
ensure the accuracy and reliability of the program. Here are some example test cases that can be used
to validate the functionality of the Commission program:

2.24 |. Sofiware Testing -

1. Boundary Value Test Cases:
Test Case 1: Inputting the sales of locks as 0, stocks as 0, and barrels as 0 should result in zero
total sales and zero commission.
Test Case 2: Inputting the sales of locks as 200, stocks as 200, and barrels as 200 should test
the upper bounds of the sales values.
Test Case 3: Inputting the sales of locks as 201, stocks as 201, and barrels as 201 should test
values just outside the upper bounds.
2. Valid Input Test Cases:
Test Case 4: Inputting the sales of locks as 50, stocks as 30, and barrels as 20 should calculate
the total sales and commission accordingly.
Test Case 5: Inputting the sales of locks as 100, stocks as 150, and barrels as 75 should test
different sales combinations.
3. Invalid Input Test Cases:
Test Case 6: Inputting negative values for sales of locks, stocks, or barrels should result in an
error message.
Test Case 7: Inputting non-numeric values for sales should prompt the user to enter valid
numeric inputs.
4. Edge Cases Test Cases:
Test Case 8: Inputting the sales of locks as 1, stocks as 1, and barrels as.1 should test the lower
bounds of the sales values.
Test Case 9: Inputting the sales of locks as 200, stocks as 0, and barrels as 0 should test the
scenario where only one type of product is sold.
5. Commission Calculation Test Cases:
Test Case 10: Inputting the sales of locks as 100, stocks as 50, and barrels as 25 should verify
the commission calculation based on the given prices for each product.
These test cases cover a range of scenarios including boundary values, valid inputs, invalid inputs,
edge cases, and commission calculations to ensure thoruugh testing of the Commission program.
Additional test cases can be designed based on specific_requirements and functionalities of the
program.
=
2.9 Random Testing

Random Testing is a methodology within the field of software testing where inputs are generated
randomly to test the system rather than selecting them based on any predetermined criteria such
as boundary conditions or typical values. This approach is unique in its reliance on randomness to
uncover errors. It a potentially powerful tool for identifying hidden issues in the software.

Random testing is a valuable approach to software testing that involves using a random number
generator to select test case values. This method helps in avoiding bias in testing and can uncover
unexpected issues in the software.

Y m—— -

—

Bounda_ry\"ulua Testing . 2.25

Overview of Random Testing:

1. Statistical Basis: Random testing is often discussed within academic due to its statistical
nature. By using random inputs, the testing process attempts to simulate a broad spectrum of
user interactions, potentially uncovering less obvious faults.

2. Use of Random Number Generators: Inputs for testing are selected using random number
generators to ensure that the values are spread across the entire input domain of the variable
being tested. This metliod helps in mitigating tester biases that might influence the choice of
test data.

3. Challenge of Determining Test Adequacy: One of the critical challenges with random testing
is deciding how many test cases are sufficient te confidently assert the software's reliability.
This decision can be somewhat subjective and often requires statistical or risk-based
approaches to resolve.

4. Considerations for Raridori Testing: Random testing can be particularly useful for exploring
a wide range of inputs and scenarios that may not be covered by traditional test cases. It is
important to ensure that the raridotn number generator used is truly random and provides a
uniform distribution of values. Random: testing can be combined with other testing techniques
to achieve comprehensive test coverage. The effectiveness of random testing can be influenced
by the quality of the random number generator and the size of the input domain.

5. Determining the Number of Random Test Cases: One common question in random testing
is how many random test cases are sufficient to provide adequate test coverage. The number
of random test cases needed can vary depending on factors such as the complexity of the
software, the size of the input domain, and the quality of the random number generator. In
practice, running a large number of random test cases can help increase confidence in the
robustness of the software.

\d\ '\ntm>0~ nfR mdom Te<tm°

Rl T e e

1. Comprehensive Coverage: Random testing can potentially cover a wide range of input
scenarios than manual selection methods.

2. Unbiased Testing: It reduces the likelihood of unconscious bias in choosing test cases, which
might overlook certain types of errors. I

Limitations:

1. Less Efficiéncy: [t may require alarge number of tests to achieve sufficient coverage, especially
for variables with a wide range of possible values.

2. Difficulty in Reproducing Errors: Randomly generated test cases can make it hard to
reproduce failures unless the specific inputs causing the failure are recorded.

I Random Testing for "NextDate" Funetion

Scenario: The "NextDate" function calculates the next day based on given inpht of day, month, and year..
Implementation:

e Random Date Generation: Use a random number generator to select the day (1-31), month (1-12),
and year (e.g, 1900-2100), without considering the actual number of days in each month for simplicity
in this illustrative exaniple.

® Test Execution: For each randomly generated date, the NextDate function is executed to determine if
it correctly calculates the following day’s date.

¢ Analysis: Analyze- outcomes to see if any date calculations break the expected logic, particularly
around critical dates such as year-end, month-end, and for leap years.

Random Testing for Traingle Problem

ebe]ow table represents the sample distribution of test cases for different types of triangles (Nontriangles,
Scalene, Isosceles, Equilateral) along with the total number of test cases for each scenario. Additionally, the
percentage distribution of each type of triangle is also given.

1289 663 593 32 1
15,436 7696 7372 367 1
17,091 8556 8164 367 1
2603 1284 1252 66 1
6475 3197 3122 155 1
5978 2998 2850 129 1
9008 4447 4353 207 1
Percentage 49.83% 47.87% 2.29% 0.01%
1. Total Test Cases: The total number of test cases varies for each set of inputs, ranging from 1289 to
17091. B

2. Distribution of Triangle Types:

¢ Nontriangles: The majority of test cases fall under the category of Nontriangles, with counts
ranging from 663 to 8556.

® Scalene: The Scalene triangles have a significant number of test cases, with counts ranging from
593 to 8164.

¢ Isosceles: The number of Isosceles triangles is lower compared to Nontriangles and Scalene,
with counts ranging from 32 to 367.

¢ Equilateral: Equilateral triangles have the least number of test cases, with counts of 1 in most
scenarios.

3. Percentage Distribution: The percentage distribution provides insights into the relative frequency of

each type of triangle in the test cases.

_Boundary Value Testing I 2.27 l

4. Analysis: The data indicates that the test cases are skewed towards Nontriangles and Scalene
triangles, which are more common in general triangle scenarios. The low percentage of Isosceles and
Equilateral triangles suggests that these types of triangles are less frequently encountered in the test
cases provided. It is important to ensure a balanced distribution of test cases across dlfferenttypes of
triangles to thoroughly test the program’s functionality for all possible scenarios.

ﬁ
2.10 6uidelines for Boundary Value Tesfing

Boundary value testing is a crucial aspect of software testmg that focuses on testing the boundaries of
input and output ranges of a program. This technique can be especially useful when testing for edge
cases, error message handling, and robustness of internal variables like loop controls and pointers.

ey Guidelines for Boundary Value Testing:

1. Understand Variable Relationships: Make sure that variables in the software are
independent of each other. If they are not independent, consider how they affect each other to
avoid unrealistic test scenarios. For example, ensure that dates like June 31 are not accepted.

2. Apply Testing Widely: Extend boundary value testing to not only input ran ges butalso output
values and internal variables like indices. Test error messages and output values to ensure they
are within expected limits. Use robust testing for internal variables to catch common errors.

3. Use Semantic Understanding: Understand the real-world purpose of the software function
being tested. This helps in creating test cases that are more relevant and avoid impossible
scenarios, For instance, knowing that a function calculates mlleage per litre petrol can help in
avoiding negative values or division by zero.

ta

Create Diverse Test Cases: Develop test cases that covera range of values, including minimum,
maximum, values just inside these boundaries, typical values, and values slightly beyond the
boundaries. This comprehensive approach ensures thorough testing.

5. Avoid Strict Technical Focus: Move away from solely technical testing methods and consider
the practical application of the software. By incorporating semantic information, test scenarios
become more meaningful. For example; when testing a banking application, ensuring that a
user cannot transfer a negative amount of money or transfer funds without having sufficient
balance adds practical value to the testing process.

By following these guidelines, testers can conduct effective boundary value testing thattovers a wide
range of scenarios, considers real-world applications, and ensures the software functions correctly
in various situations.

Practical Example: Adjusting Test Cases Based on Semantic Knowledge

Scenario: A banking application calculates interest earned on a savings account based on the average daily
balance and the annual interest rate.

Function: [= (A *R)/100
Where:

A = average daily balance

I 2.28 | Software Testing

R = annual interest rate (as a percentage}
I = interest earned per day
Revised Boundary Value Test Cases Based on Semantic Insights:

e Avoid Negative Balances: Ensure A20. Test cases where A is zero, slightly above zero, and typical
savings balance but not negative.

e Avoid Negative Interest Rates: Interést_" rates should not ﬁe hegaﬁve in this con‘text '_Tes{ for
R=0%,0.1%, and a higher typical rate like '50%, but ensure no test case includes a negative rate.

e Handle Zero Interest Rate: Include scenarios where R=0% to ensure that the function correctly
calculates zero interest earned.

e Test Boundary Values for Average Balance: Introduce test cases that specifically examine the impact
of very low and very high balances on the interest calculation to evaluate its accuracy across the range
of possihle halancesExample Test Cases: _ '

1. Zero Balance Test: A=0, R=5%; Expect =0 since there’s no balance to accrue interest.
2. Minimum Interest Rate Test: A=10,000, R=0,1%; Check interest calculation for an extremely low
interest rate. ' N - .
3. High Balance Test: A=100,000, R=5%; Expéct a higher interest calculation reflecting the significant
balance. ' : '
4. Zero Interest Rate Test: A=50,000, R=0%] Enéure that the interest earned is correctly calculated as
zero despite a substantial average balance. ' '
These tailored test cases help ensure that the banking application reliably calcylatés interest under various
realistic scenarios, from typical to edge cases, thus ensuring accuracy and robustness in its financial
computations. This methodology leverages semantic knowledge to create more relevant and impactful tests,
focusing on likely real-world usage scenarios that could significantly impact user experience and financial
accuracy.

_———————
2.11 Review Questions

£ Each Quiestion ¢

1. What is Input Domain Function ?

2. What is Boundary Value Testing ?

3. Mention the Types of Boundary Value Testing.

4. What is Normal Boundary Value Testing (NBVT)?

5. What is Robust Boundary Value Testing (RBVT)?

6. What is Worst-Case Boundary Value Testing (WCBVT)?

7. What is Robust Worst-Case Boundary Value Testing (RWCBVT)?
8. What is Special Value Testing? Give an example.

9

. What is Random Testing? Give an example

PP AT . .

rp—— i e

Boundary Value Testing 2.29

. What is Boundary Value Testing ? Explain The Key Concepts of Boundary Value Testing,
. Why Use Boundary Value Testing ? What is an Importance of Boundary Value Testing?

. Explain Generalizihg Boundary Value Analysis (BVA).

. Explain the Limitations of Boundary Value Analysis.

. What is Normal Boundary Value Testing (NBVT)? Explain its methadology.

1
2
3
4
5
6

. What is Robust Boundary Value Testing (RBVT)? Explain Key Components and Importance of
RBVT.

7. What is Worst-Case Boundary Value Testing (WCBVT)? Explain Key Components and
Importance of WCBVT.

8. What is Robust Worst-Case Boundary Value Testing (RWCBVT)? Explain Key Components and
Importance of WCBVT.

9. Explain the Generation of Test Cases for the Triangle problem in Boundary Value Testing.
10. Explain the Generation of Test Cases for the NextDate Function in Boundary Value Testing.
11. Explain the Generation of Test Cases for the Commission Problem in Boundary Value Testing.
12. Explain Random Testing. Mention its advantages and disadvantages.
13. Explain Random Testing for "NextDate" Function.
14. Explain Random Testing for Traingle Problem.
15. Explain the Key Guidelines for Boundary Value Testing.

e —
' Each Question Carvies Eight:Marks
. Explain Normal Boundary Value Testing (NBVT) with an example.
. Explain Robust Boundary Value Testing (RBVT) with an example.
. Explain Worst-Case Boundary Value Testing (WCBVT) with an example.

. Explain Robust Worst-Case Boundary Value Testing (RWCBVT) with an example.

[N S

. Whatis Special Value Testing? Explain Characteristics and Importance of Special Value Testing.

2.30 | Software Testing

Note

EQUIVALENCE CLASS
TESTING

Contents

< Introduction
< Equivalence Classes
= Traditional Equivalence Class Testing
= Forms or Variations of Equivalence Class Testing
< Weak Normal Equivalence Class Testing
= Strong Normal Equivalence Class Testing
<= Weak Robust Equivalence Class Testing
< Strong Robust Equivalence Class Testing
<= Weak Normal Vs Strong Normal Equivalence Class Testing
<= Weak Robust Vs Strong Robust Equivalence Class Testing

< Equivalence Class Test Cases for the Triangle Problem
Equivalence Class Test Cases for the NextDate Function,
' Equivalence Class Test Cases for the Commission P’roﬁlem
' Guidelines and Observations About Equivalence Class Testing
Advantages and Disadvantages of Equivalence Class Testing
Review Questions

I 3.2 l Software Testing

e —————=4

3.1 Introduction
In the previous chapter, we explored boundary value testing as a technique to ensure t rough
test coverage by focusing on boundary conditions. In this chapter, we will discuss equivalence class
testing as another essential method for functional testing. Equivalence class testing involves grouping
input values into classes to streamline test case design and enhance testing efficiency. By categorizing
inputs that are treated similarly by the software system, equivalence class testing aims to achieve
comprehensive testing coverage while minimizing redundancy. This chapter will provide a detailed
examination of equivalence class testing, its principles; and its various forms to further enhance our
understanding of effective testing strategies.)
Traditional equivalence class testing originated during the dominance of languages like FORTRAN
and COBOL, where errors related to invalid inputs were common, ultimately influencing the evolution
of strongly typed languages to address such issues.

=
3.2 Equivalence Classes

Equivalence Class Testing (ECT) is a method used in software testing where the input domain is
divided into classes of data from which test casesare derived. Each classis expected toberepresentative
of a group of inputs that behave similarly in the system, hence testing just one input from each class
should be representative of the entire class. This approach helps optimize the number of test cases,
aiming to cover all possible scenarios with minimal redundancy. Equivalence _Class Testing (ECT) is
also called as Equivalence Partition Testing (EPT). :

Example : In the context of the triangle problem, for instance, testing for an equilateral triangle can
be effectively represented by using the input values (5, 5, 5). In this scenario, ‘additi_onal test cases like
(6,6, 6) or (100, 100, 100) would not provide significant new insights as they would essentially yield
the same outcome. This intuitive understanding of redundancy in test cases is crucial for optimizing
testing efforts.

Motivations Behind Equivalence Cla

1. Sense of Complete Testing: ECT aims to ensure every functional aspect of the application is
tested by covering all equivalence classes.

2. Avoid Redundancy: By focusing on one representative from each class rather than multiple
similar inputs, ECT reduces unnecessary test cases.

Equivalence classes refer to groups of input values that are treated the same way by the software system
being tested. Test cases are designed to represent each equivalence class to ensure that the system behaves
consistently for all values within that class. This approach helps in reducing the number of test cases needed
while maintaining thorough test coverage. This allows for efficient test case creation while achieving good test

coverage.

Equivalence Class Testing (ECT) is a method used in software testing that helps to efficiently partition the
input or output spaces into classes that are treated equivalently by the system under test. By identifying and
utilizing representative samples from thése classes; testefs can effectively reduce reduridancy while ensuring
comprehensive coverage.

Undorstanding Equivalence €

1. Partitioning: The concépt of partitioning iri the contéxt of eéquivalence classes méans dividing
a set into exclusive and exhaustive subséts. Each élemérit of the sét belongs to'6nie and only
one subsgt. This pattitioiiing is kéy to ensiiring that tests are both comprelietisive and non-
redundant.

2. Miitiial Disjoinithess: The sibsets are mutually disjoint, meaning no two subséts share an
elefhent. This propety énsures that each test casé dérived from each subsét is utiique, thereby
reducinig reduridancy iii tésting. : '

3. Common Properties: Each subset in an equivalence class contains elements thatare assumed
to have something in common—typically, how the software behaves Wien presented with
these elements as inputs. This assumption allows tésters to use a single test case from each
subset to infer the beliavior for all elements of that subset.

.(‘UI'I' Idea

¢ Divides the entire range of possible input values for a program input into. distinct. partitions
called equivalence classes. 2L ' Al Skl i

¢ Each equivalence class represents a group of iriput values where the program's behaviour is
expected to be the same.

® Test cases are designed to target each equivalence class with at least one representative value.

Equivalence Class Tes

ﬁﬁllll![]li()ll.\'

Equivalence class testing considers two primary factors:

¢ Robustness: Tests are designed to handle both valid and invalid inputs, checking the system's
ability to handle unexpected or erroneous data.)

¢ Single/Multiple Fault Assumption: Determines whether the testing assumes that errors are
caused by a single fault or multiple faults simultaneously.

Importance of Equivalence Clas

Equivalence class testing is crucial in software testing for several reasons:

1. Comprehensive Test Coverage: By organizing input values into equivalence classes, testers
can ensure that representative test cases are selected to cover different scenarios. Thisapproach
helps in identifying defects across various input conditions, leading to more thorough testing
coverage.

I 34 I Software Testing

2. Efficiency in Test Case Design: Equivalence class testing allows testers to reduce the number
of test cases needed while maintaining effective coverage. By focusing on representative values
from each equivalence class, redundant test cases can be minimized, optimizing testing efforts
and resources.

3. Effective Bug Detection: Equivalence class testing helps in uncovering defects and
vulnerabilities in the software system by testing different equivalence classes. By exploring
how the system handles inputs within each class, teste _l;a,gtldenn@r potenttal 1ssues and
ensure the system behaves as expected under various:gonditions: ; B

4. Risk Mitigation: By systematically categorizing input values into equivalence classes, testers
can prioritize testing efforts based on the criticality. of each class. This approach helps in
mmgaung rlsks associated with different input scenarios and ensures that high-risk areas are
thoroughly tested.

5. Alignment with Testing Principles: Equivalence class testing aligns with fundamenta]
testing principles such as robustness and the single/multiple fault assumption. By focusing on
how the system treats inputs within each class, testers can validate the system's behavior and
identify potential weaknesses or inconsistencies.

Four Forms of Equivalence Class Testing

¢ Weak Normal : Assumeés a single fault:and focuses on valid inputs.

¢ Strong Normal: Assumes multiple faults can occur simultaneously and focuses on valid mputs
* Weak Robust: Assumes a single fanlt but includes both valid and invalid mput&
* Strong Robust: Assumes multiple faults and includes both valid and invalid inputs.

Aligning Equivalence Class and Boundary Value Testing

® The equivalence class testing reduces gaps and redundancies in functional testing. By
combining it with boundary value testing (especially for bounded variables) can enhance
test coverage. This hybrid approach, sometimes referred to.as "edge testing,". This helps to
identify edge cases at the boundaries of equivalence classes. For example, testing right at the
transition between valid and invalid triangles can uncover buundary specificissuesthat rnigl‘rt
otherwise go undetected. v

¢ Equivalence class testing, particularly when integrated with boundary value testing, provides
4 robust framework for ensuring that all functional paths are explored and that the software
behaves as expected across all theoretically possible inputs. This strategy is critical for effective
software testing.

Equivalence Class Testing

1. Suppose we have 4n application that accepts a user's:dge as input, and the valid age rangé is from 18 to
60. We can apply Equivalence Partitioning to divide the input data into three partitions:
= Partition 1: Invalid values below 18 - This partition includes all values less than 18, such as -10,
0,and 17. Testing these values will verify that the system correctly rejects invalid inputs.
» Partition 2: Valid values between 18 and 60 - This partition includes all values between 18 and
60, such as 25, 35, and 50. Testing these values will verify that the system correctly accepts valid

inputs.

Equivalence Class Tuﬂng 3.5

—

» Partition 3: Invalid values above 60 - This partition includes all values greater than 60, such as
75, 100, and 200. Testing these values will verify that the system correctly rejects invalid inputs.

2. For each partition, we can create one or more test cases to cover all possible scenarios. For example, we
can test the following inputs for each partition:

e Partition 1:-10,0,17
* Partition 2: 18, 25, 35, 50, 60
e Partition 3: 75, 100, 200
3. By applying Equivalence Partitioning, we have reduced the number of test cases required to test the
software system, while still ensuring that all possible scenarios are covered. This technique is useful
for testing complex systems where testing all possible inputs wou]d be impractica! or impossible.

_Equivalence Class Testing

In the triangle classification problem, equivalénce classes can be based on the types of triangles:
¢ Equilateral: All sides are equal.
® Isosceles: Two sides are equal.
® Scalene: No sides are equal.
¢ Invalid: Combinations of side lengths that do not form a triangle.
For each class, a single test case is chosen:
e Equilateral: (5, 5, 5)
e Isosceles: (5,5, 3)
® Scalene: (4,5, 6)
Invalid: (1, 2, 3) - where the sum of two sides does not exceed the third side.

These choices reduce test redundancy, as testing with other numbers that still fit these definftions (e.g_, (6.6,
6) for equilateral) is unlikely to provide additional insights since the application treatsall instances of each
class equivalently.

= =
3.2.1 Traditional Equivalence Class Testing

Traditional Equivalence Class Testing (TECT) is a foundational method in so&ware testing that
focuses on categorizing input data into equivalence classes based on their validity. This approach is
rooted in the principle of "Garbage In, Garbage Out” (GIGO), which underscores the importance of
input validation to ensure accurate and expected outputs from software systems.

Most of the standard testing texts of equivalence classes based on valid and invalid variable va]ues
Traditional equivalence class testing is nearly identical to weak robust equlvalence class. This
traditional form focuses on invalid data values.
During the early programming time, the principle of "Garbage In, Garbage Out” (GIGO) underscored
the significance of providing valid data for program execution, as results based on invalid data
were unpredictable. In response to GIGO, programmers implemented extensive input validation
mechanisms within programs to ensure data integrity. However, with the evolution of modern
programming languages featuring strong data typing and the adoption of graphical user interfaces
(GUIs), the need for extensive input data validation has diminished. User- -friendly interface elements
like drop-down lists and slider bars have contributed to reducing the occurrence of erroneous input
data.

|- 3.6 | Software Testing) |

Traditional equivalence class testing aligns with the process of boundary value testing and involve
testing finctions for valid values of variables first. Subsequently, testing is conducted with invalid
values for individual variables while keeping the remaining variables valid. This iterative approach
helps in identifying faults related to invalid data values.

Process of Traditional Equivalence Class Testing

The testing process typically follows these steps, whichaim to isolate issuesrelated to input validation:
1. Test with Valid Inputs: Begin by testing the function F with all variables set to their valid
values. This initial step ensures that the function behavesas expected under normal conditions.

2. Test with Invalid Inputs: After confirming that the function performs correctly with valid
inputs, the next step involves introducing invalid values for one variable at a time while keeping
other variables at their valid states.

For instance, if testing a function F(x1,x2), start by substituting x1 with its invalid values
while keeping x2 within its valid range. This helps determine if the function can handle errors
gracefully when one input is incorrect. :

This step is repeated for each variable, ensuring that each one js tested for its response to
invalid data. . .

3. Identify Faults Due to Invalid Data: Any failures detected during the testing of invalid inputs
can typically be attributed to issues handling these inputs. This pinpointed approach helps in
identifying specific vulnerabilities associated with the processing of invalid data.)

The below Figure 3.1 shows test cases for a function F of two variables x1 and x2.

Xy

Figure 3.1: Traditional Equivalence Class Test Cases

e e e it

srwth s B E e S

ot ok

T T

Equivulan:q Class Testing . 37 |

1. Focused Faultidentification: By systematically testing valid and then invalid inputs, TECT efficiently
identifies how well the program handles erroneous data, which is crucial for robust errorhandling and
validation logic in software applications.

2. Reduction in Redundant Testing: Sii;_ce‘ eiich variable is tested iﬁdépéhﬁgﬁﬁﬂy for validity, therel.s
minimal redundancy, making the testing process more efficient.
3.3 Forms or Variations of Equivalence Class Testing
Equivalence class testing include four main forms, each with its own focus and assumptions.
1. Weak Normal Equivalence Class Testing:
e Assumes a single fault and concentrates on testing valid inputsonly.» ~ =0 -
¢ Designed to verify the system’s behavior under normal bpe'i';i:i'hg éouditipns with valid
‘input values.)] ’

2. Strong Normal Equivalence Class Testing:
o Assumes the possibility of multiple faults occurﬁng simﬁltanebusly and emphasizes
testing valid inputs.
o Aims to validate the system's response to various valid input scenarios, considering the
potential for multiple faults. i i
3. Weak Robust Equivalence Class Testing:
o Assumes a single fault but includes both valid and invalid inputs in the testing procéss.
o Focuses on evaluating the system's resilience to faults by testing both valid and invalid
input values. Y
4. Strong Robust Equivalence Class Testing: ‘
¢ Assumes the presence of multiple faults and incorporates both valid and invalid inputs in
the testing strategy.
e Seeks to uncover system vulnerabilities by testing a combination of valid and invalid
input values under the assumption of multiple faults.
Each form of equivalence class testing serves a specific purpose in software testing, ranging from
validating system behavior under normal conditions to assessing its robustness in the face of faults
and invalid inputs. By employing these different formsof equivalence class testing, testers canenhance
test coverage, identify potential defects, and ensure the reliability and quality of the software system.

3.3.1 Weak Normal Equivalence Class Testing

Weak Normal Equivalence Class Testing (WNECT) is a fundamental technique in software testing,
particularly within the domain of equivalence class testing. This method is termed "weak" because
it operates under the assumption of a single fault, implying that any failure is attributed to an issue
within a single input variable at a time. WNECT aims to simplify the testing process by reducing
the number of test cases to a manageable few, each representing different equivalence classes or
intervals of input variables.

| 38 I Software Testing

WNECT is particularly useful in situations where the input domain is large and can be clearly
segmented into meaningful classes based on the functionality and requirements of the systein. It is
widely used in regression testing, where the goal is to quickly validate that no néw errors have been
introduced in previously tested parts of the software. :

Weak Normal Equlvalence Class Testmg (WN ECT] isa software testmg techmque ﬂlat assumes a single fault
and concentratés on testing valid inputs only: It is.called "weak” because it assumes that any failure is caused
by a problem in just one input variable at a time. It is specifically designed to verify the system's behavior
under normal operating conditions with valid input values. It simplifies the testing process and ensure
comprehensive coverage of different input categories.

Key Characteristios of WNECT

1. Equivalence Classes: Inplits are divided into groups (or classes) where each group represents
a set of values that the system should theoretically treat the same. These classes are defined
based on both the input value ranges (valid or invalid) and their expected behaviors.

Single Fault Assumption: WNECT operates under the premise that failures are due to issues
with one specific input variable at a time. This approach simplifies the analysis of test results
and helps focus on isolating faults in distinct areas of the system.

kS

W

Representative Sampling: From each equivalence class, one representative sample is chosen
for testing. The idea is that testing this single value is sufficient to infer the behavior for all
valués within that class, assuming the system treats all of them equlvalently

Implementation Steps in WNECT

1. Identify Equivalence Classes: Determine the sets of values that make up the equivalence
classes based on input specifications. These can include ranges of valid values and separately,
ranges of invalid values that are expected to trigger error handling mechianisms.

2. Select Test Cases: Choose one representative value from each class to be used in testing. This
selection should ideally cover the spectrum of expected behaviors from the system when given
inputs from these classes.

3. Construct and Execute Tests: Formulate test cases that include these selected values. Each
test case will typically involve inputs from different equivalence classes to ensure coverage
across the input domain.

1. Efﬁc1ency: Reduces the number of test cases needed by focusing only on representative values rather
than exhaustive testing of all possible inputs.

2. Effectiveness: Provides a systematic approach to testing by ensuring that all defined classes of inputs
are checked, thus covering different scenarios the software might encounter.

it e e o

ot e i

Equivalenca Class Testing I 3.9 |

1. Isolation of Faults: Whlle itis efﬁcxent the single fault assumptlon may not always hold true, espeaal]y
in complex systems where interactions between dlfferent_ inputs can lead to failures. This.can make
feult isg}eﬁon challenging if a test case fails. ;

2. Depth, of Testing: WNECT might not sufficiently test the interactions between various input values,
potentially overloeking multi-variable defects.

: | Weak Normal Equivalence Class Testing (WN'EC'i')

Let's consider an example to illistrate Weak Normal Equivalenice Class Testing.
Scenario : A banking application calculates interest on a savings account using the account balance and
interest rate.
Equivalence Classes:
1. Account Balance:
Class A (Low Balance): 3500 or less
Class B (Medium Balance): 3501 to 35000
) Class C (ngh Balance) %5001 0r more
2. lnterest Ratr
Class X (Low Interest Rate): 0% t0.3%
Class Y (Medium Interest Rate): 4% to 7%
Class Z (High Interest Rate): 8% to 12%
Weak Normal Equivalence Class Test Cases:
1. TestCase 1:
Account Balance: 3300 (Class A - Low Balance)
Interest Rate: 2% (Class X - Low Interest Rate)
2. TestCase 2:
Account Balance: 32500 (Class B - Medium Balance)
Interest Rate: 5% (Class Y- Medlum Interest Rate]
3. TestCase 3:
Account Balancé: Y8000 (Class C - High Balance)
Interest Rate: 10% (Class Z - High Interest Rate)
Analysis: ' HE ' a
® Weak Normal ECT focuses on individual equivalence classes with one value from each class to ensure
basic coverage. It targets specific scenarios within each class to identify potential faults associated with
those ranges. :

® In Weak Normal Testing, each test case focuses on a single equivalence class with one value from that
class. For example, Test Case 1 considers a low account balance and a low interest rate. This approach
aims to identify potential faults within individual input ranges.

® Weak Normal Testing is aligned with the concept of a single fault becade it targets one specific
equivalence class at a time, testing for potential issues within that range. Each test case is designed
to validate the system's response to valid inputs within a particular.class, aiming to uncover faults

associated with that specific scenario.

3.10 | Software Testing

e Assume that if Test Case 2 fails, indicating a discrepancy between the expected interest calculation am{_-
the actual calculated interest amount, the issue could be related to the calculation of interest based on
the mediumi balance and interest rate. The failure in Test Case 2 highlights a potential problem in the
application's handling of medium balance and interest rate scenarios. :

e The ambiguity in fault isolation in Weak Normal Equivalence Class Testing is evident in this scenario.
While the failure identifies 2 problem, it does not pinpoint whether the issue lies with the medium
balance, medium interest rate, or their interaction. This level of ambiguity is acceptable in certain
testing scenarios, such as regression testing, where the focus is on broader system validation rather
than detailed fault isolation.

e For more precise fault identification, stronger forms of equivalence class testing, like Strong Normal
or Weak Robust, may be employed to delve deeper into the potential causes of failures and ensure
comprehensive testing coverage.

— —

3.3.2 Strong Normal Equivalence Class Testing
Strong Normal Equivalence Class Testing (SNECT) is an advanced method within the framework of
equivalence class testing used in software testing. This approach builds on the concepts of Weak
Normal Equivalence Class Testing by incorporating multiple variables simultaneously in each test
case, rather than examining them individually. SNECT is designed to detect more complex interactions
between variables that might not be evident when variables are tested in isolation.

— =

Strong Normal Equivalence Class Testing (SNECT) assumes the possibility of multiple faults occurring
simultaneously and emphasizes testing valid inputs. It aims to validate the system's response to various valid
input scenarios, considering the potentia! for multiple faults. By systematically testing all unique combinations
of input values, SNECT ensures comprehensive coverage of input scenarios to identify and address potential
defects in the system.

1. Multiple Variable Integration: Unlike weak te_stihg, which might consider one variable at
a time, strong testing involves creating test cases that combine representative values from
multiple equivalence classes across different variables. This approach helps identify issues
arising from the interactions between these variables.

2. Normal Equivalence Classes: This form of testing focuses on normal (valid) equivalence
classes, meaning it uses combinations of values that are all expected to be handled correctly
by the system. The purpose is to confirm that the system behaves as expected under various
combinations of normal conditions.

3. No Single Fault Assumption: SNECT moves away from the single fault assumption prevalent
in weak testing ®thods. By integrating multiple variables in each test case, it acknowledges
that faults might be caused by complex interactions between variables rather than issues with
individual inputs.

et e B g) L e S A A S N L) |

bt e .

Equivalence Class Testing 3.1

Implementation Steps m_ él_\'E(‘T

1. Identify Equivalence Classes: As with other forms of equivalence class testing, the first step
invalves identifying all relevant equivalence classes for each input variable based on their valid
value ranges and behavioral characteristics.

2. Select Representative Samples: Choose representative samples from each equivalence class.
These selections should capture a broad range of behaviors and potential interactions between
the variables.

3. Construct Comprehensive Test Cases: Develop test cases that include combinations of
selected samples from the identified equivalence classes across all variables. This method
ensures that the interactions between variables are thoroughly tested.

4. Execute and Analyze Tests: Execute the formulated test cases and carefully analyze the

autcomes. The complexity of analyzing results increases as the interactions between multiple

variables are considered.

:g‘.’g{-‘ T o=

1. Comprehensive Interaction Testing: Provides a more thorough examination ofhow different parts qt
the system interact with each other, potentially uncovering hidden bugs that occur only under specifi]
conditions involving multiple inputs. ' >r

2. Increased Fault Detection Capabilities: By testing combinations of inputs across multiple variahle@i
SNECT can identify faults that may be missed by testing variables in isolation, IEE

consider mu
the complexity of test planning and execution.

2. Higher Resource Requirements: The comprehensive testing requires mare time and computational
resources and hence the cost and duration of the testing phase is higher

Strong Normal Equivalence Class Testing (SNECT)

Let's consider an example to illustrate Strong Normal Equivalence Class Testing.

Scenario : A banking applicatien caleulates interest on a savings account using the account balance and
interest rate.

Equivalence Classes:

1. Account Balance:
Class A (Low Balance): Y500 or less
Class B (Medium Balance): 501 to 35000
Class C (High Balance}: 35001 or more

2. Interest Rate:
Class X (Low Interest Rate): 0% to 3%
Class Y (Medium Interest Rate): 4% to 7%
Class Z (High Interest Rate): 8% to 12%

-

3.12 | Software Testing

Strong Normal Equivalence Class Test Cases:
1. Strong Normal Test Case 1:
Account Balance: 3500 (Low Balance)
Interest Rate: 2% (Low Interest Rate)
2. Strong Normal Test Case 2:
Account Balance: 3500 (Low Balance)
Interest Rate: 5% (Medium Interest Rate)
3. Strong Normal Test Case 3:
Account Balance: X500 (Low Balance)
Interest Rate: 10% (High Interest Rate)
4. Strong Normal Test Case 4:
Account Balance: 2000 (Medium Balance)
Interest Rate: 2% (Low Interest Rate)
5 Strong Normal Test Case 5:
Account Balance: 32000 (Medium Balance)
Interest Rate: 5% (Medium Interest Rate)
6. Strong Normal Test Case 6:
Account Balance: 2000 (Medium Balance})
Interest Rate: 10% (High Interest Rate)
7. Strong Normal Test Case 7:
Account Balance: ¥10000 (High Balance) R
Interest Rate: 2% (Low Interest Rate)
8. Strong Normal Test Case 8:
Account Balance: ¥10000 (High Balance)
Interest Rate: 5% (Medium Interest Rate)
9. Strong Normal Test Case 9:
Account Balance: 10000 (High Balance)
Interest Rate: 10% (High Interest Rate}

Analysis:)
* In Strong Normal Equivalence Class Testing, all possible combinations of input equivalence classes are
tested to ensure thorough coverage. For instance, Test Case 4 éxamines a medium account balance with

a low interest rate, while Test Case 6 tests a medium balance with a high interest rate. This approach
aims to uncover potential faults arising from the interactions of multiple input variables.

e This approach provides a more detailed examination of the system's behavior under various scenarios,
including interactions between different input variables.

o The difference between Weak Normal and Strong Normal testing lies in the level of coverage and depth
of testing, with Strong Normal testing offering a more comprehensive and exhaustive evaluation of the
system.

e Strong Normal Testing is associated with the concept of multiple faults because it explores various
combinations of input ranges, allowing for the identification of potential issues resulting from the
interplay between different factors. By testing multiple combinations, this approach helps uncover

faults that may arise from the complex interactions of valid inputs.

Equivalence Class Testing 3.13

“
3.3.3 Weak Robust Equivalence Class Testing

Weak Robust Equivalence Class Testing (WRECT) is a method within software testing that expands
on the principles of Weak Normal Equivalence Class Testing by explicitly including invalid inputs
alongside valid inputs in the test cases. While the weak normal approach focuses solely on valid input
scenarios under the assumption of a single fault, WRECT aims to validate how the system handles
both valid and invalid inputs simultaneously to assess the system's robustness and error handling
capabilities.

The robust part comes from consideration of invalid values, and the weak part refers to the single
fault assumption. The process of weak robust equivalence class testing is a simple extension of
that for weak normal equivalence class testing—pick test cases such that each equivalence class is
represented.

- T S E e = At S kel Py S R e =N
Weak Robust Equivalence Class Testing (WRECT) is a testing methodology that focuses on evaluating how
a system handles both valid and invalid inputs, with a specific emphasis on scenarios where unexpected
or erroneous inputs are provided. This approach aims to uncover vulnerabilities related to error handling,
boundary conditions, and the system's robustness against various types of input. WRECT operates under the

assumption that a single fault in handling invalid inputs can lead to system vulnerabilities.

Key Characteristics of Weak Robust Equivalence Class Testing

1. Inclusion of Invalid Inputs: WRECT introduces invalid input values as separate equivalence
classes. This is done to test the system's resilience and error-handling mechanisms, ensuring
that invalid inputs do not cause crashes or undesired behaviors.

2. Single Fault Assumption: Similar to weak normal testing, WRECT operates under the
assumption that any failure is likely due to a single problematic input—whether valid or
invalid—rather than complex interactions between multiple inputs,

3. Combination of Valid and Invalid Inputs: Test cases are designed to include both valid and
invalid inputs but typically focus on changing one variable at a time to maintain simplicity and
clarity in identifying the source of any issues.

Implementation Steps in WRECT

Bl e

s

1. Identify Equivalence Classes: Define equivalence classes for both valid and invalid input
ranges for each variable based on the system's requirements and expected behavior.

2. Select Representative Samples: Choose samples from both valid and invalid equivalence
classes. The selection should ideally cover a broad spectrum of expected behaviors and
potential error scenarios.

3. Construct Test Cases: Develop test cases that integrate the selected samples. Although the
focus is on a single fault assumption, incorporating invalid inputs provides insights into the
system's robustness.

4. Execute and Analyze Tests:. Perform testing and meticulously analyze the outcomes to
determine how well the system handles erroneous inputs alongside normal operations.

1. Enhanced Error Handling Validation: By including invalid inputs, WRECT helps verify that the
system gracefully handles errors, which is crucial for maintaining stability and user satisfaction.

2. Increased Test Coverage: Covers a wider range of input scenarios by incorporating tests for invalid
data, thereby reducing the risk of unhandled exceptions or failures in production.

i S L BN LT TN dEir) L ==
1. Increased Testing Complexity: Managing and designing tests that incorporate both valid and invalid
inputs can complicate the testing process and analysis of results.
2. Resource Intensive: Requires more comprehensive test planning and execution, potentially leading to
longer testing phases and increased costs.

Weak Robust Equivalence Class Testing (SNECT)

Scenario: Online Payment Gateway Transaction Amount Validation
The system is designed to accept transaction amounts within certain specified limits to be processed. For this
example, we will define the transaction amount limits and categorize them into different equivalence classes:
Transaction Amount:

1. Minimum transaction amount allowed: 350

2. Maximum transaction amount allowed: 500,000

Defining Equivalence Classes: We will define two main classes of valid inputs and two classes of invalid
inputs based on the transaction limits:

1. Class A (Valid - Low Range): Range: 350 to 310,000

2. Class B (Valid - High Range): Range: 10,001 to %500,000 .

3. Class C (Invalid - Below Minimum): Range: Less than %50

4. Class D (Invalid - Above Maximum): Range: More than 500,000
Select Representative Samples: ‘

1. Class A (Valid - Low Range): %50,31000, 35000

2. Class B (valid - High Range): 310,001, 3100,000, iZOO,'OOOI

3. Class C (Invalid - Below Minimum): 0, 330

4. Class D (Invalid - Above Maximum): 600,000, 900,000,
Test Cases Based on Equivalence Classes: By selecting representative samples from each of these classes,
we can efficiently test how the system handles different transaction amounts: In waak robust, we select only
one sample from each class.

1. TestCase 1: Class A (Valid - Low Range) : Transaction Amount: 31,000

Expected Result: Transaction is successfully processed.
2. Test Case 2: Class B (Valid - High Range) : Transaction Amount: 100,000

Expected Result: Transaction is successfully processed, potentially after additional validations due to

the high amount.

-

Equivalence Class Testing 3.15

3. Test Case 3: Class C (Invalid - Below Minimum) : Transaction Amount: 330
Expected Result: Transaction is rejected due to being below the minimum lirit.
4. Test Case 4: Class D (Invalid - Above Maximum) : Transaction Amount: 600,000
Expected Result: Transaction is rejected due to exceeding the maximum limit.
Analysis: Implementing equivalence class testing ensures comprehensive coverage of all input scenarios
using a minimal number of test cases, organized by:
e Confirming that the system properly processes valid transaction amounts within both low and high
ranges.
e Ensuring the system appropriately rejects transactions outside the allowable range, thus securing the
payment process.
This method efficiently streamlines the testing process by focusing on distinct categories of inputs that
represent different behaviors or responses from the system.

| Weak Robust Equivalence Class Testing (SNECT)

Scenario: Online Event Registration Platform

The platform hosts events such as concerts, seminars, and workshops, some of which have age restrictions
{above 18 and below 60). Users must enter their age and select their gender (male or female) during
registration to verify eligibility for certain events. The system should correctly process eligible registrations
and reject ineligible ones based on age, while always correctly handling gender input.

Defined Equivalence Classes:
1. Class A - Valid Age: 18 to 60 years
25 years (mid-range, representing a typical adult)
60 years (upper limit of valid age range})
2. Class B - Invalid Age: <18 and >60
17 years (just below the valid age range)
65 years (just above the valid age range)
3. Class C- Valid Gender: Male, Female
Representative Samples:
1. Class A - Valid Age:
25 years (mid-range, representing a typical adult)
60 years (upper limit of valid age range)
2. Class B - Invalid Age: <18 and >60
17 years (just below the valid age range)
65 years (just above the valid age range)
3. Class C - Valid Gender: Male, Female

Test Cases Based on Equivalence Classes: Theaimhereisto include both valid and invalid ages independently
in test scenarios combined with valid gender entries to check the robustness of the system'’s user validation
process. We select only one sample from each class in a test case.

| .16 | Software Testing

1. TestCase 1:
Age: 25 years (Class A - Valid Age)
Gender: Male (Class C - Valid Gender)

Expected Result: Successful profile creation or update, as the age is valid and gender is correctly
specified.

2. Test Case 2:
Age: 60 years (Class A - Valid Age)
Gender: Female (Class C - Valid Gender)

Expected Result: Successful profile creation or update, as the age is at the valid upper boundary and
gender is correctly specified.

3. Test Case 3:
Age: 17 years (Class B - Invalid Age)
Gender: Male (Class C - Valid Gender)
Expected Result: Rejection due to invalid age, even though the gender is valid.
4. TestCase 4:
Age: 65 years (Class B - Invalid Age)
Gender: Female (Class C - Valid Gender)
Expected Result: Rejection due to invalid age, even though the gender is valid.
Analysis:
® For Test Cases 1 and 2: Verify that the system processes these inputs coi"rectly without any errors. It
should recognize both ages as valid and match them with the genders provided.

e For Test Cases 3 and 4: Observe how the system handles these invalid ages. It should reject these
entries and provide clear and helpful error messages stdting the age limitations, ensuring the user
understands why the input was rejected.

3.3.4 Strong Robust Equivalence Class Testing

Strong Robust Equivalence Class Testing (SRECT) extends the concepts of both strong normal
equivalence class testing and weak robust equivalence class testing by combining rigorous testing
of multiple variable combinations with the inclusion of invalid inputs. This method aims to test the
system's response to both valid and invalid inputs across a full range of input combinations. It focuses
on identifying complex interactions that might lead to system vulnerabilities, particularly when
invalid data is involved.

The robust part comes from consideration of invalid values and the strong part refers to the
multiple fault assumption. We obtain test cases from each element of the Cartesian product of all the
equivalence classes both valid and invalid. Unlike Weak Robust Equivalence Class Testing (WRECT),
which focuses on a single fault assumption, SRECT delves deeper into the system's behavior under
various fault conditions and complex interactions between inputs.

Equivalence Class Testing 3.17

ce Class Testing (SRECT) is a testing methodology that emphasizes evaluating a

system's response to both valid and invalid inputs, particularly focusing on scenarios involving unexpected
or erroneous inputs. This approach aims to identify vulnerabilities related to error handling, boundary
conditions, and the system's overall robustness against a wide range of input variations. SRECT operates
under the premise that multiple faults or complex interactions between valid and invalid inputs can potentially
‘expose critical system weaknesses.

1. Integration of Multiple Variables: Like strong normal testing, SRECT involves creating test
cases that combine representative values from multiple equivalence classes across different
variables, but it includes both valid and invalid classes.

2. Consideration of Invalid Inputs: SRECT explicitly includes invalid inputs within the test cases
to check how the system handles error conditions and to validate error handling mechanisms
robustly.

3. No Single Fault Assumption: This testing methodology assumes that multiple faults can occur
due to interactions between several variables, including those arising from invalid inputs. It
tests the system's ability to handle complex scenarios where multiple inputs might interact in
unforeseen ways.

n Steps inS_RECT

1. Identify Equivalence Classes: Define all relevant equivalen;:e classes for each input variable.
This should include classes for valid ranges as well as specifically defined classes for known
invalid inputs.

2. Select Representative Samples: For each equivalence class, select representative samples
that are expected to adequately exhibit the behaviors or responses of that class. These should
include typical values, boundary values, and exceptional cases (for invalid inputs).

3. Generate Combinations Using Cartesian Product: Apply the Cartesian product to the sets
of selected samples from each class. This means every combination of selected samples from
each class will be paired with every other selected sample from every other class to form test
cases. i

ol

Construct Test Cases: Each result of the Cartesian product is a combination that becomes a
test case. For example, if there are three classes A, B, and C with two samples each (A1;A2; B1,
B2; C1, C2), the Cartesian product will result in combinations like (A1, B1, C1), (A1, B1, C2), ..
(A2, B2, C2), totaling 2 x 2 x 2 = 8 combinations.

5. Execute and Analyze Tests: : Execute the test cases as per the constructed scenarios. Analyze
the results to identify and address potential defects or vulnerabilities caused by interactions
between the multiple input types.

AR e Ly R S By

e i t A3k e e

1. Enhanced Error Handling and System Robustness: By thoroughly testing how the system responds
to both normal and abnormal input combinations, SRECT helps ensure that the system is robust
against a wide range of input scenarios.

2. Comprehensive Fault Detection: The methodology increases the likelihood of detecting hidden
or unknown bugs that may not be apparent when testing inputs in isolation or only within normal

operational ranges.

P ' ¥ i = 2 = 1 2,

e RS G S e R PRy s

1. Increased Testing Complexity: The need to consider numerous combinations of both valid an
invalid inputs significantly increases the complexity of test planning and execution.

2. Higher Resource Requirements: This exhaustive approach requires more time and computational

resources, potentially increasing the cost and duration of the testing phase.

Strong Robust Equivalence Class Testing (SNECT)

Scenario: Online Event Registration Platform _
The platform hosts events such as concerts, seminars, and workshops, some of which have age restrictions
(above 18 and below 60). Users must enter their age and select their gender (male or female) during
registration to verify eligibility for certain events. The system should correctly process eligible registrations
and reject ineligible ones based on age, while always correctly handling gender input.
Defined Equivalence Classes: :
1. Class A - Valid Age: 18 to 60 years
25 years (mid-range, representing a typical adult)
60 years (upper limit of valid age range)
2. Class B - Invalid Age: <18 and >60
17 years (just below the valid age range)
65 years (just above the valid age range)
3. Class C - Valid Gender: Male, Female
Representative Samples:
1. Class A - Valid Age:
25 years (mid-range, representing a typical adult)
60 years (upper limit of valid age range)
2. Class B - Invalid Age: <18 and >60
17 years (just below the valid age range)
65 years (just above the valid age range}
3. Class C- Valid Gender: Male, Femnale

Test Cases Based on Equivalence Classes: Test Cases Based on Equivalence Classes: To generate test
cases, we take one sample from each class and combine them to see how the system handles multiple inputs
at once. We will construct these combinations by pairing each sample from Class A with every sample from

Classes B and C, to cover all possible scenarios.

e — e e W R — P — s

e

Equivalence Class Testing 3.19

With each class containing two samples and using the Cartesian product approach for Strong Robust
Equivalence Class Testing (SRECT), we generate 2*2*2* = 8 test cases. This ensures that every possible
combination of inputs from the four defined classes (A, B, C) is tested.
1. Test Case 1: 25 years, Male
Expected Outcome: Successful registration, as the age is valid and gender is correctly specified.
2. Test Case 2: 25 years, Female
Expected Outcome: Successful registration, as the age is valid and gender is correctly specified.
3. Test Case 3: 60 years, Male
Expected Outcome: Successful registration, as the age is at the upper valid boundary and gender is
correctly specified.
4. Test Case 4: 60 years, Female
Expected Outcome: Successful registration, as the age is at the upper valid boundary and gender is
correctly spegified.
5. TestCase 5: 17 years, Male
Expected Outcome: Rejection due to underage, with an appropriate error message detailing the age
requirement.
6. Test Case 6: 17 years, Female
Expected Outcome: Rejection due to underage, with an appropriate error message detailing the age
requirement.
7. Test Case 7: 65 years, Male
Expected Outcome: Rejection due to being overage, even though the gender is correctly specified.
8. Test Case 8: 65 years, Female
Expected Outcome: Rejection due to being overage, even thoughi the gender is correctly specified.
Analysis:
¢ For valid combinations, the system processes registrations without errors and appropriately handles
valid age boundaries. For invalid age inputs, verify that the system rejects these registrations and
provides clear, informative feedback to the user.
* This systematic testing approach using Strong Robust Equivalence Class Testing ensures that the event
registration system is capable of handling a range of scenarios, improving overall reliability and user
satisfaction by adequately managing different user inputs.

3.3.5 Weak Normal Vs Strong Normal Equivalence Class Testing .
The below table highlights the differences between Weak Normal Equivalence Class Testing and

o

equivalence class
independently by selecting a single
representative value from one class
at a time. This approach simplifies
identifying which class is causing an
issue if a test fails.

Simultaneously tests all valid
combinations of representative values
from multiple equivalence classes to
examine how variables interact and
impact the system together.

Definition

| 3.20 I Software Testing

Fault Assumption

Assumes that any failure in the system
can be traced back to a fault in a single
input variable. This method tests each
input independently to isolate issues.

Assumes that faults may occur due to
interactions among multiple variables.
This method tests combinations of
variables to capture these interactions.

Purpose

Aims to verify that each iniput, when
considered separately, "is handled
correctly by the system. It is effective
for identifying and isolating errors
related to individual inputs.

Aims to ensure the system behaves as
expected under a variety of conditions
that arise from multiple input variables
being tested together.

Input Selection

One valid input value from each
equivalence class.

Multiple valid input values from each
equivalence class.

Coverage

Provides basic coverage of input
combinations, focusing on one sample
per class.

Offers more comprehensive coverage by
considering multiple valid samples per
class.

o

Equivalence Class Testing 3.21

Definition

Tests both valld and invalid equivalence

classes, but only considers one variable or
class at a time. This method aims to identify
how the system handles unexpected or
erroneous inputs individually.

= —

3.3.6 Weak Robust Vs Strong Robust Equivalence Class Testing
The below table highlights the differences between Weak Robust Equivalence Class Testmg and
Strong Robust Equlvalence Class Tesﬂng

Tests combinations of both valid and invalid
inputs from multiple equivalence classes
simultaneously, analyzing how errors and
valid data interact and impact tie system.

Fault Assumption

Operates under the single fault assumption
where issues are expected to arise from
individual inputs either valid or invalid, but
not from their interaction,

Rejects the single fault assumption and
anticipates that system vulnerabilities can
result from complex interactions between
multiple erroneous and correct inputs.

Complexity

Simple and straightforward approach,
suitable for basic testing scenarios.

More-detailed and thorough approach,
suitable for complex systems or critical
functionalities.

Test Case Generation

Generates fewer test cases due to
selecting only one valid sample from
each class.

Generates more test cases as multiple
valid combinations are considered for
each class.

Purpose

To assess the system's response to
individual invalid inputs along with valid
inputs to ensure robust error handling and
validate proper system behavior under
typical use conditions.

To thoroughly evaluate the system's ability
to handle and recover from multple
simultaneous input errors, ensuring
resilience and stability under adverse
conditions.

Resource Requirements

Requires fewer resources in terms of
time and effort for test case generation.

Demands more resources for test
case generation and execution due to
increased valid combinations.

Input Selection

Includes both invalid and valid inputs but
tests them independently to isolate the
effect of each type of input.

Integrates multiple invalid and valid inputs
in complex scenarios to observe potential
compound effects and system responses.

Suitability

Suitable for initial testing phases or
simple systems with limited input
variations.

Suitable for comprehensive testing,
especially for critical systems or
functionalities with diverse valid input
scenarios.

Coverage

Provides a detailed analysis of the system's
ability to handle specific types of errors
individually but does not cover interactions
between errors.

Offers . comprehensive coverage that
includes both the individual and combined
effects of erroneous inputs, providing
a deeper insight into potential system
weaknesses.

Execution Efficiency

More efficient with fewer test cases
since it tests one equivalence class ata

]

time.

Less efficient as it requires testing many
combinations, increasing the number of
test cases significantly.

Complexity

Relatively less complex as it involves testing
one type of input error at a time.

More complex due to the need to manage
and interpret the effects of multiple input
errors occurring simultaneously.

Risk Coverage

May miss errors caused by input
interactions, as it does not test input
combinations.

Provides extensive risk coverage
by examining how different input
combinations affect system stability and

functionality.

: Equivalence Classes

testing.

Age less than 18 (Child)

Age between 18 and 65 (Adult)

Age greater than or equal to 65 (Senior)
Weak Normal Equivalence Class Testing: Selects one valid age value from each class (e.g., 10, 30, 70) for

20 for Child; 30, 40, 50 for Adult; 70, 80, 90 for Senicr) for testing.

Strong Normal Equivalence Class Testing: Considers multiple valid age values from each class (e.g, 10, 15,

Test Case
Generation

Generates a moderate number of test
cases, focusing on the effect of individual
erroneous inputs combined with standard
operations.

Generates a large number of test cases
due to the extensive combinations of both
erroneous and correct inputg being tested
together.

Resource
Requirements

Less resource-intensive compared to strong
robust testing, as fewer combinations are
tested.

More resource-intensive, requiring
significant time and computational
power to execute and analyze all possible
combinations.

Suitability

Ideal for initial phases of testing to quickly
identify and fix straightforward input-
related vulnerabilities.

Best suited for final testing phases or in
high-risk environments where system
failure can have serious consequences,
necessitating exhaustive testing.

l 3.22 l Software Testing Equivalence Class Testing 3.23
Execution More efficient ﬁth quicker test exec_utio-r} Less efficient, with more -extensive and : Test Case Generation:
; 5 3 ’ inig test execution required. 3 M ot o
Efficiency | due to simpler test scenarios. S CHTUIRE e : ek qd m i 1. Weak Normal Equivalence Class Testing (WNECT):
Provides good insight into the system's | Ensures extensive risk coverage, detecting i _
Risk Coverage | behavior with specific errors but may miss | even subtle issues that arise only under i Th]s' focuses on testing each valid i.equl\{alence class independently.Four weak normal
issues caused by error interactions complex error conditions. equivalence class test cases, chosen arbitrarily from each class are as follows:
- ‘ ; T T LA R T A TR
1 + 1rahiag = o _??5;_1 %;_ 3 a..v
i 5 5 5
Equivalence Classes: 2 2 3 “Isosceles
» Age Classifications: 3 4 5 Scalene
Valid: Adults (18-65) WN4 4 1 2 Not a triangle
Invalid: Below minimum (<18), Above maximum (>65) § 2. Strong Normal Equivalence Class Tésting (SNECT):
Weak Robust Testing: 1

SNECT typically involves creating combinations of inputs from multiple equivalence classes,

o Test Cases: i However, in the case of the Triangle Problem, each set of side lengths can only belong to one

Age 17 (Invalid, Below Minimum) and Gender Male (Valid) type of triangle due to the distinct and non-overlapping tnathematical conditions that define

Age 70 (Invalid, Above Maximum) and Gender Female (Valid) each class. The testing combinations of different equivalence classes as typically done in SNECT

Strong Robust Testing: does not apply here because the conditions for one class inherently exclude the conditions

for the others. This means that a test case designed for one class (like Equilateral) cannot

simultaneously be a test case for another class (like Scalene). Thereforre, the strong normal
equivalence class test cases are identical to the weak normal equivalence class test cases.

¢ Test Cases:

Combinations of Age 17, Age 70 (Invalids) with Ages 25, 30 {Valids), and Genders Male, FemaleJ
_in multiple configurations to check all interactions.

== ! 3. Weak Robust Equivalence Class Testing (WRECT): It Includes invalid equivalence classes
-ﬂ for the Trinale Probl:: 1 but tests them individually with valid classes. Considering the invalid values for a, b, and ¢
3.4 Equivalence ass est Cases Tor The 1riang yields the following additional weak robust equivalence class test cases. (The invalid values

The Triangle Problem involves categorizing triangles based on their side lengths. Given three integers could be zero, any negative number, or any number greater than 200.)

|
a, b, and ¢, which represent the sides of a triangle, the task is to determine whether they form an i BT PR [B e S m %
ate Soce, Scale, DEngtEnangleE Rl J - WR“1 ;1 | 5 5 .Value of a is not in the range -of -p—ermittea values
_Diﬁ.nitio'ls__‘_) _{'ia"%]e Types: 1 WR2 5 -1 5 Value of b is not in the range of permitted values
e Equilateral: All three sides are equal. , l WR3 5 5 -1 Value of ¢ is not in the range of permitted values
« Isosceles: Exactly two sides are equal. . l 4. Strong Robust Equivalence Class Testing (SRCT): Tests combinations of valid and invalid
o Scalene: All sides are different. y classes together. The test cases SR1 to SR7 combine values from both valid and invalid classes
» Nota Triangle: The sum of the lengths of any two sides must be greater than the length of the l ess.
third side. A : i Xpect:
quli;::leﬁ-c;a .Cla-_;s;es: SR1 -1 5 5 Value of a is not in the range of permitted values
We can uhe abe definitions to identify output (range) equivalence classes as follows: - - -1 5 Value of bis not in the range of permitted values
. ' i SR3 5 5 -1 Value of ¢ is not in the range of permitted values
e R1={<a,b, c>: the triangle with sides a, b, and c is equilateral} : _ '
) e SR4 -1 -1 5 Value of a, b are not in the range of permitted values
* IR S e e e Il e DR S iS0sceles) SR5 5 -1 -1 Value of b, c are not in the range of permitted values
* R3={<ab.c>:the EimelepithistEs) gL scalenf:} SR6 -1 5 -1 Value bf g, cis not in the range of permitted values
* R4={<a b, c>:sides a, b, and c do not form atriangle} SR7 -1 -1 =1 Values of a, b, c are not in the range of permitted values

3.24 | Software Testing

Analysis:

Equivalence Class Testing in the context of the Triangle Problem helps ensure thorough coverage by
targeting specific types of triangles and'their boundary conditions. By structuring test cases around
the concept of equivalence classes, we ensure that each possible triangle configuration is tested, along
with robust handling of invalid inputs. This structured approach aids in confirming that the triangle
categorization logic is correctly implemented and resilient to incorrect or extreme input values.

= —
‘3.5 Equivalence Class Test Cases for the NextDate Function

The NextDate function calculates the next day's date given a current date composed of day, month,

and year inputs. This problem is ideal for demonstrating the application of equivalence class testing

due to the variety of rules governing dates, such as varying days per month and adjustments for leap

years.

Equivalence Classes for the NextDate Function

1. Valid Equivalence Classes

M1 = {month: month has 30 days}

M2 = {month: month has 31 days}

M3 = {month: month is February}

D1 ={day: 1 < day < 28}

D2 = {day: day = 29}

D3 = {day: day = 30}

D4 = {day: day = 31}

Y1 = {year: year = 2000}

Y2 = {year: year is a non-century leap year}

Y3 = {year: year is a common year}

2. Invalid Equivalence Classes:

M4 = {month: month < 1}

M5 = {month: month > 12}

D5 = {day: day < 1}

D6 = {day: day > 31}

Y4 = {year: year < 1812}

Y5 = {year: year > 2012}
What must be done to an input date? If it is not the last day of a month, the NextDate function will
simply increment the day value. At the end of a month, the next day is 1 and the month is incremented.

Atthe end of a year, both the day and the month are reset to 1, and the year is incremented. Finally, the
problem of leap year makes determining the last day of a month interesting.

S n e LT b e i L A - e e % YT 1 T Rl i] iy S T

b | B A s 4 man s

Equivalence Class Testing 3.25

By choosing separate classes for 30- and 31-day months, we simplify the question of the last day of
the month. By taking February as a separate class, we can give more attention to leap year questions.
We also give special attention to day values: days in D1 are (nearly) always incremented, while days
in D4 only have meaning for months in M2. Finally, we have three classes of years, the special case of
the year 2000, leap years, and non-leap years. This is not a perfect set of equivalence classes, but its
use will reveal many potential errors.

Test Case Generation:

1. Weak Normal Equivalence Class Testing (WNECT):

(WNECT) might involve testing valid single dates across a variety of typical scenarios such as
the end of the montbh, leap years, and year transitions.

S171% Case Dy 2df 453 Month Tl g Day |

WN1 6 | 13
This test case is for the Weak Normal Equivalence Class Testing where the input date is June
15,1912. The expected result should be the next day, which is June 16, 1912. Here, the function
moves the day forward by one without changing the month or year, which is the basic operation
for most days in a month under this function.

2. Strong Normal Equivalence Class Testing (SNECT): i)

SNECT is designed to test interactions between different classes, in this specific casé of date
processing, it is similar to WNECT because the basic function of moving from one day to the
next doesn't combine different class attributes in the input. Each test inherently processes the
transition between days correctly under the given rules.

" CaselD Mﬂl'lt‘h 2y b néy : i’eé_r" “Wﬁﬁﬁt
SN1 6 15 1912 6/16/1912

The date provided is a regular day in the middle of a month, so it tests the basic increment
function of the NextDate logic without crossing the boundary conditions of month-end or
year-end, and without the additional complexity of leap year calculations. This ensures that
the fundamental date increment logic is functioning correctly.

3. Weak Robust Equivalence Class Testing (WRECT): It includes invalid inputs alongside valid
ones, but typically one invalid class at a time alongside valid ones to see if the system handles
exceptions (e.g. invalid dates) correctly. =

[Gaselb | Month | Day | Tvear | T T T 7
WR1 6 15 1912
WR2 -1 15 1912 Value of month not in the range 1... 12
WR3 13 15 1912 Value of month not in the range 1... 12
WR4 6 -1 1912 Value of day notin therange 1.. 31
WR5 6 32 1912 Value of day not in the range 1... 31
WR6 6 15 1811 Value of year not in the range 1812... 2012
WR7 6 15 2013 Value of year not in the range 1812 ... 2012

3.26 | Software Testing

S

4. Strong Robust Equivalence Class Testing {(SRCT): Tests combinations of invalid and valid
inputs to simulate errors occurring in multiple inputs simultaneously, checking if multiple
faults lead to proper error handling.

SR1 -1 15 1912 Value of month not in the range 1... 12
SR2 6 -1 1912 Value of day not in therange 1.. 31
SR3 6 15 1811 Value of year not in the range 1812... 2012
N Value of month not in the range 1... 12
* SR4 -1 -1 1912 B
Value of day not in therange 1... 31
Value of day not in the range 1... 31
SR5 6 -1 1811 .
Value of year not in the range 1812... 2012
Value of month not in the range 1. 12
SR6 -1 15 1811 .
Value of year not in the range 1812... 2012
Value of month not in the range 1.... 12
SR7 -1 -1 1811 Value of day not in the range 1... 31
Vvalue of year not in the range 1812 ... 2012

Analysis

Each type of equivalence class testing brings a different level of rigor to the testing process:
o Weak Normal and Strong Normal are often similar for functions like NextDate where a
transition from one valid state to another inherently tests the logic of crossing boundaries
(e.g, from month to month).
¢ Weak Robust and Strong Robust testing are crucial for applications like date calculations,
where input validation is critical, and handling of invalid inputs must be robust to prevent
data corruption or crashes.
By setting up these classes and designing tests based on them, testers can ensure comprehensive
coverage of both typical use cases and edge cases, improving the software's reliability and user
satisfaction. g

t Cases fo

d Tes

selr ‘Expected Output
WN1 6 14 2000 6/15/2000

WN2 7 29 1996 7/30/1996

WN3 2 30 2002 Invalid input date
WN4 6 31 2000 Invalid input date
SN1 6 14 6/15/2000

SN2 6 14 6/15/1996

AL P il oa? §8 4 S T3 it - B Nt T s -

_ Equivalence Class Testing | 3.27 |

SN3 6 14 2002 6/15/2002
SN4 6 29 2000 6/30/2000
SN5 6 29 1996 6/30/1996
SN6 6 29 2002 6/30/2002
SN7 6 30 2000 Invalid input date
SN8 6 30 1996 Invalid input date
SN9 6 30 2002 Invalid input date
SN10 6 31 2000 Invalid input date
SN11 6 31 1996 Invalid input date
SN12 6 31 2002 Invalid input date
SN13 7 14 2000 7/15/2000
SN14 7 14 1996 7/15/1996
SN15 7 14 2002 7/15/2002
SN16 7 29 2000 7/30/2000
SN17 7 29 1996 7/30/1996
SN18 7 29 2002 7/31/2002
SN19 7 30 2000 7/31/2000
SN20 7 30 1996 7/31/1996
SN21 7 30 2002 8/1/2000
SN22 7 31 2000 8/1/2000
SN23 7 31 1996 8/1/1996
SN24 7 31 2002 8/1/2002
SN25 2 14 2000 2/15/2000
SN26 2 14 1996 2/15/1996
SN27 2 14 2002 2/15/002
SN28 2 29 2000 3/1/2000
SN29 2 29 1996 3/1/1996
SN30 2 29 2002 Invalid inpiit date
SN31 2 30 2000 Invalid input date
SN32 2 30 1996 Invalid input date
SN33 2 30 2002 Invalid input date
SN34 2 31 2000 Invalid input date
SN35 2 31 1996 Invalid input date
SN36 2 31 2002 Invalid input date

When transitioning from weak to strong normal testing, as well as from weak to strong robust testing,
the issue of redundancy often arises, similar to what is observed in boundary value testing. The move

| 3.28 | Software Testing

from weak to strong testing assumes independence, leading to a cross-product of equivalence classes.
This results in a larger number of test cases to cover all possible combinations of inputs.

1. Strong Normal Equivalence Class Test Cases (36 Test Cases):
3 month classes x 4 day classes x 3 year classes = 36 test cases
2. Strong Robust Equivalence Class Test Cases (150 Test Cases):
Including 2 invalid classes for each variable results in 150 test cases (too many to show here)

—_—— == ——

3.6 Equivalence Class Test Cases for the Commission Problem
The Commission Problem involves calculating the sales commission for a salesperson based on the
number of locks, stocks, and barrels sold. The inputs to this problem have natural partitions based
on the quantity ranges of the items sold and special sentinel values to control input iterations. The
problem complexity arises from combining these quantities into a commission calculation that varies
based on predefined sales thresholds.

Eguivalence Classes

1. Valid Input Classes:
L1={locks: 1 < locks < 70}
L.2= {locks = -1} {occurs if locks = -1 is used to control input iteration)
S1 ={stocks: 1 < stocks < 80}
B1= {barrels: 1 < barrels < 90}
2. Invalid Input Classes:
L3={locks: locks = 0 OR locks < -1}
L4= {locks: locks > 70}
S2 = {stocks: stocks < 1}
S3 = {stocks: stocks > 80}
B2= {barrels: barrels < 1} v
B3= {barrels: barrels > 90}
3. Output Range Classes Based on Sales Calculation:
S1: Sales < $1000.
$2: $1000 < Sales < $1800.
S$3: Sales > $1800.

Tes Case Generation

1. Weak Normal Equivalence Class Testing (WNECT) : Focuses on testing each class

mdependently witha typlcal or boundary value.

A A VA b it w5 801 &' i ok i v A

i

T —

Equivalence Class Testing 3.29

2. Strong Normal Equivalence Class Testing (SNECT): Tests all combinatiohs of vali(i clésses;

however, due to the nature of this function, the test cases may be similar to WN as it doesn't
inherently combine variables differently.

3. Weak Robust Equivalence Class Testing (WRECT) : Includes both valid and one type of
invalid input at a time to test system robustness.The variable “locks” is also used as a sentinel
to indicate no more telegrams. When a value of -1 is given for locks, ‘the values of totalLocks,
totalStocks, and totalBarrels are used to compute sales and then commission.

WR1 10 10 10 $100

WR2 -1 40 45 Program terminates

WR3 -2 40 45 Value of locks not in the range 1... 70
WR4 71 40 45 Value of locks not in the range 1 ... 70
WRS 35 -1 45 Value of locks not in the range 1... 80
WRé6 35 81 45 Value of locks not in the range 1 ... 80
WR7 35 40 -1 Value of locks not in the range 1 ... 90
WR8 35 40 91 Value of locks not in the range 1... 90

4. Strong Robust Equivalence Class Testing (SRCT) : Tests combinations of valid and invalid
inputs to simulate potential real-world €rTorsS.

Value of locks not in the range 1 ...
SR2 35 -1 45 Valué of locks not in the range 1...80
SR4 35 40 -2 Value of locks not in the range 1 ... 90
Value of locks not in the range 1... 70
SR5 -2 -1 45
Value of stocks not in the range 1... 80
Value of locks notin the range 1... 70
SR6 35 -1 -1
Value of barrels not in the range:1 ... 90
Value of locks not in the range 1 ... 70
SR7 -2 -1 -1 Value of stocks not in the range 1 ... 80
Value of barrels not in the range 1.. 90

Analysis

¢ Weak and Strong Normal Testing primarily ensures that all valid data combinations correctly
compute the commission based on sales rules without encountering invalid data.

* Robust Testing Variants (Weak and Strong) assess the system's response to invalid inputs,
essential for ensuring stability and error management in real-world scenarios.

| 3.30 l Software Testing

These tests collectively provide a thorough check of the commission problem by not only validating
correct computations but also ensuring the system gracefully handles invalid or unusual inputs. This
comprehensive approach helps ensure that all potential edge cases and data errors are managed
correctly, critical for maintaining system reliability and user trust.

3.7 Guidelines and Observations About Equivalence Class Testing
The guidelines and observations about equivalence class testing are:

1. Comprehensive Testing Levels: Weak equivalence class testing (normal or robust) may not
cover all scenarios as effectively as strong equivalence class testing. For example, strong testing
ensures more thorough coverage of input combinations.

2. Strongly Typed Languages: In strongly typed languages where invalid values lead to runtime
errors, using robust forms of equivalence class testing may not be necessary. For instance, if
the language automatically detects invalid inputs, robust testing may not provide additional
benefits.

3. Prioritizing Error Conditions: When error conditions are critical, robust forms of equivalence
class testing are suitable. For instance, if detecting and handling errors is a top priority, robust
testing can help identify and address such scenarios.

4. Input Data Characteristics: Equivalence class testing is ideal for scenarios where input datais
defined by intervals or discrete values. This is particularly relevant when system malfunctions
can occur due to out-of-range input values. For example, testing a system that crashes when
receiving negative values. e

5. Combining Approaches: Strengthen equivalence class testing by combining it with boundary
value testing. By integrating boundary values into equivalence classes, testing coverage can be
enhanced. For instance, testing a function that calculates discounts based on different price
ranges.

6. Complex Functions: Equivalence class testing is recommended for complex program
functions. The complexity of a function can help identify relevant equivalence classes. For
example, testing a function like NextDate that involves multiple conditions based on input
dates. ’

7. Independence of Variables: Strong equivalence class testing assumes variable independence,
potentially leading to redundant test cases. Dependencies between variables can result in
error scenarios. For instance, testing a function that calculates loan interest rates based on
both principal amount and duration.

8. Discovering Equivalence Relations: It may take multiple attempts to identify the correct
equivalence relation for testing. Sometimes, the relation is obvious, while in other cases, it
reAquires careful consideration of implementation details. For example, testing a function that
sorts numbers based on different criteria. - 3

9. Testing Levels and Progression: Understanding the difference between strong and weak
equivalence class testing helps distinguish between progression (moving forward) and
regression (ensuring previous functionality still works) testing. For instance, testing new
features with strong equivalence class testing while ensuring existing features work with weak
equivalence class testing,

P T Pp— -

B & ki ettt stadeb

Equivalence Class Testing 3.31

ikl O o o £ Pl S
eded to cover various scenarios, optimizing testing

efforts and resources.

2. Coverage: By focusing on representative values within equivalence classes, ECT ensures adequate
coverage of different input conditions.

3. ErrorDetection: ECT helps identify errors, especially at boundaries and with invalid inputs, improving
the overall quality of the software. .

4. Simplicity: ECT simplifies the testing process by categorizing inputs into manageable equivalence
classes, making it easier to design test cases.

5. Time-Saving: ECT saves time by prioritizing testing on critical input ranges and values, leading to
quicker identification of defects.

independence between variables, which may not
always hold true in complex systems, leading to potential oversight of interdependencies.

2. BoundaryIssues: ECT may overlook specific boundary conditions thatfall outside defined equivalence
classes, potentially missing critical test scenarios.

3. Limited Scope: ECT may not cover all possible combinations of inputs, especially in systems with
intricate interactions between variables. .

4. Subjectivity: Defining equivalence classes can be subjective, and different testers may categorize
inputs differently, leading to variations in test coverage. 3

5. Overlooking Edge Cases: ECT may not always capture extreme or outlier values that could trigger
unique system bhehaviors, potentially leaving vulnerabilities untested.- -

3.9 Review Questions

1. What do you mean by Equivalence Classes ?

2. What is Equivalence Class Testing (ECT)? Give an example.

3. Mention the Forms of Equivalence Class Testing.

4. What is Weak Normal Equivalence Class Testing (WNECT) ?

5. Mention any two Benefits of Weak Normal Equivalence Class Testing (WNECT).
6. What is Strong Normal Equi\-ralence Class Testing (SNECT) ?

7. Mention any two Benefits of Strong Normal Equivalence Class Testing (WNECT).
8. What is Weak Robust Equivalence Class Testing (WRECT) ?

9. Mention any two Benefits of Weak Robust Equivalence Class Testing (WRECT).

3.32

Software Testing

10.
11.

What is Strong Robust Equivalence Class Testing (SRECT) ?
Mention any two Benefits of Strong Robust Equivalence Class Testing (SRECT).

Seclion-‘B

. What is Equivalence Class Testing (ECT)? Explain its Importance.
. What is Weak Normal Equivalence Class Testing (WNECT) ? Write the Key Characteristics of

WNECT.

. Write the Benefits and Limitations of Weak Normal Equivalence Class Testing (WNECT). 4
. What is Strong Normal Equivalence Class Testing (SNECT) ? Write the Key Characteristics of

SNECT.

5. Write the Benefits and Limitations of Strong Normal Equivalence Class Testing (SNECT).
6. What is Weak Robust Equivalence Class Testing (WRECT) ? Write the Key Characteristics of

WRECT.

7. Write the Benefits and Limitations of Weak Robust Equivalence Class Testing (WRECT).
8. What is Strong Robust Equivalence Class Testing (SRECT) ? Write the Key Characteristics of

SRECT.

. Differentiate Between Weak Normal Vs Strong Normal Equivalence Class Testing.
. Differentiate Between Weak Robust Vs Strong Robust Equivalence Class Testing.
. Explain Equivalence Class Test Cases for the Triangle Problem. h

. Explain Equivalence Class Test Cases for the NextDate Function.

. Explain Equivalence Class Test Cases for the Commission Problem.

. Write the Advantages and Disadvantages of Equivalence Class Testing.

. Explain the Forms or Variations of Equivalence Class Testing with éxamples.
. Explain Weak Normal Equivalence Class Testing (WNECT). Write its Characteristics, Benefits

and Limitations.

. Explain Strong Normal Equivalence Class Testing (SNECT). Write its Characteristics, Benefits

and Limitations.

. Explain Weak Robust Equivalence Class Testing (WRECT). Write its Characteristics, Benefits

and Limitations.

. Explain Strong Robust Equivalence Class Testing (SRECT). Write its Characteristics, Benefits

and Limitations.

. Explain the Guidelines and Observations About Equivalence Class Testing,

®
D

2o 4% o% o
EXT X XXX

DECISION TABLE- BASED
TESTING

Contents

Introduction
Decision Tables
< Characteristics of Decision Tables
< Importance (or) Benefits of Decision Tables
= Decision Table Design Format (or) Components of Decision Table
Decision Table Techniques
Test Cases for the Triangle Problem
Test Cases for the Next Date Function
Test Cases for the Commission Problem
Guidelines and Observations of Decision Table Testing
Review Questions

42 | Software Tesling

I —
4.1 Introduction

Functional testing methods based on decision tables are considered highly rigorous due to their
robust logical foundation. Decision tables provide a structured way fo represent complex logic
and conditions in a clear and organized manner. By mapping inputs to outputs based on different
combinations of conditionsgdecision tables help testers systematically design test cases that cover
various scenarios. This method ensures thorough test coverage and helps identify potential defects
or inconsistencies in the software application.) 3 :

———e———e———————

4.2 Decision Tables _
Decision tables are a structured way to represent complex logical relationships and decision-making
processes. They are particularly useful in scenarios where various actions are based on different

combinations of conditions. They have been utilized since the early 1960s and are particularly useful
for describing scenarios where multiple actions are taken based on different sets of conditions.

By using decision tables, testers and developers can effectively analyze complex decision-making
processes, design test cases based on different scenarios, and verify the behavior of a system under
various conditions. The tabular format of decision tables simplifies the understanding of logic and
facilitates the creation of test cases that cover all possible paths through the system based on different
input conditions.

PR
A decision table is a systematic and structu
represent complex logical relationships between conditions and actions. It provides a visual and tabular
representation of different combinations of input conditions and corresponding outcomes or actions. Decision
tables help in designing test cases, analyzing decision-making logic, and ensuring comprehensive coverage of

various scenarios within a software system.

e
Mbalisbechion s i
Decision table based testing is a systematic testingte
cases for software systems. This approach involves creating decision tables that cépture various combinations
of input conditions and corresponding actions or outcomes. Testers analyze these decision tables to derive

test cases that cover different scenarios based on the defined conditions.

—— — ——— ——
4.2.1 Characteristics of Decision Tables
Decision tables are a powerful tool for organizing and managing complex decision-making processes
in software development and other fields that require logical analysis. Some key characteristics of
decision tables are:
1. Conditions: Decision tables include conditions that represent the input variables or factors
that need to be evaluated. These conditions define the criteria that influence the decision-
making process within the system.

© e e i e Sl S i A T

_ Decision chlo; Based Testing | 43 '
J!

2. Actions : Actions in decision tables specify the outcomes or responses that result from the
evaluation of specific conditions. Each combination of conditions leads to a corresponding
action or set of actiens.

3. Rules : Rules in decision tables represent individual rows that capture a unique combination
of conditions and the associated actions. Each rule defines a specific scenario or decision logic
within the system.

4, Structured Format : Decision tables are organized into distinct sections, such as the stub
portion, entry portion, condition portion, and action portion. This structured format provides
a clear framework for organizing and analyzing the decision-making logic.

5. Comprehensive Coverage : Déecision tables aim to ensure comprehensive coverage of various
scenarios by considering all possible combinations of conditions and actions. This helps in

identifying potential gaps in the decision logic and designing test cases that cover all possible
paths through the system.

6. Visual Representation; Decision tables offer a visual representation of complex decision logic,

making it easier for testers and developers to understand the relationships between conditions

and actions. The tabular format simplifies the analysis of decision-making processes.
7. Scalability : Decision tables can scale to accommodate a large number of conditions and
actions, making them suitable for analyzing complex systems with multiple decision points.
They can handle increasing complexity while maintaining clarity and organization.
Flexibility : Decision tables provide flexibility in modifying and updating the decision logic by
adjusting conditions, actions, or rules as needed. This adaptability allows for easy maintenance
and refinement of the decision-making process over time. -

®

4.2.2 Importance (or) Benefits of Decision Tables

Decision tables play a crucial role in software testing by enhancing clarity, improving test coverage,
identifying dependencies, validating logic, mitigating risks, facilitating communication, and ensuring
scalability and flexibility in decision-making processes. Their importance lies in their ability to
streamline testing efforts, enhance understanding, and promote effective decision-making within
software systems.

1. Clarity and Understanding: Decision tables provide a clear and structured representation
of complex decision logic, making it easier for stakeholders, including testers, dévelopers, and
business analysts, to understand the relationships between conditions and actions within a
system. '

2. Comprehensive Coverage: By systematically capturingall possible combinations of conditions
and corresponding actions, decision tables help ensure comprehensive test coverage. This
reduces the risk of overlooking critical scenarios and improves the overall quality of testing.

3. Effective Test Case Design: Decision tables serve as a valuable tool for designing test cases
that cover various scenarios based on different combinations of conditioxi_s. Testers can use
decision tables to create targeted test cases that validate the behavior of the system under
specific conditions.

| 4.4 | Software Testing

4. Identification of Dependencies: Decision tables highlight dependencies between input
conditions and output actions, enabling testers to identify complex relationships and potential
dependencies that may impact the system's behavior. This insight is crucial for thorough
testing.

5. Logic Validation: Decision tables facilitate the validation of decision-making logic within a
system. By analyzing the rules and conditions in the table, testers can verify that the system
behaves as expected under different conditions and that the logic is correctly implemented.

6. Risk Mitigation: Using decision tables helps mitigate the risk of overlooking critical decision
paths or scenarios during testing. By systematically documenting all possible conditions and
actions, testers can address potential risks and ensure that the system functions correctly in
diverse scenarios.

7. Efficient Communication: Decision tables provide a standardized format for communicating
decision logic across teams and stakeholders. They enable effective collaboration by presenting
complex information in a structured and easily understandable manner.

8. Scalability and Flexibility: Decision tables can scale to accommodate increasing complexity
in decision-making processes. They offer flexibility in modifying conditions, actions, and rules,
allowing for easy adaptation to changing requirements and evolving system behavior.

f=——— = — =

4.2.3 Decision Table Design Format (or) Components of Decision Table
Decision tables follow a structured format that includes specific components to represent the
conditions, actions, and rules governing the decision-making process within a system. The design
format typically consists of the following sections: ’

1. Condition Stub:

o Purpose: Listsall the conditions relevant to the decision process. Conditions are typically
questions or statements that can be answered with Yes (Y), No (N), or Don't Care (-).
¢ Location: Left side of the table.

2. Condition Entries:

e Purpose: Contains entries (Y, N, -) corresponding to each condition for every rule defined
in the decision table. ’

¢ 'Don't Care' Entries: Sometimes a condition in a particular rule might not affect the
outcome, indicated by a '-' entry. This means that the action does not depend on this
condition's state.

o Location: Right of the condition stub, divided by a vertical line.

3. Action Stub:

e Purpose : Lists the possible actions that can be taken based on the evaluation of the
conditions.
¢ Location: Below the condition stub.
4. Action Entries:
¢ Purpose: Indicates which actions are to be taken for each rule by marking with an X or
leaving blank based on the condition entries above.
¢ Location: Below the condition entries, divided by a horizontal line.

?

|

D Tt

P

o b e e bt e i et n

Decision Table- Based Testing | 4.5 |

5. Rules:

. Purp:?se: Rgpresents a unigue combination of condition entries and specifies the
resulting actions. Each rule is a feasible scenario that might occur, and the table explores
the outcomes,]

* Location: Each column in the entry portion of the table.

i Decistion Table Design Format

Let us understand the condition stub, the condition entries, the action stub, and the action entries from the
below table. A column in the entry portion is a rule. Rules indicate which actions, if any, are taken for the
circumstances indicated in the condition portion of the rule, In the decision table in Table 4.1, when conditions
gl, ¢2, and 3 are all true, actions a1 and a2 occur. When c1 and c2 are both trie and ¢3 is false, then actions
al and a3 occur. The entry for ¢3 in the rule where c1 is true and c2 is false is called a “don’t care” entry. The
don’t care entry has two major interpretations: the condition is irrelevant, or the condition does not apply.
Sometimes people will enter the “n/a” symbol for this latter interpretation.

i
HK3 ==
s}

a3 X X
a4 X X
When we have binary conditions (true/false, yes/no, 0/1), the condition portion of a decision table is a
truth table (from propositional logic) that has been rotated 90°. This structure guarantees that we consider
every possible combination of condition values. When we use decision tables for test case identification, this
completeness property of a decision table guarantees a form of complete testing.

Decision tables in which all the conditions are binary are called Limited Entry Decision Tables (LETDs). If

conditions are allowed to have several values, the resulting tables are called Extended Entry Decision Tables
(EEDTs).

Decistion Table

Imagine a software system that manages subscriptions for an online platform. The system must decide
whether to activate a subscription based on user age verification and payment status. ¥

Sample Decision Table:
2 7% Condition Stu ERule2 2 ERile3]
User is over 18 Y e N N
Payment received Ye N Y N
Action Stub
Activate Subscription X
Send Reminder X
Reject Application X X

y
[——l . Decision Table= Based Testing | 47 |
4.6 | Software Testing _ - :

o Rule 3: Age is inadequate regardless of email validity (N, Y).
® Rule 4: Bothe age and email are not met (N, N).

4. Action Entries: ‘Located directly below the Action Stub, showing actions triggered based on the
conditions listed directly above in the condition entries.

Detailed Explanation:
1. Rule1 (Y, Y):
o Conditions: User is over 18 (Y) and payment received (Y).
o Action: Activate Subscription.
o Scenario: The user meets all criteria for subscription activation.

2. Rule2 (Y,N):
e Conditions: User is over 18 (Y) but payment not received (N).

o Action: Send Reminder.
o Scenario: The user is eligible but needs to complete payment; hence a reminder is sent.

¢ Rule 1 results in registering the user since both conditions are satisfactory.
¢ Rule 2, Rule 3 and Rule 3 result in an error message being sent due to one or both conditions
failing.
5. Rules:

e Each column under the entries represents a rule, a specific scenario defined by a unique
combination of condition states.

el = e g gy

3. Rule3 [N, Y): e A rule dictates which actions occur for a given set of conditions.
o Conditions: User is not over 18 (N) but payment received (Y). ————
o Action: Reject Application.) _) 4.3 Decision Table Techniques
o i r does not meet the age requu'emen , e L. R .
¢ Scenario: Even thUEh the payment was received, the use Decision tables are a powerful tool for designing test cases especially when handling complex logical
leading to rejection. conditions and their associated actions.Let us discuss the main techniques used in decision tables.
4. Rule4 (N, N): ——

s and Redundancy :

o Conditions: User is not over 18 (N) and payment not received (N). {8 Completenes
e Action: Reject Application. J Completeness in decision tables means that the table must account for every possible combination of
r condition is met; the application is outright rejected. input conditions. Redundancy refers to the presence of duplicate rules within the decision table that

7 i lead to the same actions based on the same or similar conditions.

o Scenario: Neithe

Decistion Table

Benefits of Ensuring Completeness and Minimizing Redundancy :

et 1ol

Consider an user registration based on valid age and valid email:

_ 1. Ensures Comprehensive Coverage: Completeness in decision tables ensures that every
Sample Decision Table: possible input combination is considered, which significantly reduces the risk of defects
| slipping through undetected. This thorough coverage is essential for critical systems where
Hi |
Age >= 18 | failures can have severe implications.
Email Valid Y N Y Ll 2. Identifies All Possible Behaviors: By accounting for all potential conditions, completeness
Action Stub ? ; helps testers understand every possible behavior of the system. This understanding is crucial
Register User X | for verifying that the system operates correctly across all scenarios, which is especially
Send Error Message X - X X important in complex systems with many interdependent components.
Explanaﬁo;“_ 3. Reduces the Risk of Unexpected Issues: Complete decision tables help in-detecting and
1. Condition Stub: Lists conditions like ‘Age >= 18" and "Email Valid'. These are the factors that affect addressing edge cases and rare scenarios that might not be immediately apparent. This
" decision-makingin the software logic. Each condition mustbe evaluated to determine which actions to proactive identification helps prevent unexpected issues post-deployment, thereby enhancing
take. » the reliability and stability of the system.
2. Action Stub: Lists possible actions such as ‘Register User' or 'Send Error Message'. Actions are _ 4. Streamlines Testing and Maintenance: Minimizing redundancy in decision tables makes
dependent on the outcomes of the evaluated cenditions. _ . the testing process more streamlined and resource-efficient. It eliminates unnecessary testing
3. Condition Entries: Situated to the right of the Condition Stub, this section specifies the state (Yes ot : efforts, saving time and reducing the potential for confusion or error that can arise from
No - Y/N) of each condition for each rule. : handling duplicate test cases.
e Rule 1: Both age and email conditions are met vy i
e Rule 2: Age is adequate but email is invalid (Y, N). J

Let's consider a decision table for an online booking system where users can book rooms depending on their
membership status and room availability.
1. Conditions:
Membership Status: Valid or Invalid
Room Availability: Available or Not Available
2. Actions:
Book Room: Proceed with the booking.
Show Error: Display an error message regarding availability or membership status.
Decision Table:

Membership Status (Valid) Y Y N N
Room Availability (Available) Y N Y N
Action Stub
Book Room X
Show Error X X X
Explanation of the Table: .
® Rule 1: When a user has a valid membership and the room is available, the action is to book the room.
This rule is necessary and unique.]
® Rule 2 : For a valid member when the room is not available, the system shows an error about room
availability. <
® Rule 3 : If the membership is invalid but the room is available, it displays an error about membership
status.
* Rule 4 : Shows an error when both membership is invalid and the room is not available. This covers the
scenario where multiple issues prevent booking.

By ensuring every combination of conditions is addressed (completeness) and avoiding duplication of the
same outputs for the same inputs (redundancy), the decision table helps in thorough testing of the booking
system. This method ensures that the software's reaction to every possible user interaction is tested and
verified, which enhances reliability and user satisfaction.

the outcome for specific rules. This approach simplifies the table by focusing only on the conditions
that influence the decision, reducing the complexity and size of the table.

Advantages of Using Don't Care Entries:
1. Simplification: Reduces the number of rules in the decision table by not considering irrelevant
conditions, making the table easier to read and understand.
2. Focus on Relevant Conditions: Allows stakeholders to focus only on the conditions that
impact outcomes, which can speed up decision-making processes.
3. Efficiency: Minimizes the effort needed to test scenarios that are unaffected by certain
conditions, enhancing the efficiency of the testing process.

oy

Decision Table- Based Testing 4.9

Consider a monitoring system that checks for errors and system load. The system needs to decide whether to
send an alert or continue monitoring based on these factors.

1. Conditions:

System Load is High: This condition can impact how the system prioritizes resources but might
not directly influence whether an alert should be sent or not.

Error Reported: This condition directly determines whether an alert needs to be sent,
2. Actions:

Send Alert: Triggered when an error is reported, regardless of the system load.

Continue Monitoring: The default action when no errors are reported.

Decision Table:
System Load High Don't Care | Don't Care
Error Reported Yes NO
Action Stub
Send Alert X _
Send Alert X
Explanation of the Table:

* Rule 1: The action to send an alert is triggered if an error is reported, irrespective of whether the
system load is high or not. Here, the 'Don’t care' entry for the system load indicates that the presence
or absence of high system load does not impact the decision to send an alert.

¢ Rule 2: Continue monitoring is the action when no error is reported. Again, the system load does not
influence this action, hence the 'Don't care' designation.

In this example, using ‘Don't care' entries effectively ignores the system load when deciding to send alerts
or continue monitoring, as the action depends solely on whether an ertor is reported. This technique is
particularly useful in systems where some inputs are significantly more critical than others in determining
the output.

Impossible rules in decision tables happen when some conditions just don't make sensegogether, so
the actions linked to them wouldn't apply. By spotting and marking these impossible situations, we
prevent confusion and make sure the decision table shows the system's rules correctly.
Advantages of Identifying Impossible Rules: -
1. Prevent Logical Errors: Helps prevent situations where the system might attempt to execute
actions under conditions that logically cannot happen.
2. Clarity in Test Case Design: Clear identification of impossible scenarios helps in designing
more effective test cases and avoids wasting resources on testing unrealistic conditions.
*3. Enhanced Understanding: Provides all stakeholders with a better understanding of the
system's constraints and logical flows, facilitating better system design and troubleshooting.

A payment processing system needs to decide whether to complete or decline a transaction based on th—e’
validity of a credit card and whether the payment has been processed.
1. Conditions:
Credit Card Valid: Determines if the credit card being used is valid.
Payment Processed: Indicates whether the payment transaction has successfully been
processed.
2. Actions:
Complete Transaction: Execute this action if the transaction can be successfully completed.
Decline Transaction: Execute this action if the transaction must be declined due to various

issues.
Decision Table:
il Rale L S AR | RUES
Credit Card Valid Yes No Yes
Payment Processed Yes Yes No
Action Stub
Complete Transaction X
Decline Transaction Impossible (X} X
Explanation of the Table:

¢ Rule 1: This rule repre;sents a scenario where both the credit card is valid and the payment has been
processed. The logical action is to complete the transaction, so the "Completé Transaction” action is
marked.

o Rule 2: Here, the credit card is not valid, but the condition states that the payment has been processed.
This is an impossible scenario because a payment cannot be processed using an invalid credit card.
Thus, this rule is marked as impossible, and the intended action (decline the transaction) is indicated
but should not be executed under this rule because the scenario cannot occur.

e Rule 3: The credit card is valid, but the payment has not been processed successfully. The logical action
is to decline the transaction.

Rule Count Adjustment is a technique used in decision tables to ensure that the rule counts accurately
reflect the number of unique and meaningful test scenarios, especially when "don't care” entries are
used. "Don't care” entries indicate that the outcome does not depend on the state of a particular
condition, allowing for multiple possible states without affecting the rule's actions.

Advantages of Rule Count Adjustment:

1. Accuracy in Testing: Adjusting the rule count ensures that the number of test cases reflects
all possible scenarios that might need to be tested, enhancing the thoroughness and reliability
of testing.

2. Effective Resource Allocation: By understanding the actual number of scenarios each rule
represents, resources can be better allocated to test all relevant cases effectively.

3. Clarity in Specification: This adjustment clarifies how "don't care" entries impact the overall
decision-making process, helping to prevent misunderstandings and ensuring that all potential
scenarios are considered.

E‘mﬂmﬂm— -

Decision Table- Based Testing 4.11

A system controls access based on whether a login is required and whether a form is filled out correctly.
1. Conditions:
Login Required: Specifies whether the user needs to log in.
Form Filled: Indicates whether the user has filled out a form correctly.
2. Actions:
Allow Access: The user is alfowed access to the system.
Deny Access: The user is denied access.

Decision Table:
Login Required Don’t care | Yes
Form Filled Yes No
Action Stub
Allow Access X
Deny Access X
Explanation of the Table: -

* Rule 1 The condition for "Login Required" is marked as "don't care", which means the action "Allow
Access" can occur regardless of whether login is required or not, as long as the form is filled correctly
("Form Filled" = Yes).

® Rule 2: Access is denied (“Deny Access™}:when login is required and the form is not filled correctly.

Rule Count Adjustment:

° Without"Ad]'l.lstment: Normally; eacl rule in a decision table corresponds to a specific scenario. Here,
because L0g1f1 l?equired“ in.Rule 1 isa "don't care”, this single rule actually represents two scenarios:
onglrvhere login is required:and the form is filled; and another wherelogin is not required and the form
is filled. V

¢ With Adjustment: For Rule 1, each "den't care” state effectively doubles. the caunt of scenaries it
represents. Thus, Rule 1 actually coverstwo scenarios:

Login Required = Yes, Form:Filled = Yes
Login Required = No, Form: Filled:= Yes

The Rule Count Adjustment technique is crucial for ensuring that decision tables not only represent but also
.accuT'ate’ly count all unique conditions covered: by rules, particularly when "don't care! entries expand the
implications of a rule beyond:a single scenario.

Using Equivaler

1ce Cla

Using Equivalence Classes is a technique in: decision table design that invelves defining conditions
based on distinct groups or classes. of irputs. that are expected to. behave similarly. This: method
helps simplify the testing process by reducing the number of individual cases that need:to.be tested
assuming that testing one sample from each class is representative of the entire class: '

| 4.12 I Software Testing _

Benefits of Using Equivalence Classes: ‘
1. Simplification of Test Cases: By treating all instances within an equwalenc'e class the. same
. way, fewer tests need to be designed and executed, focusing resources on varied scenarios.
2. Comprehensive Coverage: Ensures that each unique combination of _ input dassesh;s
considered, providing thorough coverage without the redundancy of testing each possible
input value. ‘ . I
3. Efficiency in Test Execution: Reduces the number of tests required while _mamtammg an
- effective assessment of system behavior across different user categories and ticket types.

A ticketing system issues tickets based on the age group of the customer and the type of ticket they choose
(Standard or Premium).

1. Conditions: . .
Age Group: Defines whether the customer is an Adult, Child, or Senior.

Ticket Type: Specifies whether the ticket is Standard or Premium.
2. Actions:

Issue Ticket: A ticket is issued to the customer. '
Offer Discount: A discount s offered, typically associated with specific conditions like age group

or ticket type.
Decision Table: — "
Age Group Child Senior Adu‘lt
Ticket Type Standard Standard Premium Premium
Action Stub
Issue Ticket X X X X
Offer Discount : X
Explanation of the Table:

e Rule 1: Adults buying standard tickets are simply issued a ticket.

e Rule 2: Children with standard tickets receive the same action as adults with standard tickets due to
the simplicity of the transaction. ' .

e Rule 3: Seniors purchasing premium tickets get both an issued ticket and a discount, acknowledging
the combination of a higher-priced ticket and a potentially discounted group. .

e Rule 4: Adults purchasing premium tickets are issued a ticket but do not recenl/e :
discount, distinguishing this scenario from seniors due to the absgnce of age-re atg
e i i be logically divided into

This technique is particularly useful in systems where the input space is large and can be t;g}c t}}rl s
categories or classes that are expected to elicit the same response from the system. .By applying - e;;}; i tes;
decision tables remain manageable while still offering a structured and systematic way to captur

complex business rules and their outcomes.

Decision Table- Based Testing 4.13

6. Mutually Exclusive Conditions:

Design decision tables need to clearly separate conditions that cannot occur simultaneously to ensure _
that each scenario is distinct and unambiguous. Mutually exclusive conditions in decision tables help
simplify the decision-making process by ensuring that conditions in a given rule cannot overtap. This
clarity prevents the creation of impossible or contradictory rules and helps maintain the integrity of
logical evaluations.

Benefits of Mutually Exclusive Conditions

1. Simplification of Decision Logic: Mutually exclusive conditions ensure that each condition
or scenario is distinct and does not overlap with others. This simplification helps to reduce
complexity in understanding and analyzing the decision logic, making it more straightforward
to implement and test.

2. Prevention of Rule Overlap: Since mutually exclusive conditions do not overlap, thej' prevent
multiple rules from being triggered simultaneously for a single set of inputs. This clear
delineation helps avoid conflicts or contradictions in decision outcomes, ensuring consistent
and predictable actions.

3. Efficient Testing: Testing becomes more manageable and less time-consuming because
each condition set leads to a unique path or outcome. This efficiency aids in targeted testing
strategies and reduces the potential for errors during test case execution, as the conditions
define clear boundaries for each test scenario.

4. Enhanced Clarity and Communication: Decision tables with mutually exclusive conditions
are easier to read and understand. They provide a clear visual representation of how different
scenarios are handled, which can be beneficial for communication among team members and
stakeholders, ensuring everyone understands the logic and expected behaviors.

Let us consider a simple banking transactions.
1. Conditions:
Account Type: Checking, Savings (Cannot be both)
Transaction Type: Deposit, Withdrawal (Cannot be both)
2. Actions:
Process Transaction
Reject Transaction
Decision Table:
Condition Stub Rule 1 Rule 2 Rule 3 Rule 4
Account Type - Checking Yes No Yes No
Account Type - Savings No Yes No Yes
Transaction Type - Deposit Yes Yes No No
Transaction Type - Withdrawal No No Yes Yes

Decisi 1 Rl Tockng]
l 4.14 I Software Testing - ecision Table< Based Testing . 4.15

= 4.' ision Tz}‘lzlo:
Action Stub
Process Transaction X X X X J 2 3 4 5 6 7 8 9 10 | 11
Reject Transaction cl:a<b+c? T T T T T T T T T T
Explanation of the Table: c2:b<a+c> = F T T T T T T T T T
o Rule 1: Transaction is a deposit in a checking account. Process the transaction because conditions are c3:c<a+b? = - F T T T T T T T T
valid and mutually exclusive. cd:a=b? - - - T T T T F F F F
o Rule 2: Transaction is a deposit in a savings account. Process the transaction as it meets the mutually c5:a=¢? . - . T T F F T T F F
exclusive conditions. c6:b=¢? - - - T T T T T T T T
e Rule 3: Transaction is a withdrawal from a checking account. Again, process it due to valid and al: Nota triangle X X X
exclusive conditions. a2: Scalene X
o Rule 4: Transaction is a withdrawal from a savings account. Process the transaction as all conditions a3: Isoceles X X X
align without conflict. a4: Equilateral X
This table ensures that each combination of account type and transaction type is uniquely handled, avoiding Tolimposshle = 3 =
overlaps such as attempting to process a deposit and withdrawal simultaneously. This clarity enhances —
understanding and reduces errors in the system's operational logic. ‘_:-\JmI ysis:

= - e Columns (Rules): Each column after the conditions represents a rule which is a specific
4.4 Test Cases for the Triangle Problem . scenario that could occur given the set of conditions. The way the table is set up guarantees

The decision table for the triangle problem can be constructed by breaking down the conditions that 'f—‘VGI'Y POSSﬂ?le lougl’::al scenario is considered. N
into more specific tests that consider all inequalities and equalities among the triangle's sides. The o Don't Care Entries ("-"): These are used where the outcome of a condition does not affect the

decision table method ensures that all logical scenarios are covered. outcome of the test because other conditions already determine the result. For example,-if cl
- » is false (F), it doesn't matter what the values of c2, c3, ¢4, c5, or c6 are, the triangle cannot be
formed.

Conditions:

o Rule 1 (F, -, -, -, -, -): Indicates that if c1 is false, the sides cannot form a triangle, triggering

e ¢1:a<b +c? Checks if side a is less than the sum of sides b and ¢, which is a requirement for !
. action al: Not a triangle. e

forming a triangle.

2:b < a + ¢? Similar check for side b « Rule 10 (T, T, T, F, F, T): This rule represents a scenario where all inequalities are satisfied (T
c2: ? !

for ¢1, c2, c3),buta = b is false (F for c4), a = cis false (F for c5), and b = cis true (T for c6). This
; means the triangle is isosceles (a3).

« c4:a=b? Checksif sidesaand b are equal - « Rule 12 (T, T, T, T, T, T): All conditions are true, indicating an equilateral triangle (a4).

o ¢5:a=c? Checks if sides a and ¢ are equal. :

¢3: ¢ < a + b? Similar check for side c.

i ¢ Rules with "Impossible” (a5): These rules indicate scenarios where the sét conditions
« c6:b = c? Checks if sides b and c are equal. : logically contradict the properties of a triangle, such as having one side equal to the sum of the
others, which would not form a triangle.

‘tions:

« al: Notatriangle - Action if the sides do not satisfy the triangle inequality theorem.

[]
{
4
i
|
i

Test Cases Derived from

P = -

« a2: Scalene - Action if no sides are equal and the sides form a triangle. S CaselD -
« a3: [sosceles - Action if exactly two sides are equal and the sides form a triangle. Rule 1: DT1 4 1 2
o a4: Equilateral - Action if all three sides are equal and the sides form a triangle. (‘ Rule 2: DT2 1 4 2 Nor a triangle
« a5: Impossible - Marks configurations that are logically contradictory or impossible. Rule 3: DT3 1 2 4 NiraEaieE
5 5 5 Equilateral [

il Rule 4: DT4
|

4.16 | Software Testing

Rule 5: DTS ? ? ? Impossible
Rule 6: DT6 ? ? ? Impossible
Rule 7: DT7 2 2 3 Isosceles
Rule 8: DTS ? ? ? Impossible
Rule 9: DT9 2 3 2 [sosceles
Rule 10: DT10 3 2 2 Isosceles
Rule 11: DT11 3 4 5 Scalene

—————————

4.5 Test Cases for the Next Date Function
The NextDate function is designed to calculate the date of the following day given a specific input date
consisting of day, month, and year. This function addresses various complexities associated with the
Gregorian calendar, including different month lengths, leap years, and transitions from one month or
year to the next.

(rmumcm.&

o Month Specifies the current month. This is crucial as months have varying numbers of days.
« Day: Specifies the current day within the month.

¢ Year: Determines if the year is aleap year or anon-leap year based on the rules of the Gregorian
calendar.

\ltmm

¢ Next Day: The day number for the following day.
¢ Next Month: The month number for the following day.
» Next Year: The year for the followmg day.

Ueunmn 'l"lhll: tul \ IIMI bcren.nms

Condition | L le1 | Rulez | Rule3 | Rule4 | Rule5 | Rule6 | Rule7 | Rule8
\ Rule
31-Day
30-Day Months
Month Jan-Dec (not | Jan-Nov | Dec(last | Feb(28, | Feb (28, | Feb (29, Months (Jan, Mar
lastday) | (lastday) day) non-leap) | leap) leap) | (Apr, Jun, May, uly,
Sep, Nov) Aug, 0ct)
Day NotLast | | ctDay | LastDay 28 28 29 30 31
Day
Non- Leap Leap
i An An
e Any Any Any Leap Yea Yea Year J g
Actions
NextDay | ‘1% 01 o1 01 29 01 01 01
current day

Decision Table- Based Testing 4.17

4

Next +1to +1to +1to
Same current Jan Mar Same Mar current | current
Month
month month month
+1to I
Next Year Same Same | currentyear| Same Same Same Same Same
(nextyear)

\|nl\-|-

* Rule 1: For any regular day that is not the last of the month, simply increment the day (e.g,
March 14th to March 15th).

* Rule 2: For the last day of any month except December, the date changes to the first day of the
next month (e.g, January 31st to February 1st).

* Rule 3: For December 31st, the date changes to January 1st of the next year (e.g, December
31st, 2021 to January 1st, 2022).

* Rule 4: For February 28th in a non-leap year, the next date is March 1st (e.g,, February 28th,
2021 to March 1st, 2021).

« Rule 5: For February 28th in a leap year, the next date is February 29th (e.g., February 28th,
2020 to February 29th, 2020).

* Rule 6: For February 29th in a leap year; the next date is March 1st (e.g., February 29th, 2020
to March 1st, 2020).

* Rule 7: For the last day of months with 30 days, the date changes to the first day of the next
month (e.g., April 30th to May 1st).

* Rule 8: For the last day of months with 31 days, the date changes to the first of the next month
except for December (e.g, July 31st to August 1st).

This decision table effectively maps out the transitions between different dates, ensuring that each
scenario is specifically addressed, thereby facilitating comprehensive testing and validation of the
NextDate funcuon

bt e

Rule 1: DT1 15 6 16/6/2022
Rule 2: DT2 30 4 1/5/2022
Rule 3: DT3 31 12 1/1/2023
Rule 4: DT4 28 2 1/3/2023
Rule 5: DT5 28 2 29/2/2024
Rule 6: DT6 29 2 1/3/2024
Rule 7: DT7 30 4 1/5/2024
Rule 8: DTS 31 5 1/6/2024

I 4.18 l Software Testing

4.6 Test Cases for the Commission Problem

The Commission problem revolves around calculating the commission for a salesperson based on the
quantity of locks, stocks, and barrels sold within a month. Each product has a fixed selling price and

a commission rate that varies based on the total sales amount.

atement
The Commission Problem involves a scenario where a salesperson sells rifle components (locks,
stocks, and barrels) manufactured by a gunsmith in Missouri. The problem statement includes the
following key elements:

Product Costs:

o Locks cost $45 each.

« Stocks cost $30 each.

« Barrels cost $25 each.

Sales Requirements:

« The salesperson must sell at least one lock, one stock, and one barrel each month, but
they do not necessarily need to be sold as part of a complete rifle.

« There are maximum sales limits due to production constraints: 70 locks, 80 stocks, and
90 barrels per month.

Sales Reporting:)

o After visiting each town, the salesperson sends a telegram to the gunsmith about the
number of locks, stocks, and barrels sold.

« At the end of the month, a final telegram with the figures "-1 locks sold” signals the
completion of that manth's sales, prompting the gunsmith to compute the salesperson’s
commission.

Commission Calculation:

The commission structure is tiered: P
o 10% commission on sales up to and including $1000.
+ 15% commission on the next $800 of sales.

« 20% commission on any sales beyond $1800.

aditions for Decision Table:

S e]

——m T

« Locks Sold: Number of locks sold within their allowed range.

+ Stocks Sold: Number of stocks sold within their allowed range.

« Barrels Sold: Number of barrels sold within their allowed range.

o Total Sales Bracket: Defined brackets based on the total sales amount for calculating

commissions.

[r—

Decision Table:

4.19

« Calculate Commission: The specific formula used based on total sales.

¢ Validate Sales: Indicates whether the sales are within the permissible range or not.

Decision Table- Based Testing

Locks Sold Any Any
Stocks Sold 1-80 1-80 1-80 Any >80 Any
Barrels Sold 1-90 1-90 1-90 Any Any >90
Total Sales <$1000 $1001-$1800 >$1800 N/A N/A N/A
Actions
0, 0,
Calculate Comm. 10% of sales ttgg ;ltsog) ?fig ; lza%g) 0 0 0
Validate Sales Valid Valid Valid Invalid Invalid Invalid

Ar

nalysis:

« Rule 1: Applies when all items are within limits and total sales are < $1000. Commission is

10% of sales.

« Rule 2: Applies when all items are within limits and total sales are between $1001 and $1800.
Commission includes a base of $100 plus 15% of the amount over $1000.

« Rule 3: Applies when all items are within limits and total sales exceed $1800. Commission

includes a base of $220 plus 20% of the amount over $1800.

« Rule 4, 5,6: Handle invalid sales scenarios where the number of locks, stocks, or barrels
exceeds their respective maximum limits. In these cases, sales are marked invalid and no

commission is awarded.

Test Cases Derived fl‘Oll-l Decision ’i‘able g

Rule 1: DT1 5 5 s $500

Rule 2: DT2 15 15 15 $1500 $175

Rule 3: DT3 20 | 25 30 $2400 $340

Rule 4: DT4 80 40 40 Invalid $0 |
Rule 5: DTS 30 85 30 Invalid $0 \
Rule 6: DT6 30 40 95 Invalid $0 i

4.20 | Software Testing

1. Rule C1 (DT1) - Valid under $1000 range:
Locks = 5, Stocks = 5, Barrels = 5
Total Sales = (5x45)+(5x30)+(5x25)=225+150+125=$500
Commission = $500 * 0.10 = $50
2. Rule C2 (DT2) - Valid within the $1001 to $1800 range:
Locks = 15, Stocks = 15, Barrels = 15 '
Total Sales = (15x45)+(15x30)+(15%25)=675+450+375=$1500
Commission = $100 + ($1500 - $1000) * 0.15 = $100 + $75 = $175
3. Rule C3 (DT3) - Valid above $1800:
Locks = 20, Stocks = 25, Barrels = 30
Total Sales = (ZOX45)+(25XSO)+(30x25)=900+750+750=$2400
Commission = $220 + ($2400 - $1800) * 0.20 = $220 + $120 = $340
4. Rule C4 (DT4) - Invalid due to exceeding lock limits:
Locks = 80, Stocks = 40, Barrels = 40
Sales Invalid, Commission = $0
5. Rule C5 (DT5) - Invalid due to exceeding stock limits:
Locks = 30, Stocks = 85, Barrels = 30
Sales Invalid, Commission = $0
6. Rule C6 (DT6) - Invalid due to exceeding barrel limits:
Locks = 30, Stocks = 40, Barrels = 95

Sales Invalid, Commission = $0

#
4.7 Guidelines and Observations of Decision Table Testing
Decision table testing is particularly effective in scenarios where decision-making is complex,
involving numerous logical conditions. This testing method is ideal for applications with significant
conditional logic, like if-then-else structures, or where inputs and outputs are closely linked through
logical operations. Some guidelines and observations of using decision table testing:
1. When to Use Decision Tables:
e Complex Decision Logic: Best for scenarios with if-then-else conditions.
o Interdependent Inputs: Useful when inputs are logically connected and affect each
other's outcomes.
e Calculative Operations: Ideal for functions that perform calculations on subsets of input
data.
o Input-Qutput Correlation: Effective in environments where inputs directly dictate
outputs.

i ———. 1 e o

Decision Table- Based Testing 4.21

* High Complexity: Suitable for systems with complex pathways indicating many.‘potenﬁal
paths through the code.

2. Challenges with Scalability:
° Dec_is-ion tables can become large as the number of conditions increases, thh a binary
decision table for n conditions resulting in 22 rules. To manage this complexity:

a) Extended Entry Tables: Use tables that allow multiple values per condition to
reduce the number of rules.

b) Table Simplification: Algebraically simplify the rulés to make the table more
manageable.
c) Table Factoring: Break down large tables into smaller, more manageable pieces.
d) Pattern Recognition: Identify and leverage repeating patterns to streamline the
decision-making process.
3. Iterative Refinement:

® The initial set of conditions and actions may not perfectly capture the necessary logic or
may be inefficient. Iteratively refining these elements, based on testing results and deeper
understanding of the application, helps in developing more effective and streamlined
decision tables. :
These guidelines help in making decision table testing a practical approach for thoroughly examining
complex decision-making processes in software systems to ensure comprehensive coverage and
understanding of all potential outcomes.

4.8 Review Questions

1. What is Decision Table?

. What is Decision Table Based Testing?

. Write any two benefits of Decision Table Based Testing.

. What are Don't Care Entries in Decision Table?

. What are Mutually Exclusive Conditions in Decision Table?
. What is Rule Count Adjustment?

N UL oW

Each Question Carries Five Marks

1. What is Decision Table? Explain the Characteristics of Decision Tables.
2. Explain the Importance (or) Benefits of Decision Tables in Software Testing.

3. Explain Decistion Table Design Format with an example.

‘ 4.22 l Software Testing "

5. Explain Rule Count Adjustment in Decision Table Based Testing.

6. Explain Decision Table Based Testing Using Equivalence Classes.
7. Explain the Guidelines and Observations of Decision Table Testing.

-
1. What is Decision Table Based Testing? Explain Decision Table Techniques.
2. Explain the Test Cases for the Triangle Problem in Decision Table Based Testing.

3. Explain the Test Cases for the Next Date Function in Decision Table Based Testing.
4. Explain the Test Cases Test Cases for the Commission Problem in Decision Table Based Testing.

o<
£<3
o
<
<

Contents

= Data Flow Testing
= Characteristics of Data Flow Testing
< Benefits of Data Flow Testing
= Challenges or Limitations of Data Flow Testing
<= Types of Data Flow Testing
<+ Define-Use Testing
= Key Concepts and Definitions
= Define/Use Test Coverage Metrics
- = How Def-Use Testing Works?
= Advantages and Disadvantages of Def-Use Testing
= Example- The Commission Problem using Define-Use Testing
Slice-Based Testing
= Characteristics or Features of Slice Based Testing
< Importance or Benefits of Slice-Based Testing
= Limitations or Disadvantages of Slice-Based Testing
< Guidelines and Observations for Data Flow Testing
< Review Questions

| 5.2 , Software Testing

5.1 Data Flow Testing

Data flow testing is a specialized method of structural testing that emphasizes tracking how variables
within a program are defined and used. Unlike what the name might suggest, it has no relation to
data flow diagrams used in design. Instead, it focuses on understanding and verifying the flow of data
through code via the variables’ lifecycles.

Overview of Data Flow Testing:

1. Key Focus: Data flow testing examines the points in the code where variables are assigned
values (defined) and where these values are utilized (used or referenced). It aims to identify
issues in how data is handled, like incorrect initialization or usinga variable before it's assigned
avalue.

2. Purpose: The main goal is to ensure that the interactions and dependencies involving data
within the program are correct and efficient, thus helping to identify potential anomalies in
the handling of data.

=t W [T LS A T A YR

‘What is Data Flow Testing? or Define Data F__l'f':w'i"é-%tigg;;. A e AT

Data flow testing refers to forms of structural testing that focus on the points at which variables receive
values and the points at which these values are used (or referenced).

Data flow testing is a software testing technique that focuses on examining how data moves through a
program. It's a white-box testing method, meaning it relies on the internal structure of the code.

P
5.1.1 Characteristics of Data Flow Testing

Data flow testing is a detailed method of structural testing aimed at examining how data is handled

within software applications. It looks specifically at the lifecycle of variables from their initialization

to their final use in computations. Some key characteristics of data flow testing are:

1. Definition and Use of Variables: Data flow testing focuses on the points in the code where
variables are defined (given a value) and where these values are subsequently used. This can
include checking variables in conditions, calculatiohs, or as.arguments in function calls.

2. Detection of Anomalies: The primary aim is to detect data flow anomalies, which can indicate
faults in the program. These include situations where a variable is defined but never used,
used before it is defined, or redefined without any subsequent use before another definition.

3. Program Graphs: It utilizes program graphs to visually represent the flow of data through the
program. These graphs help in tracing the sequence of events that affect data, making it easier
to spot potential issues.

4. Static Analysis: Data flow testing often involves static analysis, meaning it analyzes the code
without actually executing the program. This allows for detecting certain types of errors and
inefficiencies in code handling of data statically.

5. Complexity in Manual Execution: Due to the detailed nature of tracking each variahle's flow
through software, data flow testing can be complex and time-consuming, especially without
the help of sophisticated tools.

. Data Flow Testing | 53 |

6. Su.itabili.ty for Objgct-Oriented Code: This type of testing is particularly effectwe for
object-oriented programming, where the interactions between methods and obijects involve
numerous variable definitions and uses.

7. Complementary to Other Testing Methods: While it can be used as a standalone testing
approach, data flow testing is often most effective when used in conjunction with other testing

strategies like path testing, It provides an additional layer of assurance by focusing on aspects
of the code's logic specifically related to data handling, .

8. Covgrage Metrics: Data flow testing includes various coverage metrics to assess the extent of
testing. These metrics evaluate how thoroughly the data-related aspects of the program code
are tested, ensuring that all potential data interactions are examined.

9. Tool Depen(_iency: Effective data flow testing can depend significantly on the availability of
t.oo¥s due to its complexity, especially for larger codebases. The lack of commercial tools may
limit its use in some environments.

10. Enhanced Debugging and Maintenance: By identifying how data moves and changes within
a pr(?gram, data flow testing helps pinpoint where errors occur, making debugging easier and
helping maintain the code more effectively.

e = ——— —————_————+
5.1.2 Benefits of Data Flow Testing

1. Itidentifies define/use issues such as unused variables, uninitialized variables, and redundant
definitions.

2. Itimproves code quality by ensuring that all parts of the program contribute to its functionality
3. Itmakes debugging easier by pinpointing the exact locations of data-related errors in the code.

4. Ithelps in understanding the flow of data through the program, which can be especially useful
in complex systems.

5. It ensures comprehensive testing coverage by focusing on the interaction between variable
definitions and uses.

6. Itallows for static analysis to find faults without executing the program, which can save time
and resources.

7. Itis useful in maintenance phases to check that changes in the code do not introduce new data
flow anomalies.

8. It can lead to performance optimizations by highlighting unnecessary data procesﬁng steps.

5.1.3 Challenges or Limitations of Data Flow Testing

1. Setting up data flow tests can be complex especially in large applications with extensive data
interactions. '

2. It consumes significant computational resources particularly in large code bases.

3. Manually conducting data flow testing is labor-intensive and prone to errors especially in
identifying and tracing all relevant data paths. i

l 5.4 | Software Testing

4. There are limited commercial tools available that fully support data flow testing, which can
hinder its adoption and effective implementation.

5. Requires a deep understanding of the program’s architecture and data handling, demanding
high expertise from testers.

6. Integrating data flow testing into existing testing frameworks may be challenging and can
require significant adjustments to workflows.

7. The process of tracing and analyzing all potential data paths in the code is time-consuming,
which can extend the testing phase.

pr————— = ==

5.1.4 Types of Data Flow Testing
Data flow testing focuses on the various points in a program where variables are defined, used, and
potentially modified. It's a form of structural testing that helps in identifying how data values are
manipulated across a program'’s execution. There are two primary types of data flow testing:

1. Definition-Use Testing (Define-Use Testing) : Definition-Use Testing revoives around
tracking the points in the code where variables are defined (assigned avalue) and subsequently
used (where the value is accessed or modified). This type of testing helps uncover anomalies
or bugs that may occur due to incorrect or unintended use of variable values within the
application. It is particularly useful for ensuring that data integrity is maintaifed throughout
the execution process.

2. Slice-Based Testing : Slice-Based Testing involves dividing the program into "slices," each
focusing on a specific computation or functionality based on the program’s data flow. Eachsslice
is a subset of the program that captures the behavior with respect to a certain set of variables
at a specific point of computation. This method can simplify understanding and debugging by
jsolating relevant parts of the code that affect the output related to the selected variables.

5.2 Define-Use Testing

Define/use testing is a technique in software testing that focuses on analyzing how variables are
defined and used within a program to ensure correct data flow. By examining how variables are
defined (assigned values) and where these values are used throughout ‘the program, define/use
testing helps identify potential issues related to data flow, such as variables being used before being
defined, defined but never used, or defined multiple times before being used.

€15 Dafine-Use Testing?” 5

Define-Use Testing is a type of structural testing focused on ensuring the correctuse of variables within a
program. It examines the relationships between where variables are defined (assigned values) and where
those values are used in the program. This form of testing is highly detailed and aidsinidentifying potential
issues such as the use of uninitialized variables or the improper use of variable values, which might lead to

bugs or unexpected behaviors in the software. J

N Data Flow Testing | 5.5 |

===~ == ——1
5.2.1 Key Concepts and Definitions
Key concepts and definitions in define/use testing include:
1. Defining Node (DEF(v, n))

° Deﬁnit_ion: Anode n in the program graph where the variable v is assigned or redefined.
¢ Meaning: A; a defining node, the program modifies the value of variable v. This change
affects the state of v used in subsequent computations or decisions.
¢ Example: In the statement x = 5;, X is assigned the value 5. This line is the defining node
for x because it establishes x's value. v
2. Usage Node (USE(v, n))
° De'ﬂnition: A node n in the program graph where the value of the variable v is accessed
to influence computations or decisions but not modified.
e Meaning: Usage nodes involve réading the variable v to execute calculations or control
st;uctures. They are critical for verifying that the value of v is being utilized correctly.
¢ Example : In the statementy = x + 1;, x is accessed to compute y. This line is a usage node
for x because x influences the calculation but its value remains unchanged.
3. Predicate Use (P-use)

e Definition: A specific type of usage node where the variable v is part of a condition that
determines the control flow of the program. '

® Meaning: Predicate uses are crucial in decision-making structures, where the program’s
path can change based on the variable's value.

e Example : In if (x > 0) { // actions }, x is evaluated in a conditional expression. If x is
greater than 0, the program executes the code within the block, This usage of xisa
predicate use because it influences the flow of execution based on its value.

4. Computation Use (C-use)

° Deﬁn'ition: A type of usage node where v is used in calculations or operations that
contribute to the program's computational results but do not alter its control flow.

¢ Meaning: Computation uses highlight how data is manipulated to produce new values or
results within the program.

o Example: In the statement total = price * quantity;, both price and quantity are involved in
calculating total. This usage of price and quantity is considered computatign use because
they determine the value of total without affecting the decision paths of the program.

5. Definition/Use Path (du-path)

o Definition: Paths within the program graph that originate at a definition of v and
terminate at a usage of v.

o Meaning: Du-paths help in understanding how data flows from its point of definition to
where it is utilized, highlighting the lifecycle of variable usage within the program.

¢ Example : Assuming x is defined as x = 5 at the start of a function and later used in if (x>

0), the path from x = 5 to if (x > 0) forms a du-path, tracing x's impact from definition to a
critical decision point.

| 5.6 , Software Testing

6. Definition-Clear Path (dc-path)

¢ Definition: A du-path where v does not undergo any intermediate redefinitions between
its initial definition and its subsequent use.

o Meaning: Dc-paths ensure that the value of v remains unchanged from its definition to
its usage, crucial for validating that operations are performed on intended data states.

o Example: Ifx = 5 is directly followed by y = x + 1 without x being reassigned in between,
the path from x =5 to y = x + 1 is a dc-path. This ensures the value of x used in calculating
y is exactly as initially defined, promoting reliability in data handling.

f| Def-Use

Let's create a table that represents the data flow aspects of the function calculateScore. We will analyze the
DEF, USE, P-use, and C-use points for each line of code:

Line1 | int calculateScore(int grade, int bonus) {

Line 2 | int score; score

Line 3 | score = grade; score grade grade

Line 4 if (grade > 90) { grade grade
score += bonus; score score, | Sscore,

L 5 } bonus | bonus

Line 6 | return score; N score score

1. DEF (Definition): This column identifies where variables are defined or assigned values within the
function.

e score is first declared in line 2 and then assigned a value from grade in line 3.
e score is updated again in line 5 where it's modified based on the bonus.
2. USE (Usage): This column shows where variables are read or used in computations.
e grade is used in line 3 to assign a value to score.
e grade is also used in line 4 to check the condition. «
e score and bonus are both used in line 5 to update score.
® score is used again in line 6 when it's returned by the function.
3. P-use (Predicate Use): Indicates uses of variables in decisions that affect the control flow (predicate
statements).
e grade is used as a predicate in line 4 to decide whether to add the bonus to the score.
4. C-use (Computation Use): Shows where variables contribute directly to computation values but do
not control the flow. »
o grade directly contributes to setting score in line 3.
¢ score and bonus are used in a computation to update score in line 5.
e score is used in the final computation that produces the output in line 6.
5. du-path (Definition/Use Path):
o From score's definition in line 2 to its use in line 3.
o From score's definition in line 3 to its use in line 5 and finally in line 6.

s et

" Data Flow Testing I 57 l

® From grade's parameter definition to its use in line 3 and the predicate in line 4.

¢ From bonus's definition as a parameter to its use in line 5.
6. dc-path (Definition-Clear Path):

®* From scox"e’s d(.eﬁx:iition in line 3 directly to its first use in line 5 without intermediate redefinition
of score (ignoring the sequential update within line 5).

read (x,y) X,y
Z=%+2 z X
if (z<y) 2,y
Line 4 w=x+1 w X
else
Line 5 y=y+1 y y
Line 6 print (x,y, w, i) : X,V W, Z

5.2.2 Define/Use Test Coverage Metrics

The hierarchy shown in the diagram illustrates the various levels of test coverage metrics from the
least comprehensive to the most comprehensive in terms of data flow coverage in software testing,

‘ 58 | Software Testing

All-Nodes

Figure 5.1 : Hierarchy of Data Flow Coverage Metrics

This hierarchical arrangement shows that as we move up the hierarchy, the coverage becomes more
detailed and includes more scenarios and paths. Each level builds upon the one below it, adding
additional complexity and breadth to the testirig requirement.)
1. All-Nodes (AN)
o Coverage: Ensures that every node (or statement) in the program graph is executed at
least once.
o Example: If there is a function with five different statements, each statement must be
executed during the test, regardless of the paths taken to reach them.
2. All-Edges (AE))
« Coverage: Requires every edge in the program graph to be traversed at least once.

e Example: In a function with conditional statements leading to different branches, each
branch (edge) must be traversed.

3. All P-Uses (APU):

e Coverage: All-P-Uses coverage is a testing criterion that requires exercising all predicate
uses [P-uses) of variables in the program. It ensures that every decision point influenced
by variable values is tested to validate the program's decision-making logic.

o Example: All conditions in which a variable influences the control flow of the program
must be tested. Predicate uses (P-uses) are scenarios where a variable's value determines
the execution path taken in decision-making statements such as if-conditions, while-
loops, for-loops, and case statements.

S —

Data Flow Testing | 5.9

4. All-Defs (AD) :

e Coverage: Requires that for every variable definition, there must be at least one path that
covers the definition to some use of the variable.

o Example: If x = 5, there must be a test case that follows the path from this definition to
its first use.

5. All-C-Uses/Some P-Uses (ACU+P)

¢ Coverage: Requires all computation uses (C-uses) of all variables to be tested, and at
least some of the predicate uses (P-uses).

¢ Example: Every computation involving variables must be tested, and some decision
paths that use these variables in their conditions must also be tested.

6. All-P-Uses/Some C-Uses (APU+C) K
e Coverage: All predicate uses (P-uses) of variables are tested, and some computation usbs
: [GRU)
[C-uses). _ » o
o Example: All decision branches influenced by variables are tested, along with some gf* “:-_;
their calculations. : <
-
7. All-Uses (AU) Z0
12T

« Coverage: Ensuring every possible use of every variable from every one of its definitions= 5

= }—

is tested. Combines and extends the coverage of both All-C-Uses/Some P-Uses and All-P-—5 ()

Uses/Some C-Uses O. Z

' - =
o Example: If variable x is defined at point A and used at point B, there should be a test 6
case that covers the path from the definition at A to the use at B.)

7. All-DU-Paths (ADUP)
* Coverage: Requires that every definition-use path (DU-path) for every variable is
executed, ensuring comprehensive coverage of variable flows.
o Example: Every possible path from the point a variable is defined until it is used must be
tested, covering all possible flows of that variable.
9. All-Paths (AP)
« Coverage: The most comprehensive, requiring every possible path through the program
to be executed.

o Example: Every possible route through the software from start to finish is tested,
covering all conceivable scenarios and edge cases.

5.2.3 How Def-Use Tes;ing ‘Works?

Def-Use Testing, or Definition-Use Testing, is a type of software testing that focuses on the interaction
and relationship between the points in a program where variables are defined (assigned values) and
the points where those values are used (referenced). It aims to ensure that the paths between these
points are free from defects that could affect the program'’s execution and results.

1. Identify Variables: The first step is to identify all the variables used within the codebase that
are relevant to the test.

2. Construct a Program Graph: Create a program graph where nodes represent statements or
statement fragments, and edges represent the flow of control. This graph helps visualize how
data flows through the program.

3. Determine Definition Points (DEF): Locate all the points in the code where each variable
is defined. These are the nodes in the program graph where variables receive their values.
Definitions could be through initializations, assignments, or through input read operations.

4. Identify Usage Points (USE): Identify all points where these variables are used. Uses can be
in calculations (computation uses or C-use), or as part of conditions that influence the flow of
execution (predicate uses or P-use).

5. Trace Du-Paths: For each variable, trace all paths from each definition point to each usage
point in the program graph. These paths are known as definition-use paths (du-paths).
Each path represents a potential route through the program that the execution might take,
depending on inputs and conditions. 3

6. Identify Definition-Clear Paths (dc-paths): Among du-paths, identify those that do not have
any intermediate redefinitions of the variable before it is used. These dc-paths ensure that the
value used at the usage point is exactly the value assigned at the definition point without any
modification. s

7. TestEach Path: Design test cases to execute each du-path and dc-path identified. This involves
crafting inputs and conditions that cause the program to follow these paths during execution.
Each test should verify that the program behaves correctly along these paths, with particular
attention to ensuring the correct values are transferred from definitions to uses.

8. Analyze Results: Assess the outcomes of the tests to confirm that all variable interactions
are correct and that the software handles all defined and used values appropriately across
different paths.

*

tical Implementation

N — ——y

Def-Use Testing can be quite complex, especially in large programs with many variables and huge
control flows. It requires thorough analysis and often automated tools to help identify all relevant
paths and manage the extensive testing process. This method is particularly useful in unit testing
and can be crucial for ensuring the integrity of critical sections of code, such as financial calculations,
decision-making logic, and data handling operations.

Def-Use Testing not only helps find bugs related to variable misuse or mismanagement but also
enhances understanding of the code’s behavior, making it an invaluable tool for both testing and
development phases.

-

Data Flow Testing | 5.11

— — — — — —

1. Enhanced Coverage:
Def-Use Testing goes beyond simple code coverage by ensuring that all paths involving the definition
and use of variables are tested. This can reveal data-specific bugs that might not be uncovered by less
detailed testing approaches.

2. Early Bug Detection:

By focusing on the flow of data within the application, Def-Use Testing can identify issues related to
variable initialization, scope, 2nd sequence of operations early in the development cycle.

3. Improved Code Quality: 3
This testing approach encourages developers to pay clase attention to how data is manipulated and
transferred across the application, leading to more robust and errar-free code.

4. Supports Debugging:

Since Def-Use Testing maps out how variables are used throughout a program, it can be an excellent
tool for debugging; helping developers understand whers things might go wrong,

5. Facilitates Regression Testing:

Once a Def-Use path is established and tested, any future changes that affect these paths can be quickly

identified and retested, making it easier to manage regression testing,

esies o

= e K v

1. Complexity:
Creating and managing the program graph for larger applications can be highly complex and time-
consuming. Identifying all relevant Def-Use paths in a large codebase often requires sophisticated tool
support.

2, High Overhead:
The level of detail involved in tracing all possible paths from definitions to uses can lead to significant
testing overhead in terms of time and resources, making it less suitable for projects with tight deadlines.

3. Requires Deep Understanding of the Code:
To effectively implement Def-Use Testing, testers and developers must have a deep understanding
of the code's structure and logic. This high knowledge requirement can be a barrier fdr new team
members or those unfamiliar with the code.

4. Tool Dependency:
Effective Def-Use Testing often relies on specialized tools that can analyze and visualize complex
program graphs. These tools can be expensive and may have a steep learning curve.

5. Limited to Available Code:
Asaform of white-box testing, Def-Use Testing can only be performed when the source code is available.
It's not applicable to black-box testing scenarios where internal code structures are not accessible.

6. Does Not Cover Non-Functional Testing:
This method primarily assesses the correctness of program execution concerning data flow and does
not address non-functional aspects such as performance, usability, or scalability:

| 5.12 l Software Testing ~

#

5.2.5 Example- The Commission Problem using Define-Use Testing -
We will use the commission problem and its program graph to illustrate these defiu%tiuns. The
numbered pseudocode and its carresponding program graph are shown in Figure 4.1. This program
computes the commission on the sales of the total numbers of locks, stocks, and barrels sold. The
while loop is a classic sentinel controlled loop in which a value of -1 for locks signifies the em.il of th.e
sales data. The totals are accumulated as the data values are read in the while loop. After printing this
preliminary information, the sales value is computed, using the constant item prices deﬁned‘a't the
beginning of the program. The sales value is then used to compute the commission in the conditional
portion of the program.

. DinitotalLocks, totalStocks, totalBarrels As Integer
. Dim lockSales, stockSales, barrelSales As Real
. Dim sales, commission As Real
. lockPrice = 45.0
. stockPrice = 30.0
. barrelPrice = 25.0
10. totalbarrels = 0
11, totalStocks = 0
12. totalBarrels =0
*' 13, Input(locks)
- 14. While NOT(locks =-1) “locks = -1 signals end of data
. Input(stocks, barrels)
6. totalLocks = totalLocks + locks
. totalStocks = totalStocks + stocks
. totalBarrels = totalBarrels + barrels
. Input{locks)
. EndWhile
1. Output(“Locks sold;, “totalLocks)
. Output ("Stocks sold:, “totalStocks)
. Output{”Barrels sold:, “totalBarrels)
. lockSales = lockPrice “totalLocks
. stockSales = stockPrice “totalStocks
26. barrelSales = barrelPrice “totalBarrels
27. sales = lockSales + stockSales + barrelSales
28. Output(“Total sales:, “sales)
29. If(sales > 1800.0)
30. Then
. Commission = 0.10 “ 1000.0
i +0.15 “ 800.0
L ¢ =c ission + 0.20 “(sales-1800.0)
. Else if (sales > 1000.0)
. Then
. commission = 0.10 “1000.0
. commission = commission + 0.15 “(sales-1000.0)
. Else
. commission = 0.10 “ sales
. Endif
. EndIf
. Output ("C
. End commission

.C ion = commissi

bt

Data Flow Testing 5.13

Variable Definitions and Usages
e

Table 4.1 lists the define and usage nodes for the variables in the commission problem. We use this .
information in conjunction with the program graph in Figure 4.1 to identify various definition-use
and definition-clear paths. It is a judgment call whether non-executable statements such as constant
and variable declaration statements should be considered as defining nodes.

lockPrice
slockPrice 8 25
banelPrice 9 26
lotallocks 10,16 16, 21,24
totaiStockts 11,17 17,22,25
totalearrels 12,18 18, 23, 26
locks 13,19 14, 16
Mocks . 15 17
Barrels 15 18
lockSales 24 - 27
stockSales 25 27
banelSales 26 27
Sales 27 28,29, 33, 34,37,38
Commission 31,32,33,36,37,38 32,33,37,42

Table 4.1 Define /Use Nodes for Variables in Commission Problem

———

Use Paths)

DU Paths (Definiti

DU paths trace the flow of data from points where variables are defined (assigned values) to points
where these values are used (either in computations or conditions).

Example DU Paths from the Provided Graph:

1. DU Path for totalLocks:
* Defined at Node-16 (totalLocks = totalLocks + locks)
e Used at Node 21 (Output("Locks sold", totalLocks))
* Used at Node 24 (lockSales = lockPrice * totalLocks)
e Path:16,21,24

2, DU Path for commission:
e Pathl: Defined at Node 31,Used at 32, 33 and Finally at 42.
o Path 2: Defined at Node 36,Used at 37 and Finally at 42,
e Path 3: Defined at Node 39,Used at at 42.

DC Paths (Definition-Cleay Paths)

DC paths are special types of DU paths where the variable, once defined, does not undergo any
redefinition before its use. These paths ensure that the value used is exactly the one initially defined,
with no intermediate modifications that could alter the behavior or outcome.
Example DC Paths from the Provided Graph:
1. DC Path for sales:
o Defined at Node 27 (sales = lockSales + stockSales + barrelSales)
o Used at Node 28, 29 without redefinition in between.
This ensures that the calculations of commission based on sales at subsequent nodes (32, 33,

37,38) are based on the same sales value computed at Node 27.

Comprehensive Annlysis of All Paths

To identify all DU and DC paths effectively, each variable's definition and use points need to be traced
through the program's flow. For each variable:

o Trace from every definition point to all possible use points without crossing another definition

of the same variable (for DC paths).

e Trace from definition to use, even if the variable is redefined along the path (for DU paths).
For a thorough testing strategy, every such path should be verified to ensure it behaves as expected
under various conditions, including edge cases and potential error conditions. This approach not
only helps in validating the logic but also aids in uncovering hidden bugs related to data handling,

Applyving Def-Use Testing
By tracing these variable flows from their points of definition to their points of use, testers can ensure
that each path is correct and all potential interactions are accounted for. For example, testing the
path for Sales, starting from its computation at node 27 through its multiple uses in commission
calculations, involves validating that the sales values are accurately calculated and correctly influence
the commission outcomes under different sales conditions. This would require creating test cases
that:

e Validate correct sales calculations from nodes 24, 25,26 to node 27.
o Ensure the commission is calculated correctly based on the sales values through various
branches (node 32 for sales < 1000, node 33 for sales between 1000 and 1800, and node 37
for sales > 1800).
Each path would be tested to verify that no intermediate redefinitions incorrectly alter the expected
outcomes, thus ensuring the integrity of the computation across different parts of the program. This
structured approach highlights how data flow testing provides a comprehensive examination of the
software's logical flow, enhancing reliability and correctness.

5.3 Slice-Based Testing
Slice-based testing is a testing technique that focuses on verifying specific parts of a program by
analyzing "slices” of code. A program slice consists of all parts of a program that affect the values
computed at some point of interest, known as a slicing criterion. This criterion typically includes a

Data Flow Testing 5.15

variable and a progr’a.m point. The primary goal of slice-based testing is to isolate and test parts of
a program t':hat contribute to the outcome at specific points. It reduces the complexity involved in
understanding and testing the entire program.

Key Concepts:
1. Program Slice:
® Asubset of a program that potentially affects the values computed at certain points.

e It hB]pS in identll Plllg t.he l‘ele\?al'lt 0 tp
p rtions Of the Code that contri
on bute to the outputs at

2. Slicing Criterion:
e It f:onsists of avariable of interest and a specific statement or line number in the program.
® Itisused to determine which parts of the code should be included in the slice.

e

Slife-.Based Testing is a software testing technique that involves isolating ad testing pecific portions
01: 'sllces" of a program's code that impact the values computed at pafticular pointsv of intérest known as
sthng criteria. These slices typically include all code segments that contribute to the outcome based on
variables and program locations specified in the slicing criterion. The primary goal of slice-based testing is
to focus testing efforts on critical parts of the program that influence specific results, thereby reducin tghe
complexity of testing the entire program and improving test effectiveness. ' .

In simple wordf,.Slice-based testing also known as program slicing is a software testing technique that
focuses on specific portions of the code relevant to a particular variable or output value.

8 Slice Based Testing

Consider a sim 1 rogram that ¢ ; : R S
inputs: ple progra alculates the total cost of items purchased, including tax, based on various

1. int ?alculateTotalcOst(int price, int quantity, float taxRate) {

2. int subtotal = price * quantity; // Calculates the subtotal
3. ﬂoat taxAmount = subtotal * taxRate; // Calculates the tax amount
4. int totalCost = subtotal + (int)taxAmount; // Calculates the total cost
5. print("Subtotal: “, subtotal);

6. print("Tax: ", taxAmount);

7. print("Total Cost: ", totalCost);

8. return totalCost; ;

9.} {

10. int main() {

11. int finalCost = calculateTotalCost(100, 2, 0.065);

12. print("Final Purchase Cost: ", finalCost);

13. return 0;

14. }

Steps in Slice-Based Testing:
1. Identify the Slicing Criterion:
® The variable of interest is totalCost.

* Point of Interest: Line 4, where totalCost is calculated.

l 5.16 | Software Testing L

2. Determine the Program Slice:
o The relevant code that affects totalCost includes:
a) Calculation of subtotal on line 2.
b Calculation of taxAmount on line 3.
¢) Addition of subtotal and taxAmount to form totalCost on line 4.
3. Constructthe Slice:
e Extract the lines of code that directly contribute to the slicing criterion
2. int subtotal = price * quantity;
3. float taxAmount = subtotal * taxRate;
4. int totalCost = subtotal + (int)taxAmount;
4, Create Test Cases:
e Test Case 1:
' Input: price = 100, quantity = 2, taxRate = 0.05
Expected Output: totalCost =210
Rationale: Subtotal is 200, tax is 10, so total cost should be 210.
o Test Case 2:
Input: price = 50, quantity = 4, taxRate = 0.10
Expected Output: totalCost = 220

Rationale: Subtotal is 200, tax is 20, so total cost should be 220.
nvolving the computation of totalCost is rigorously tested,

These steps ensure that the critical functionality i loijtony Soser sly
isolating the specific computations for targeted verification. This approach simplifies testing, making it more

focused and efficient, particularly for verifying the correctness of calculations within the program.
—a—]

—_————=
5.3.1 Characteristics or Features of Slice Based Testing .
ftware testing focused on analyzing specific

Slice-based testing is a specialized approach within so -
The key characteristics or features of slice-

nslices” of code related to certain variables or conditions.
based testing are:

1. Slicing Criterion: . '
Testing revolves around a specific variahle or set of variables that inﬂuenct_e th.e prnglrams
behavior at a certain point or over a section of the- program. The slicing criterion typically
includes the variable of interest and the specific location in the code.

2. Program Slices:

A slice is a subset of a program that includes all the v
of the variables in the slicing criterion at specific points. It isolates the parts of code that are
directly relevant to the criterion.

3. Data Flow Analysis:

Slice-based testing relies heavily on data flow analysis to determine how data moves L‘r{rou_g‘h
the program and which parts of the program are affected by and affect the slicing criterion.

statements that could affect the values

4. Static and Dynamic Slicing: .
« Static Slicing: Analyzes the program’s source code without executing it, providing slices

based on potential data flow.

PR

Data Flow Testing 5.17

« Dynamic Slicing: Generates slices based on actual execution paths and runtime data,
which are specific to a particular execution instance.
5. Reduction of Complexity:
By focusing on slices, testers can reduce the complexity of the testenvironment and coﬁc‘entrate
on verifying specific functionalities without the overhead of the entire program's context.
6. Error Localization:
Facilitates precise efror localization within the slice under test, making it easier to detect
where exactly defects are occurring within the subset of the program being analyzed.
7. Efficiency in Regression Testing:
Especially useful in regression testing where changes to the code base are verified to ensure
that new updates have not introduced new bugs into previously tested slices of the program.
8. Integration with Other Testing Techniques:
Often used in conjunction with other testing techniques to ensure comprehensive coverage.
While slice-based testing targets specific functionalities, other tests can cover areas outside
the scope of slices.
9. Tool Dependent:
The generation and analysis of slices typically require specialized tools that can perform static
or dynamic analysis and manage the complexities involved in isolating slices effectively.
10. Focused on Functional Dependencies:
Emphasizes testing the functional dependencies within the code, particularly how specific
variables or ‘operatioﬁs influence the behavior of the system.
These characteristiés make slice-based testing a powerful tool for dealing with complex software
systems, particulaﬂj} in modular or object-oriented environments where understanding interactions
and dependencies.één be critical for ensuring correct behavior.

5.3.2 Importance or Benefits of Slice-Based Testing

Slice-Based Testing offers several important benefits in software testing:

1. Focused Testing: By isolating and testing specific slices of code, this technique allows testers
to concentrate their efforts on critical parts of the program that directly impact the desired
outcomes, This focused approach enhances the effectiveness of testing by targeting key areas.

2. Reduced Complexity: Testing the entire program can be complex and time-consuming.
Slice-Based Testing simplifies the testing process by breaking down the program into smaller,
manageable slices, making it easier to understand and test individual components.

3. Improved Debugging: By testing slices of code that contribute to specific results, identifying
and debugging errors becomes more efficient. Testers can pinpoint issues in the relevant parts
of the program, leading to quicker resolution of defects:

4. Enhanced Test Coverage: Since slice-based testing targets specific parts of the program, it
helps ensure that critical areas are thoroughly tested. This approach can improve test coverage
by focusing on the most important aspects of the software.

5.18 | Software Testing

5. Cost-Effective Testing: By prioritizing testing efforts on essential program components, slice-
based testing can optimize resource allocation and reduce unnecessary testing of less critical
areas. This can result in cost savings for the testing process.

— =
5.3.3 Limitations or Disadvantages of Slice-Based Testing
While Slice-Based Testing offers several benefits, it also has some limitations and disadvantages:

1. Limited Coverage: Since slice-based testing focuses on specific parts of the program, there is
a risk of overlooking interactions and dependencies between different slices. This may result
in incomplete or limited test coverage, leaving certain paths untested.

2. Difficulty in Slice Identification: Identifying the appropriate slicing criteria and determining
the relevant slices can be challenging, especially in complex programs. Incorrect slicing criteria
selection may lead to ineffective testing and missed defects.

3. Maintenance Overhead: Maintaining and updating slice-based tests as the program evolves
can be difficult job. Changes in one slice may require adjustments in related slices, increasing
maintenance overhead and effort.

4. Limited Scope: Slice-based testing may not be suitable for all types of software projects or
testing scenarios. It may be less effective for systems with huge interdependencies or where
end-to-end testing is crucial.

5. Risk of False Positives/Negatives: Testing individual slices in isolation may result in false
positives (passing tests despite defects) or false negatives (failing tests due to external factors).
This can lead to inaccurate assessment of the software quality.)

6. Complexity in Integration Testing: Integrating individual slices back into the complete
program for end-to-end testing can be .complex. Ensuring that all slices work together
seamlessly and do not introduce new issues during integration can be challenging.

7. Tool Dependency: Effective slice-based testing often relies on advanced tools to identify and
manage slices, which may not be readily available or it may come with high cost..

== = e

5.4 Guidelines and Observations for Data Flow Testing
Data flow testing, including both define/use testing and sli'ce-based testing, offers a detailed approach
to uncovering software bugs that might not be easily caught through traditional testing techniques.
Here are some guidelines and observations related to these techniques:

-ty = =

1. Understand Program Structure:
Gain a thorough understanding of the program's structure. Familiarity with the control flow
graph of the application is crucial as it helps in identifying all potential def-use pairs and
relevant slices.
2. Select Appropriate Slicing Criteria:
Define clear and meaningful slicing criteria based on the variables and conditions critical to
the application’s functionality. This will determine the effectiveness of the slice in isolating
relevant portions of the code.

. Prioritize Test Cases:

Observations on Data Flow

. Complexity and Cost:

R T

Data Flow Testing 519

. Use Appropriate Tools:

e - . L. ‘<
Utilize specialized tools designed for data flow analysis. These tools can automate the process

of identifying def-use chains and generating program slices, making the testing process more
efficient and less error-prone. -

. Integrate with Other Testing Methods:

Combine data flow testing with other testing techniques, such as unit testing, integration

testing, and system testing, to enhance overall test coverage and effectiveness.
4

Prioritize test cases based on the complexity and criticality of the def-use paths or slices. Focus
on paths that have a higher risk of failure or are crucial for the application’s performance.

. Regularly Update Test Cases:

Update test cases as the software evolves. Changes in the codebase can affect existing def-use
relationships and necessitate new slices or revised testing strategies.

. Document Test Cases and Results:

Maintain detailed documentation of test cases, the rationale for their selection, and the
outcomes. This documentation is invaluable for future testing cycles and for understanding
the impact of changes in the code. '

£3

Data flow testing cari be complex and costly due to the need for detailed analysis of the
codebase and the potential for a large number of test cases, especially in large applications
with complex logic.

. High Effectiveness for Certain Bugs:

Particularly effective at finding bugs related to improper use of data, such as the use of
uninitialized variables, incorrect updates, and violations of sequential dependencies.

. Tool Dependency:

The effectiveness of data flow testing is often dependent on the quality of the tools used, as
manual identification and testing of data flow paths can be error-prone and impractical in
large applications. b

. Limited by Feasibility of Paths:

Not all identified paths may be feasible to execute due to runtime conditions or constraints in
the code that were not apparent at compile-time.

. Learning Curve:

There is a significant learning curve associated with understanding and implementing data
flow testing effectively, particularly when dealing with complex systems or languages with
intricate data flow characteristics.

| 5.20 \ Software Testing

6. Integration with Development Processes:

Data flow testing is most effective when integrated into the development process; allowing for

immediate testing and bug fixing, which aligns with agile methodologies.

These guidelines and observations can help software development and testing teams‘ effc:.crively
implement and benefit from data flow testing techniques, thereby enhancing the reliability and

robustness of their software products.

—_—————————
5.5 Review Questions

1. What is Data Flow Testing ?

2. Define Data Flow Testing.

3. Mention the Types of Data Flow Testing.
4, What is Define-Use Testing?
5
6

. Define du-path and dc-path.
. What is Slice Based Testing?

| Section-B |

1* What is Data Flow Testing? Explain the Characteristics of Data Flow Testing.
Explain the Benefits of Data Flow Testing. '

. Write the Challenges or Limitations of Data Flow Testing.

. What is Define-Use Testing? Explain Define/Use Test Coverage Metrics.

. How Def-Use Testing Works?

. Write the Advantages and Disadvantages of Def-Use Testing.

. Discuss the Characteristics or Features of Slice Basez‘i Testing.

. Explain the Importance or Benefits of Slice-Based Testing.

. Explain the Limitations or Disadvantages of Slice-Based Testing.

. Discuss the Guidelines and Observations for Data Flow Testing.

G o NN

[EnN
o

" Each/Question

———

1. Elaborate Define-Use Testing with detailed example. Mention its Characteristics.

2. Discuss the Commission Problem using Define-Use Testing.

3. Elaborate Slice Based Testing with detailed example. Mention its Characteristics.

R IK RRRR
EXE XX EX XS

Contents

Levels of Testing

= Levels of Testing in Different Life Cycle Models
= The SATM System
< Overview of the SATM System
= Testing Strategy
< Structural and Behavioural Insights
= Introduction to Integration Testing
< What is Integration Testing?
<= Features (or) Characteristics (or) Importance of Integration Testing
= Types of Integration Testing
= Decomposition-Based Integration Testing
< Top- Down Integration Testing
<= Bottom-Up Integration Testing
< Sandwich Integration Testing
= (all Graph-Based Integration
< Pair wise Integration Testing
<= Neighborhood Integration Testing
= Path-Based Integration Testing

= Review Questions

‘ 6.2 [Software Testing

————aem—————
6.1 Levels of Testing

In Chapter 1, we learned about the basic types of testing - unit, integration, and system testing -
in the traditional software development process, especially in the waterfall model. Each type of
testing corresponds to different stages of development, from detailed design to combining parts
and uitimately checking the whole system. In modern software development methods, these testing
stages are adjusted and used in new ways t0 fit the latest approaches and technologies,

#

6.1.1 Levels of Testing in Different Life Cycle Models
In the realm of software development, various life cycle models dictate how products are developed,
tested, and maintained. Each model has its own approach to testing, tailored to fit the specific needs
and stages of the development process. Here, we delve into how testing levels are integrated into
different life cycle models.

1. Waterfall Model : The traditional Waterfall model is linear and sequential, generally divided
into distinct phases: requirements, design, implementation, testing, and maintenance. It's
predicated on the idea that each phase must be completed and its deliverables approved
before the next phase begins.

Testing in Waterfall:
o Unit Testing: Conducted after the implementation or coding phase. Each component is
tested in isolation to ensure it works as expected.
« Integration Testing: Follows unit testing; it involves testing combined parts of-the
application to ensure they work together correctly.
o System Testing: This final testing stage assesses the complete and integrated software
product to verify that it meets the specified requirements.

2. Incremental Development : Incremental development breaks the software product into
smaller, manageable increments. Each increment is fully developed and tested, which provides
functionality gradually throughout the life cycle.

Testing in Incremental Development:
o Unit Testing: Performed on each increment as it is developed.
o Integration Testing: As new increments are added, integration testing is performed to
ensure new and old increments work harmoniously.
o System Testing: Conducted on each complete increment to ensure it meets the broader
system requirements. .

3. Evolutionary Development : Suitable for projects with unclear requirements, this iterative
approach allows the software to evolve through repeated cycles of development and testing,
based on continuous user feedback and evolving requirements.

Testing in Evolutionary Development:
o Tterative Testing: Each iteration includes unit, integration, and system testing to ensure
the evolving parts of the application function correctly together.

- Integrating Testing I 6.3 |

¢ Regression Testing: Frequentl) ;
: ng: y conducted to ensure that new ch: i
existing functionality. B s
4. Spiral M.od(-el : The Spiral model combines elements of both iterative development and -
syste'mfmc risk management, involving iterative refinement through spiraling cycles, each
consisting of planning, risk analysis, engineering, and evaluation. ,
Testing in Spiral Model:]

° Pr;gressnve Te-sting.: Ateach cycle’s end, progressive testing (including unit, integration,
and system testing) is conducted, tailored to the new features developed in that cvcle

¢ Risk Analysis: Special emphasis on testing to mitigate identified risks at each cycle.

5. :;;:jd Protot:'hping h This model focuses on quickly developing prototypes to refine
irements through early user feedback, helping to b
el e L ping to better define what the final system
Testing in Rapid Prototyping:

e Prototype Testing: Each prototype is tested to evaluate its functionality and to gather
user feedback, which is crucial for refining subsequent prototypes.
6. s‘.xecuta.ble Specifications : This approach extends the concept of rapid prototyping by
eveloping executable specifications that serve as a functional prototype of the system

Testing in Executable Specifications:

 Continuous Testing: As the executable specification is developed and refined, continuous

g 1sC C d T th S ty
testin, OIldu ted to ensure that e peClﬁcatlon meets the deSl ©
r d fllllCthIlall and

—

6.2 The SATM System

A - - -
ills v:e flst;uSSEd in C.h:apt(.er 1. the Simple ATM System (SATM) serves as-a practical example to
Wl-ltsh rate the comI?lexn'.le-s involved in integration and system testing of a client-server architecture
-dl 1 a set of functionalities captured in a series of interactive screens, the SATM system provides an
ideal case to examine how different components withi i

in an ATM interface work to
user transactions seamlessly. r

6.2.1 Overview of the SATM System %

The S{-\'I"M system is designed as a teaching tool or simplified version of a commercial ATM system
;or&tammg only tl.le essential features required to perform basic ATM functions such as transactions
: n l}ger 1ntera.ct10ns. This reduced complexity allows for focused development and testing méking
itan ideal candidate for educational purposes. o i

S e

Screens and Terminal L

s

ayout

s

* Screens for the SATM system : The screens illustrates the user interface flow, showcasing
how usefs interact with the system through various screens. For example, it includes screens
for entering a PIN, selecting transaction types, and receiving notifications about the transaction
status. Each screen is designed to guide the user smoothly through their banking transactions.

| 6.4 ‘ Software Testing - _ Integrating Testing | 6.5 |

—

« The SATM Terminal : It details the physical components of the ATM, such as the keypad for This diagram provides a clear visual of the SATM system's scope, highlighting its interactions with
input, a screen for display, a card reader; receipt printer, and cash dispensing units. This layo.ut e and the central bank, which is essential for understanding system behavior and dependencies.
is critical for understanding the user interaction points and for planning the physical security e

(Relationship Model of the SATM H_\'::Ir-mn:

ility testing. : 5 = == '
— esresnd usability testing The entity/relationship (E/R) model of the SATM system depicted above provides a structured

Context Dis representation of how different entities within an ATM system interact and relate to each other.
The context diagram of the SATM (Simple ATM) system visually depicts how the ATM interfaces with It presents h.ow different entities such as customers, accounts, and transactions relate within the

system. It’s vital for ensuring that the database design can support all necessary operations and for
validating the integrity of transaction processing and data storage.

oi'-t‘l-l-'c_SA'I.‘:_I (Simple ATM) S__v.sfem

external entities and processes inputs and outputs.

e b
‘Terminal Keystroke screen Terminal —_ Customer
Keys Screen 7 | customerID | Has
PAN
slot door 5 |
d status command e ¥
Termi slot door Terminal Transaction Account
erminal command status
Slots Doors TransType U AcctNumber
TimeOfDay e Balance
Amount Type
ATMnumber PIN
Terminal
Occurs ——————p{ ATMid
Status
- CashOnHand
Fig 6.1 : Context Diagram of the SATM (Simple ATM) System -
1. Simple ATM System: Central to the diagram, it processes all user interactions and manages Fig 6.2 : Entity/Relationship Model of the SATM System

communication with external entities like the bank and hardware components of the ATM. 1. Entities and Their Attributes:
2. External Entities and Interactions: Customer: Identified by CustomerID and PAN (Personal Account Number).

 Terminal Keys: Users input data such as PINs and transaction choices here, which are Account: Associated with each customer, identified by AcctNumber, and includes
then processed by the ATM system. I- attributes such as Balance, Type of account, and PIN (Personal Identification Number).

« Terminal Screen: Displays transaction infotmation, instructions, and prompts to the
user, controlled by the ATM system based on t}_le transaction status and inputs.

« Terminal Slots and Doors: Handle physical aspects of transactions like card input, cash « Transaction: Occurs during asessionand includes attributeslike TransType (Transaction
dispensing, and receipt printing. The ATM system gends commands to these components i Type), TimeOfDay, Amount, and ATMNumber. 1
based on user requests and transaction requirements. .

Session: Represents an interaction session between the customer and the ATM, not
detailed in terms of attributes in this diagram.

Terminal: Represents the ATM terminal where transactions occur, characterized by
3. DataFlows:) ATMid, Status, and CashOnHand.
¢ Keystrokes to System: Data from user inputs goes to the ATM system for processing.

« Information to Screen: The ATM system sends data to be displayed.

2. Relationships:

[

« Has: Links Customer to Account, indicating ownership or association of an account by a

« Commands to Slots/Doors: Controls mechanical actions like opening deposit doors or customer.
activating cash dispensers. ¥ o Uses: Connects Customer to Transaction, implying that customers use their accounts to
4. Integration with Central Bank: The ATM system communicates with the central bank to perform transactions.
. . : ; suring secure and . .
authenticate transactions, check balances, and perform account updates, ensuring « Occurs: Transaction takes place at a Terminal, denoting the physical location and device

accurate banking operations. where transactions are executed.

P L S

e

l 6.6 Software Testing _

3. Interactions:

« The flow from Customer to Transaction through the Account entity indicates that
transactions are not just linked directly to the customer but are performed through an
account that the customer holds.

o The terminal is integral to the execution and management of transactions, indicating the
interaction of physical ATM components with the transactional data.

4. System Functions and Operations:

o The model suggests that any transaction is recorded with details of type., time, amount,
and the specific ATM used, which can be critical for audit trails, security checks, and
operational logs.

« The status of the terminal and the cash on hand are crucial for managing the availability
and functionality of ATMs, ensuring that transactions can be successfully processed at

specifically detailing how the ATM software handles the PIN entry verification.

Display Screen S1
Incorrect PIN
Display Screen S4

R Wrong Card .
Legitimate Card Display Scresm 31
Display Screen 52 EjertCard \\

Aowaising
First Incorrect PIN ‘\
\ PINTry Display Screen 53 \
& xwaiting % Incorrect PIN
|| Second |spiay Sercen
Correct PIN b Ty
Display Screen S5 /
/' CorrectPIN e
r i S
’r, Display Screen $: Nty)
/
v

fg = X Curresct PIN e

lT?nn:anJm Display Screen

\ Cholet

Fig 6.3 : PIN Entry Finite State Machines

1. States:

« Idle: This is the default state where the machine waits for an action to initiate a session,
typically by inserting an ATM card. |

« Legitimate Card Display Screen 52: Thg system transitions to this state when a valid
card is recognized, prompting the user to enter their PIN.

« Awaiting First PIN Try: After the PIN entry prompt, the system waits for the user to
input their PIN.

« Awaiting Second PIN Try and Awaiting Third PIN Try: If the firstattempt isincorrect,
the system allows up to two additional attempts to enter the correct PIN.

*'i
i
a

|

Integrating Testing I 67 |

e Correct PIN Display Screen S5: This state is reached when a correct PIN is en‘tered at
any try, leading to the transaction choice screen.

* Await Transaction Choice: After successful PIN verification, the user is prompted to
choose the transaction they wish to perform. '

2. Transitions:

+ From Idle to Legitimate Card: Triggered by the insertion of a card that passes initial
validation (not expired, not on a blocklist, etc.).

¢ Incorrect PIN: If the PIN entered is incorrect, the machine moves to the next attempt
state or, after three failed attempts, may lock the card or ask for it to be ejected, not
shown in this diagram.

* Correct PIN: If the correct PIN is entered during any of the three tries, the machine
moves to the Correct PIN state and subsequently to the transaction choice.

3. Error Handling:
* Wrong Card Display Screen $1, Eject Card: If an invalid card is inserted (possibly a card

thatis damaged, unreadable, or not supported), the system will display an error message
and eject the card.

4. Important Considerations:
This FSM ensures security by limiting the number of PIN attempts to three.

It enhances user experience by providing immediate feedback on the status of-the PIN entry
(correct, incorrect).

The transition to "Await Transaction Choice" after a correct PIN entry seamlessly connects the
user authentication phase to transaction operations.

5. Use in Testing:
Each transition and state can be explicitly tested to ensure the ATM's software handles every
possible scenario correctly, ensuring robust handling of user inputs and errors.

This state machine diagram is crucial for developers and testers as it outlines the logical flow
of user interactions needed for PIN verification, a critical security feature in ATM systems.

_—
6.2.2 Testing Strategy

Testing strategies for a Simple Automatic Teller Machine (SATM) system should include a variety
of testing methods to ensure that both the functional requirements and the user interactions are
handled correctly. Using the detailed design provided by the entity/relationship models and finite
state machines, the SATM system is meticulously tested through a structured integration approach:

Structured Approach to Testing the SATM System:
1. Unit Testing:
Objective: Validate the correctness of individual units or components in isolation.

Test Components: Each screen (e.g., Welcome, Enter PIN, Balance Display}, handling of input
fields, and response actions (e.g., button presses).

‘ 6.8 l Software Testing

—

Methods: Use mock objects for hardware interactions like card reading and cash dispensing to
simulate real-world usage.

. Integration Testing:

Objective: Ensure that the integrated subsystems work together as expected.

Test Scenarios: Sequences involving multiple screens and actions, such as the process from
card insertion to PIN verification to transaction selection.

Methods: Use integration harnesses to combine two or more units, testing their interfaces and

interactions.

. System Testing:

Objective: Validate the complete and integrated SATM software system for compliance with
its requirements. ' . ‘ |
Test Scenarios: Complete user workflows from start to finish, including exqepgonal and error
handling scenarios such as incorrect PIN entries, failed transactions, network errors, etc.
Methods: Conduct black-box testing, simulating user interactions on the actual hardware
where possible or within a simulated environment.
Interface Testing:)
Objective: Ensure that the ATM's interfaces with external systems (e.g, bank databases,
networking systems) work as intended. .
Test Scenarios: Transactions that require real-time data excbange like balance checks,
deposits, withdrawals, and interconnectivity with central banking systems. .
Methods: Use stubs and drivers to simulate external systems where direct testing 1s not
feasible.
Usability Testing: 3
Objective: Verify that the ATM machine isuser-friendly and all instructions and error messages
are clear and helpful. . . .
Test Scenarios: User interaction with the ATM uqder various scenarios, focusing on the clarity
of the instructions and the ease of navigating through screens.
Meéthods: Conduct tests with real users or use usability experts to evaluate the system.
Performance Testing: -
Objective: Ensure the system performs well under expected and peak load conditions.
Test Scenarios: Simultaneous access by multiple users, rapid sequence of transactions,
handling of peak load times. .
Methods: Use load testing tools to simulate multiple users and stress testing tools to test the
limits of system capacity.
Security Testing: . .
Objective: Confirm that the system securely handles user data and protects against potential
breaches.

i
i
i
i
I
i
1
|
i
}
§
H
¥

Integrating Testing | 6.9 I

Test Scenarios: Attempts to breach security measures, testing of encryption methods, session
management, and PIN handling.

Methods: Conduct vulnerability scans, penetration testing, and employ ethical hackers to try
to exploit any weaknesses in the system. ’

8. Regression Testing:
Objective: Ensure that new changes do not adversely affect existing functionality.

Test Scenarios: Re-run previous tests to verify that new code changes have not introduced
new bugs.

Methods: Automated testing can be particularly useful here to rerun.a large number of tests
efficiently every time the software is changed. : T T i

9. Compliance Testing:
Objective: Verify that the ATM complies with all relevant regulations and standards.

Test Scenarios: Compliance with financial regulations, data protection laws, and hardware
safety standards.

Methods: Review compliance guidelines and use standard checklists to ensure all criteria are
met.

Each of these testing strategies provides a systematic approach to ensuring that the SATM operates
reliably, securely, and efficiently, providing a high-quality service to its users.

6.2.3 Structural and Behavioural Insights

Structural Insi

The structural insights of the Simple ATM System (SATM) highlight how integration and system
testing differ and where they intersect within the development cycle.

1. Integration Testing Context:

¢ Integration Testing: This focuses on the interfaces and interaction between integrated
units, testing if they function together as expected. In the context of the SATM, this means
ensuring that interactions between components like the terminal, transaction processing,
and customer account handling are seamless and error-free.

* Role in Waterfall Model: Traditionally, in the waterfall model, integratiorétesting occurs
after "unit testing" and before "system testing," acting as a crucial step to ensure that
individually tested units work together.

2. System Testing Context:

 System Testing: This level tests the complete and integrated software to verify that
it meets the specified requirements. For SATM, system testing would ensure that all
functionalities, including card reading, PIN validation, transaction processing, etc., meet
the customer and bank operational standards.

+ Testing against Requirements: System testing is usually aligned with the requirements
specifications, ensuring that the software behaves as intended in a real-world scenario.

I 6.10 l Software Testing

3. Identifying Extremes:
Kentifying fhe "extremes” in system testing, which involves testing the system’s behavior
under extreme conditions. Example scenarios provided include various combinations of card
insertions, PIN entries, and transaction processes to cover possible real-world use cases.

4. Integration vs. System Testing:
The integration testing focuses more on the preliminary design and the interaction between
units, system testing is more about aligning with the final requirements specification, ensuring

the end product functions as a cohesive unit.

Behavineal Insights:
Behavioral insights revolve around understanding how the system behaves in response to various
inputs and conditions, typically viewed from the system's "port boundary," which involves inputs and
outputs that the system interacts with in its operational environment.

1. Port Boundary Concept:

« Definition: The port boundary concept refers to the interaction points where the
system communicates with the external world (users, other systems). For SATM, these
include user inputs through the terminal, outputs displayed on the screen, and physical
interactions like card insertion or money dispensation.

« Testing Implications: Testing should ensure that all interactions at these boundaries
occur as expected. Inputs and outputs should be tested to verify that the system reacts
correctly to user actions and displays the correct information.”

2. System Test Cases: ; SN
o System-Level Understanding: System test cases are derived from how well the system
adheres to its specified functionalities at the port boundary. This includes ensuring that
each user action triggers the appropriate response in the system, which is crucial for user
satisfaction and system reliability.
» Interleaved Sequence Testing: This approach to testing suggests using interleaved
sequences of port events as test cases, simulating real-world interactions to verify the
system’s behavior comprehensively. ' ’

3. Analytical View of Testing:
« Unit-Level Threads: Analysis begins at the unit level, where individual functionalities
are tested.
« Integration-Level Threads: These are more complex, involving sequences of unit-level
threads, and are essential for understanding how well the units integrate to perform a
complete function within the system.
By focusing on both structural and behavioral insights, the testing strategy for the SATM system
ensures a comprehensive evaluation of both individual and integrated functionalities, emphasizing
real-world usage and interaction with the system'’s external environment. This holistic approach to
testing helps in identifying potential issues that might not be evident at the unit or integration level

alone.

Integrating Testing &.11

6.3 Introduction to Integration Testing

The falll.lre of tlTe Mars Climate Orbiter mission in September 1999 underscores the critical role of
integration testing in.software development. This incident resulted from ; signiﬁbcant;in'tegraﬁon .
erTor: L_ock_heed I\{I_arun Afsu-onguﬁps used acceleration data in English units (poiiﬁds') ‘wHile the Jet
Propulsion Laboratory utilized metric units (newtons) for calculations, This djscrepaj; ultimatel
lgd tq the loss of the spacecraft as it approached Mars. This issue highlight the imcyorta }1,’
comprehensive iritegration testing to identify and rectify such issues:" p ' p"» : e
Amo.ng the three key levels of software testing—unit testing, integration testing, and system
tesm::.g—integratiun. testing is Gﬁ:en perceived as the least understood and in‘adequaﬁely executed
?hase in practice. This chapter emphasizes the importance of integration testing and explores vari
integration testing strategies. : e il

—_—— e

Integration testing involves testing the interactions between integrated units or components to ensure the:

work together as expected. The goal is to detect interface defects and ensure that the integrated componenti
function correctly as a whole. It involves verifying the behavior of tile composite component as a whole
including its interfaces, interactions, and overall functionality, ’

h
6.3.2 Features (or) Characteristics (or) Importance of Integration Testing

int:jgratrior:h testig%v is characterized by several key features that distinguish it from other types of
esting in the software development lifecycle. Some of the i isti i i
s prominent characteristics of integration

1. Intzrallction Testing: Integration testing focuses on testing the interactions between different
modules or components f’f a software system. It ensures that these components work together
seamlessly and communicate effectively with each other:

2. _Interfat:e Validation: One of the main objectives of integration testing is to validate the
mterface.s bfshveen modules. This involves checking data exchange, method calls, and
communication protocols to ensure compatibility and consistency. 3]

3. Dependency Management: Integrati i in i -

. 1 gration testing helps in identifying ahd managi
fiependenaes between modules. It ensures that changes in one mozllegdo not advergs];)gf
impact the functionality of other interconnected modules.

4, In(:l"emxlmtgl‘ Appma.ch:-lntegration testing is often conducted incrementally, starting with
_testmg individual units and gradually integrating them to form larger components. This
incremental approach helps in detecting integration issues early in the development process.

5. Types of Inte‘gratian.: There_are different types of integration testing approaches, such
East topﬁown mtegrat;}clm testing, bottom-up integration testing, and sandwich (hybrid)
Integration testing. Each type focuses on integrating components i i i

{ nts in
comprehensive test coverage. . 5 e s

l 6.12 l Software Testing

6. Fault Detection: Integration testing aims to detect faults that may arise due to the integration
of different modules. By simulating real-world interactions, integration testing helps in
uncovering defects that may not be apparent during unit testing.

7. Automation: Automation tools and techniques are often used in integration testing to
streamline the testing process, execute test scenarios efficiently, and generate reports on
integration test results.

8. System Behavior Validation: Integration testing validates the overall behavior and
performance of the software system by testing the integrated components as a whole. It
ensures that the system functions as expected and meets the specified requirements.

_—

6.3.3 Types of Integration Testing

Integration testing is a critical phase in the software testing process that focuses on verifying the
interactions and interfaces between different components or modules of a software system. There
are several types of integration testing approaches that software development teams can be used to
ensure the seamless integration and functionality of the system. Some common types of integration
testing are:

1. Decomposition-Based Integration Testing:

« Top-Down Integration: In top-down integration testing, testing begins with the highest-
level modules or components and gradually progresses to lower-level modules. Stub
functions are used to simulate the behavior of lower-level modules thathave notyet been
integrated. £

« Bottom-Up Integration: The bottom-up integration testing starts with the lowest-level

modules and moves upwards by integrating higher-level modules incrementally. Drivers
are used to simulate the behavior of higher-level modules thatare yetto be integrated.
Sandwich Integration: Also known as hybrid integration testing, sandwich integration
combines elements of both top-down and bottom-up approaches. It involves integrating
modules both from the top down and from the bottom up simultaneously to ensure
comprehensive testing coverage. ‘

2. Call Graph-Based Integration Testing:

e Pairwise Integration: Pairwise integration “testing focuses on testing interactions
between pairs of modules. This approach aims to uncover defects that may arise from
the interaction of specific module pairs.) :

o Neighborhood Integration: Neighborhood integration testing expands on pairwise
testing by considering the interactions within a neighborhood or group of modules. It
tests the interactions between modules within a specific proximity to identify integration
issues.

3. Path-Based Integration Testing:
Path-based integration testing involves testing the execution paths through integrated
components to ensure that the system behaves as expected under different scenarios. This
approach focuses on verifying the flow of data and control between modules along specific
paths to validate system functionality and behavior.

Integrating Testing 6.13

»—
i

"I‘hese d.ifferent types of integration testing approaches offer various strategies for tesﬁng the
mtegr.atlon of software components, each with its own strengths and considerations. By using a
corflbmation of these integration testing techniques, software development teams can effectively
validate the interactions and interfaces between modules, detect integration issues early, and ensure
the overall reliability and performance of the integrated system. :

6.4 Decomposition-Based Integration Testing

Decomposition-Based Integration Testing is a crucial phase in the software develo'pment lifecycle
that focuses on verifying the cotrect integration of individual modules or components to ensure that
the system functions as intended when all parts are combined. This testing approach aligns with
the principles of Decomposition-Based Integration, where the system is built by integrating modular
components based on functional decomposition. .

Key aspects of Decomposition-Based Integration Testing include:

1. Modl.ll'e Testing: Before integration, each module is tested in isolation to validate its
functionality and behavior. Unit tests are conducted to ensure that individual modules perform
as expected according to their specifications. '

2. 'Inte‘gration St_rategy Selection: Based on the system architecture and design, an appropriate
integration strategy (such as top-down, bottom-up, sandwich, or big bang) is chosen to
combine modules in a systematic manner.

3. Interface Testing: During integration, special attention is given to testing the interfaces
between modules to. ensure that data and control flow correctly between components.
Interface testing helps identify communication issues and compatibility problems.

4, Pata Flow Testing: Data flow within the integrated system is tested to verify that information
is passed correctly between modules and that data integrity is maintained throughout the
system.

5. Dependency Management: Testing focuses on managing dependencies between modules
to ensure that changes in one component do not adversely affect other parts of the system.
Dependency testing helps in identifying and resolving issues related to inter-module
interactions.

6. Error Handling: Integration testing includes scenarios to test error handling and recovery
mechanisms when modules encounter unexpected situations or faults. This ensures that the
system can gracefully handle errors and maintain stability.

7. Regression Testing: As modules are integrated and changes are made during the testing
process, regression testing is performed to verify that existing functionalities remain unaffected
and that new integrations do not introduce regressions.

!3y conducting thorough Decomposition-Based Integration Testing, software development teams can
identify and address integration issues early in the development cycle, validate the system's overall
functionality, and ensure that the integrated software meets the specified requirements and quality
standards. This testing approach plays a critical role in delivering a reliable and robust software
product to end-users.

| 6.14 | Software Testing

j=——=—
6.4.1 Top- Down Integration Testing

Top-Down Integration Testing is a software testing approach where testing begins with the highest-
level modules or components and gradually progresses towards lower-level modules. In this strategy,
the focus is on integrating and testing the main control modules or components first, followed by the
integration of subordinate modules. Stubs or sxmulated modules are used to stand in for lower-level
modules that have notyet been developed or mtegrated

A Start with Mam Module. The testmg process begins with the main or top-level module of the
software system. :

4 Subordinate Module Integration: Once the main module is tested, integration proceeds to
the next level of modules that are directly dependent on the main module.

A Stubs Usage: Stubs are used to simulate the behavior of lower-level modules that are not yet
integrated. Stubs provide the necessary input and mimic the output of the missing modules.

A Incremental Integration: Integration is done incrementally, with each level of modules being
added and tested in a step-by-step manner.

A Testing Continues Downwards: The integration and testing process continues downwards
through the hierarchy of modules until all components are integrated and tested together.

{ Top-Down Integration Testing

Let’s consider a simple examiple of a banking application with the following modules:
¢« Main Module: Account Management
« Subordinate Modules: Transaction Processing, Customer Information
1, Main Module Testing:
o The Account Management module, responsible for overall account handling, is tested
independently.
» Functionality such as account creation, deletion, and updating is verified.
2. Subordinate Module Integration:
o The Transaction Processing module, which handles deposit and withdrawal transactions, is
integrated with the Account Management module.
« Stubs are used to simulate the Customer Information module's behavior.
» Transactions are processed and validated within the integrated system.
3. Further Integration:
o The Customer Information module, which stores customer details, is integrated with the Account
Management and Transaction Processing modules.
o Stubs are replaced with actual modules as they become available.
o Customer information retrieval and validation are tested in conjunction with account and
transaction functionalities.
4, Complete System Testing:
» Once allmodules are integrated, end-to-end testing is performed to ensure that the entire banking
application functions correctly.
o Data flow, error handling, and system performance are evaluated in a holistic manner.

Integrating Testing 6.15

-\d\ antages dml D: ui\ an

s of Top-Down Int ition Testing

o Early identification of high-level issues.
* Critical functionalities are integrated and tested first.

* Dependency on lower-level modules that may not be ready.

» Potential delays in testing lower-level functionalities.

6.4.2 Bottom-Up Integration Testing

Bottom-Up Integration Testing is a software testing approach that starts with testing individual
modules or components at the lowest level and gradually progresses towards higher-level modules
or the complete system. In this strategy, lower-level modules are integlated and tested first, and
then the focus shifts to integrating higher-level modules that depend on the already tested lower-
level components. Drivers are used to simulate the behavior of higher-level modules that are not yet
developed or integrated.

How Bottom-Up Integration Testing Works:

1. Start with Lowest-Level Modules: Testing begins with the.individual modules at the lowest
level of the software system.

2. Higher-Level Module Integration: Once the lower-level modules are tested, integration
proceeds to the next level of modules that depend on the already tested components,

3. Drivers Usage: Drivers are used to simulate the behavior of higher-level modules that are
not yet integrated. Drivers provide the necessary input and mimic the outpiit of the missing
modules. ' .

4. Incremental Integration: Integration is done incrementally, with each level of modules being
added and tested in a step-by-step manner

5. Testing Continues Upwards: The integration and testing process continues upwards through
the hierarchy of modules until all components are integrated and tested together.

| Bottom-Up Integration Testing

Consider a simple example of an e-commerce application with the following modules:
* Lowest-Level Modules: Payment Processing, Inventory Management
* Higher-Level Module: Order Fulfillment
1. Lowest-Level Module Testing:

* The Payment Processing module, responsible for handling payment transactions, is tested
independently. ' ‘

+ Functionality such as payment validation and processing is verified.

| 6.16 | Software Tesling

’7 2. Higher-Level Module Integration:
o The Inventory Management module, which tracks product availability, is integrated with' the
Payment Processing module.
« Drivers are used to simulate the Order Fulfillment module's behavior.
« Payment processing and inventory updates are tested in conjunction.
3. Further Integration:
« The Order Fulfillment module, which manages order processing and shipment, is integrated with
the Payment Processing and Inventory Management modules.
« Drivers are replaced with actual modules as they become available.

«' Order processing and shipment handling functionalities are tested in the integrated system.

4. Complete System Testing:
« Once all modules are integrated, end-to-end testing is performed to ensuré that »Athé entire
e-commerce application functions correctly.

« Potential delays in testing higher-level functionalities.

6.4.3 Sandwich Integration Testing

Sandwich Integration Testing is a hybrid approach that combines elements of both Top-Down and
Bottom-Up Integration Testing strétegies. In this method, testing starts simultaneously from the
top (main control modules) and the bottom (individual modules) towards the middle layers of the
software system. The idea is to integrate and test modules at both ends while gradually moving
towards the center of the system, where the integratiori of components from both directions occurs.

How Sandwich Integration Testing Works:

A Simultaneous Integration: Testing begins by integrating and testing the main control
modules at the top level and individual modules at the bottom level concurrently.

A Middle Layer Integration: As testing progresses, integration moves towards the middle
layers of the system, where components from both the top and bottom are integrated.

A Validation and Verification: The interactions between the top-level and bottom-level
modules are validated and verified in the middle layers.

P par p— - ST

Integrating Testing 6.17

A = - .)
.Incremfental Approach: Integration is done incrementally, with a focus on ensuring that the
interactions between different layers of the system work seamlessly.

A - - .)
Comprehensive Testing: The goalis to achieve comprehensive testing coverage by combining
the strengths of both Top-Down and Bottom-Up approaches. '

4
| Sandwich Integration Testing

= '?I-zhL:h.....- i
Consider a social media platform with the following modules:

 Top-Level Module: User Interface and Social Feed

« Bottom-Level Modules: User Authentication, Post Management
¢ Middle Layer: Notification System
In Sandwich Integration Testing:
» User Interface and Social Feed are tested at the top level.
* User Authentication and Post Management are tested at the bottom level.

+ The Notification System in the middle layer integrates components from both ends to ensure seamless
notifications for user interactions. .

Advantages and Disad

* Ensures thorough testing of the entire system by integrating components from both ends.
» Helps in identifying integration issues early in the testing process.

* Combines the benefits of Top-Down and Bottom-Up strategies for a more balanced integration testing
process.

» Ensuring that dependencies between top-level and bottom-level modules are handled effectively.

* Requires coordination and resources to conduct testing from multiple directions.

6.5 Call Graph-Based Integration

Call Graph-Based Integration Testing is a software testing approach that focuses on analyzing the call
relaFionships between different modules or components in a software system to guide the integration
testing process. A call graph is a graphical representation of how modules or funcﬁons call each
other during program execution. By examining the call graph, testers can identify the flow of control

and data between components, helping them prioritize integration testing efforts based on these
dependencies.

The call graph is developed by considering units to be nodes, and if unit A calls {or uses) unit B, there
1s an edge from node A to node B. The call graph for the Calendar program is shown in below Figure.

6.18 | Software Testing

Fig 6.4 : Call Graph of Calender Program

Choraereristios of € ;Lf[“I':||_:h-n.t.‘~.t‘t| Integration '1]--_'tiue:

A Call Graph Generation: The first step involves generating a call graph that illustrates the
relationships between modules or functions in the software system. '

A Identifying Dependencies: Testers analyze the call graph to identify dependencies between
components, including function calls, data exchanges, and control flow.

A Prioritizing Integration Testing: Based on the call graph analysis, integration testing
priorities are established to focus on critical paths and Interactions between modules.

A Testing Scenarios: Test scenarios are designed to cover the interactions identified in the call
graph, ensuring comprehensive integration testing.

A Regression Testing: Call graph-based testing helps in identifying potential regression issues
when changes are made to the software system.

sfing:

.\d\-.m.t ages ;'JF[.-i:lli 'ié.l'l.ll!]'tvn-il-‘e.ﬁ'-d.“lIl'i.Z(."_."l'.-"I l-iJn T n

A Dependency Visualization: Provides a clear visualization of dependencies between modules,
aiding in understanding the software architecturé.

A Focused Testing: Enables testers to focus on critical paths and interactions, improving the
effectiveness of integration testing.

A Early Issue Detection: Helps in early detection of integration issues based on the identified
dependencies.

A Efficient Testing: Guides testers in designing targeted test scenarios for thorough integration

testing.

Challen; :of(_al_lG = o~ ng:
A Complexity: Analyzing and interpreting large call graphs can be complex, especially in large
software systems.
A Dynamic Environments: Call graphs may change dynamically based on runtime behavior,
requiring continuous updates for accurate testing.

Characte
s ==y

Integrating Testing 6.19

A Tool Dependency: Effective call i
. : all graph generation and analysis squi iali
adding to the testing process complexity. T

Call Graph-Based Integration

Consider a web application with the following modules:
* User Authentication

 Data Processing
« -Reporting Module
In Call Graph-Based Integration Testing:

* The call graph analysis reveals that the Data P i i T
Tiaalegrhan) Processing module calls functions from User Authentication

e Test scenarios are designed to valida i i
te the interactions betwee icati
Processing based on the call graph. Faral (e

g
o Integl ation testing focuses on ensur mg seamless data flow and authEIlthatloﬂ processes between the

_
6.5.1 Pair wise Integration Testing

Pairwise Integration Testing is a systematic testing technique that focuses on testing interacti
hEt"_veeP pairs of modules or components in a software system. The goal of pairwife int.:a t? -
tEStl.I]g is to identify and validate the interactions between different pairs of modules to ensu%'l:ﬂlnt
the mtf.'grated system functions correctly. This approach helps in detecting integration issues that
may arise due to the interactions between specific pairs of modules. b

ise Integration Testing:

e ———

A s] . N » - 1
Pair Selec.tlon. Modules are selected in pairs for integration testing based on their
dependencies and interactions in the software system. ‘

. . - ; :
Testing Scenarios: Test scenarios are designed to cover the interactions between each pair of
modules, focusing on input-output relationships and data flow.

Isolzftlon of Pairs: Each pair of modules is tested in isolation to identify any integration issues
specific to that pair.

6.20 | Software Testing

—

A Combinatorial Testing: Pairwise testing aims to cover all posSible combinations ofinteractions
between pairs of modules to ensure comprehensive testing coverage.

A Error Detection: The testing process aims to detect errors related to the interactions between
specific pairs of modules, helping in early issue identification.

How it works?

Pairwise Integration Testing works by systematically selecting pairs of modules or components in
a software system and testing the interactions between these pairs to ensure the integrated system
functions correctly.
1. Pair Selection:
« Modules are selected in pairs based on their dependencies, interactions, and integration
points within the software system.
« The selection of pairsis typically guided by the understanding of the software architecture,
module dependencies, and critical paths.
2. Testing Scenarios Design:
« Test scenarios are designed to cover the interactions between each pair of modules
selected for testing.
« Scenarios focus on input-output relationships, data flow, error handling, and boundary
conditions specific to the interactions between the selected pairs.
3. Isolation of Pairs: .
o Each pair of modules is tested in isolation to identify any integration issues that may
arise due to the interactions between those specific modules.
« Isolating the pairs helps in pinpointing integration issues and understanding the behavior
of the integrated components.
4, Combinatorial Testing:
« Pairwise testing aims to cover all possible combinations of interactions between pairs of
modules while minimizing the number of test cases needed.
« The goal is to achieve comprehensive testing coverage by testing interactions between
pairs without testing every possible combination of modules.)

4

Execution and Analysis:
« Test cases designed for each pair of modules are executed to validate the interactions and
integration points.

o Test results are analyzed to identify integration issues, such as data inconsistencies,
communication failures, or incorrect behavior resulting from the interactions between
the pairs.

6. Issue Identification and Resolution:

« Integration issues specific to certain pairs of modules are identified during testing.

« Detected issues are documented, prioritized, and resolved to ensure the integrated
system functions correctly.

TIIET

T ——

e

Integrating Testing 6.21
7. Iterative Process: I.

o Pairwise Integration Testing is often an iterative process where test scenarios are refined
based on feedback and issues encountered during testing.

* The process may involve retesting pairs of modules after issue resolution to validate the
effectiveness of the fixes.

Pairwise Integration Testing

Consider a banking application with the following modules:
o User Authentication
» Account Management
« Transaction Processing

In Pairwise Integration Testing:

« Test scenarios are designed to test interactions between pairs of modules, such as User Authentication

and Account Management, Account Management and Transaction Processing, and User Authentication
and Transaction Processing.

o Each pair of modules is tested to validate the data flow and interactions between them, focusing on
input validation, data processing, and error handling.

« Integration testing efforts are concentrated on identifying and resolving issues specific to the
interactions between these pairs of modules.

e Integr:

1. Pros of Pairwise Integration Testing:

A Efficient Coverage: Pairwise testing provides comprehensive coverage by testing
interactions between pairs of modules without the need to test all possible combinations,
reducing the number of test cases required.

Focused Testing: Targets specific pairs of modules for integration testing, allowing for
focused testing efforts on critical integration points and dependencies.

A Early Issue Identification: Helps in early detection of integration issues specific to
certain pairs of modules, enabling timely resolution and reducing the likelihood of more
significant problems later in the development cycle. ¢

A Reduced Testing Effort: Achieves thorough testing coverage with fewer test cases
compared to exhaustive testing approaches, saving time and resources.
A Optimized Testing: ldentifies integration issues related to specific pairs of modules,
enabling targeted testing and efficient use of testing resources.
2. Cons of Pairwise Integration Testing:

A Dependency Identification: Identifying the dependencies and interactions between
modules accurately can be challenging, leading to potential gaps in test coverage.

A Test Case Design Complexity: Designing effective test scenarios to cover all pairs of
modules while avoiding redundant testing can be complex and time-consuming.

| 6.22 | Software Testing

A Dynamic Systems: Testing interactions between pairs of modules in dynamic systems
with frequent changes may require continuous updates to test cases, impacting testing
efficiency.

A Limited Scope: Pairwise testing focuses on interactions between pairs of modules,
which may not uncover issues that arise from interactions involving multiple modules
simultaneously.

A Maintenance Overhead: As the software system evolves, maintaining pairwise test
cases to reflect changes in module interactions can be challenging and may require
ongoing effort.

_——me——r——————=——a sy

6.5.2 Neighborhood Integration Testing

Neighborhood Integration Testing is a testing approach that focuses on testing the interactions
and integration between a module under test and its neighboring modules or components within
a software system. This testing teohnique aims to verify the communication, data exchange, and
functionality between the module being tested and its immediate neighbors to ensure seamless
integration and proper system behavior.

A Prox1m1ty Testmg N elghborhood Integration Testing targets modules that are in close
proximity or have direct dependencies on each other within the software system.

A (Clustered Testing: Modules are grouped into clusters or neighborhoods based on their
interconnections and shared functionalities for focused integration testing.

A Inter-Module Communication: Testing scenarios are designed to verify the communication
channels and data exchanges between neighboring modules.

A Dependency Validation: Emphasis is placed on validating dependencies and interactions
between immediate neighbor modules to ensure seamless integration.

A Functional Cohesion: Testing focuses on the functional cohesion and collaboration between
closely related modules to detect integration issues early.

T mr

Integrating Testing 6.23

Hms |L W1

Nelghborhood Integration Testmg works by focusing on testing the interactions and integration
between a specific module under test and its neighboring modules or components within a software
system.

1. Cluster Identification:

Identify clusters or neighborhoods of modules that have strong 1nterdependenc1es or shared
functionalities within the software system.

Testing Scope Definition:

Define the scope of testing for each neighborhood, outlining the specific modules and
interactions to be tested within the cluster.

3. Scenario Design:

Design test scenarios that target the interactions between modules within each neighborhood,
focusing on data flow, communication protacols, and shared functionalities.

4. Integration Testing:

Conduct integration testing within each neighborhood to validate the interactions and
integration points between neighboring modules.

5. Boundary Testing:

Test boundary conditions and edge cases within the neighborhood to uncover potential
integration issues related to data boundaries or exceptional scenarios.

6. Error Handling:

t

Verify error handling mechanisms and exception scenarios between neighboring modules to
ensure robust error recovery and system stability. :

7. Regression Testing:

Perform regression testing within each neighborhood after changes or updates to confirm that
the integration between modules remains intact.

8. Collaborative Issue Resolution:

Collaborate with developers and stakeholders to address integration issues identified within
specific neighborhoods, focusing on enhancing communication and data exchange between
modules.

Neighborhood Integration Testing

Let's consider the following modules for Neighborhood Integration Testing:
¢ User Authentication Module: Responsible for user login, authentication, and session management.
¢ Product Catalog Module: Manages the display of products, product information, and search
functionalities.
¢ Shopping Cart Module: Handles adding/removing items to/from the cart, calculating totals, and
managing the shopping cart state.
Example Scenario for Neighborhood Integration Testing:
1. Cluster Identification: The User Authentication Module, Product Catalog Module, and Shopping Cart
Module are identified as a nelghborhood cluster due to their interdependencies in the e-commerce
platform.

6.24 | Software Testing

2. Testing Scope Definition: Define the scope of testing to focus on the interactions between these three
modules within the cluster.

3. Scenario Design:
« Test Scenario 1: Verify that a logged-in user can add items from the Product Catalog to the
Shopping Cart.

+ TestScenario 2: Test the functionality to update the shopping cart total when items are added or
removed.

« Test Scenario 3: Validate that only authenticated users can access the shopping cart feature.

4. Integration Testing: Execute the test scenarios to ensure seamless communication and data flow
between the User Authentication, Product Catalog, and Shopping Cart modules.

5. Boundary Testing: Test scenarios with edge cases such as adding a large number of items to the cart
to check for performance and boundary issues.

6. Error Handling: Validate error handling mechanisms for scenarios like incorrect login credentials,
out-of-stock products, or invalid cart operations.

7. Regression Testing: Perform regression testing within the neighborhood cluster after any updates or
changes to confirm that the integration between modules remains intact.

8. Collaborative Issue Resolution: Collaborate with developers to address any integration issues
identified during testing, focusing on improving the communication and data exchange between the

User Authentication, Product Catalog, and Shopping Cart modules.

Pros and Cons of Neighborhood Integration Testing

S

1. Pros of Neighborhood Integration Testing:

A Focused Testing: Neighborhood Integration Testing allows for focused testing on specific
clusters of closely related modules, ensuring thorough testing of critical interactions
within these clusters.

A Early Issue Detection: By testing interactions between immediate neighbor modules
early in the development cycle, integration issues can be identified and resolved promptly,
reducing the likelihood of complex integration problems later on.

4 Improved Collaboration: Testing within neighborhood clusters encourages
collaboration between developers working on interconnected modules, leading to better
communication and understanding of integration requirements.

4. Efficient Testing: By targeting specific clusters of modules, testing efforts can be
optimized, leading to more efficient use of resources and time during the testing phase.

5. Enhanced Stability: Validating interactions between closely related modules helps
improve the stability and reliability of the software system by ensuring seamless
integration within specific functional areas.

2. Cons of Neighborhood Integration Testing:

1. Limited Scope: Neighborhood Integration Testing focuses on interactions within specific
clusters, potentially overlooking integration issues that may arise between modules in
different clusters or at a higher level of integration.

Integrating Testing 6.25

2. Dependency Risks: If the dependencies between modules within a neighborhopd are
notaccurately identified or tested, there is a risk of missing critical integration issues that
may impact the overall system functionality.

3. Integration Gaps: Testing within neighborhood clusters may create gaps'in testing
coverage between clusters, leading to potential integration issues at the boundaries of
these clusters that are not adequately addressed.

4. Complexity Management: Managing testing efforts for multiple neighborhood
clusters can become complex, especially in large-scale software systems with numerous
interconnected modules, requiring careful planning and coordination.

5. Maintenance Challenges: As the software system evolves, maintaining neighborhood

integration tests and ensuring they remain up-to-date with changesin module interactions
can pose challenges, especially when dealing with frequent updates or modifications.

6.6 Path-Based Integration Testing

Path-Based Integration Testing is a testing approach that focuses on validating the flow of data
and control between interconnected modules or components within a software system along specific
paths or sequences. This testing technique aims to verify the correct execution of critical paths
through the system, ensuring that data is processed accurately and control is transferred correctly
between modules. Path-Based Integration Testing helps identify integration issues related to data
flow, control flow, and the interaction between modules along predefined paths within the software
system.

Characteristics of Path-Based Integration Testing:

1. Path Identification: Critical paths through the system are identified based on the expected
flow of data and control between modules.)

2. Path Selection: Specific paths are selected for testing based on their importance to system
functionality, error-prone areas, or high-risk scenarios.

3. Data Flow Validation: Testing focuses on verifying the correct flow of data along the selected
paths, ensuring that data is processed accurately and transferred between modules without
loss or corruption.

4. Control Flow Verification: Validation of the control flow between modules to ensure that
control is transferred correctly along the selected paths, following the expectéd sequence of
operations.

5. Boundary Condition Testing: Testing scenarios include boundary conditions along the
selected paths to uncover potential issues related to data boundaries, exceptional cases, or
edge conditions.

6. Error Handling Testing: Validation of error handling mechanisms along the paths to ensure
that exceptions are handled appropriately and the system maintains stability under error
conditions.

7. Integration Point Testing: Testingatintegration pointsalongthe pathsto verify the interaction
and communication between modules, including parameter passing, data exchange, and
synchronization.

l 6.26 | Software Testing

1.

How Path-Based Integration Testing Works:

Path Identification:
Identify critical paths through the system that represent key functionalities, user transactions,
or data processing sequences.

. Path Selection:

Choose specific paths for testing based on factors such as complexity, risk, dependencies, and
impact on system behavior.)

. Test Scenario Design:

Design test scenarios that follow the selected paths, including input data, expected outcomes,
and steps to be executed along the path.

. Path Execution:

Execute the test scenarios to validate the flow of data and control along the selected paths,
monitoring the behavior of the system at integration points.

. Result Analysis:

Analyze test results to identify any deviations from expected behavior, inciuding data
discrepancies, control flow errors, or integration issues along the paths.

. Issue Resolution:

Collaborate with developers to address any integration issues identified during testing,
focusing on improving data flow, control transfer, and interaction between modules along the
critical paths.

Path-Based Integration Testing

Path-Based Integration Testing Scenario: Funds Transfer
1.

Path Identification: The critical path for funds transfer involves the user logging in, selecting the
transfer option, entering transfer details, verifying the transaction, processing the transfer, updating
account balances, and sending a notification.

. Path Selection: Select the funds transfer path for testing due to its importance in ensuring accurate

financial transactions and data integrity.

. Test Scenario Design: ‘

Scenario 1: Successful Funds Transfer
User logs in with valid credentials. .

User selects the transfer option and enters transfer details.

System verifies the transaction details.

Funds transfer is processed successfully.

Account balances are updated accordingly.

Notification is sent to the user confirming the transfer.

. Path Execution: Execute the test scenario to validate the flow of data and control along the funds

transfer path, ensuring that each step functions correctly and data is processed accurately.

. Result Analysis: Monitor the test execution to identify any deviations from the expected behavior, such

as incorrect account balances, failed transactions, or missing notifications.

. Issue Resolution: Collaborate with developers to address any integration issues discovered during

testing, focusing on impraving the interaction between modules involved in the funds transfer process

Integrating Testing I 6.27 I

Pros and Cons of Path-Based Intesration Testing

1. Pros of Path-Based Integration Testing:

A Focused Testing: Path-Based Integration Testing allows for focused testing ‘on critical
paths through the system, ensuring thorough validadon of key functionalities and user
transactions.

4 Comprehensive Coverage: By targeting specific paths, this approach provides
comprehensive coverage of important scenarios, including data flow, control flow, error
handling, and intégration points.

A Early Issue Detection: Identifying and testing critical paths early in the development
cycle helps in detecting integration issues promptly, reducing the likelihood of complex
problems later on:

4 Improved Quality: Validating the flow of data and control along specific paths enhances
the quality and reliability of the software system, ensuring that key functionalities work
as intended.

4 Efficient Testing: Path-Based Integration Testing optimizes testing efforts by focusing
on high-impact areas, leading to efficient use of resources and time during the testing
phase.

2. Cons of Path-Based Integration Testing:

4 Limited Scope: This approach may overlook integration issues that occur outside the
selected paths, potentially missing critical interactions between modules in different
scenarios.)

A Complexity Management: Managing and testing muiltiple critical paths can bécome
complex, especially in systems with intricate dependencies and interactions, requiring
careful planning and coordination.

4 Dependency Risks: If dependencies between modules along the selected paths are
not accurately identified or tested, there is a risk of missing integration issues that may
impact overall system functionality.

A Maintenance Challenges: Maintaining path-based test scenarios and ensuring they
remain up-to-date with system changes can be challenging, especially in dynamic
development environments with frequent updates.

4 Risk of Oversimplification: Focusing solely on critical paths may oversimplify testing,
potentially missing edge cases, exceptional scenarios, or less common paths that could
lead to integration issues. ' :

== — __ -~ ——=——————ry
6.7. Review Questions

1. What is Top- Down Integration Testing?
2. Mention the Advantages and Disadvantages of Top-Down Integration Testing.
3. What is Bottom-Up Integration Testing?

—
vt e AR

- Each Qliestion Carries Two Marks |

6.28

Software Testing

O 0 NN O U

. Mention the Advantages and Disadvantages of Bottom-Up Integration Testing.
. What is Sandwich Integration Testing?

. What is Call Graph-Based Integration?

. Mention the types of Call Graph-Based Integration.

. What is Pair wise Integration Testing?

. What is Neighborhood Integration Testing?

. What is Path-Based Integration Testing?

Explain Structural and Behavioural Insights of Simple ATM Problem.
Explain the Features and Importance of Integration Testing.

How Top- Down Integration Testing Works? Explain with an example.
How Bottom-Up Integration Testing Works? Explain with an example.
How Sandwich Integration Testing Works? Explain with an example.

. What is Call Graph-Based Integration? Mention its Characteristics.

. What is Pair wise Integration Testing? Mention its Characteristics.

. How Pair wise Integration Testing Works?

. Write the Pros and Cons of Pairwise Integration Testing.

. What is Neighborhood Integration Testing? Mention its Characteristics.
. How Neighborhood Integration Testing Works?

. Write the Pros and Cons of Neighborhood Integration Testing.

. What is Path-Based Integration Testing? Mention its Characteristics.

. How Path-Based Integration Testing Works?

. Write the Pros and Cons of Path-Based Integration Testing.

vk oo

Explain Levels of Testing in Different Life Cycle Models.

Explain the Testing Strategy for Simple ATM System (SATM).

Explain the Types of Integration Testing with examples.

Explain the types of Decomposition-Based Integration Testing with examples.

Discuss Call Graph-Based Integration and Write its characteristics, advantages and
disadvantages.

6. Explain the types of Call Graph-Based Integration with examples.

. Eloborate Path-Based Integration Testing with an example.

20 % o o0 o
XXX

Introduction to System Testing

= What is System Testing?

= (bjectives of System Testing

= Features or Characterisers of System Testing
Atomic System Function (ASF)

= [mportance of Atomic System Functions (ASFs)

= Characteristics of Atomic System Functions (ASFs)
Concept of Threads in System Testing

= Qbjectives of a Thread

= Characteristics and Importance of a Thread

= Types of Threads in System Testing

= Thread Possibilities in the SATM System
Basic Concepts for Requirements Specification
Finding Threads in System Testing

= Core Concepts for Finding Threads

= General Procedure for Finding Threads in System Testing

= Example - Finding Threads in the SATM System
Structural Strategies for Thread Testing
Functional Strategies for Thread Testing

Review Questions

| 7.2 | Software Testing

7.1 Introduction to System Festing

System testing is like trying oit a used car or an online service to ensure it meets our expectations,
rather than just finding faults. It focuses on meeting requirements rather than checking the code
itself. However, because it's informal and often rushed due to deadlines, it may lack the formality it
should have. To improve, we can think of testers as skilled craftsmen with deep knowledge.

In system testing, we éan use Atomic System Functions (ASFs) to analyze how the system behaves.
This leads to the concept of "threads," which are sequences of operations in the system. By identifying
and testing these threads, we can find challenges and enhance our testing approach.

System testing is strongly connected to the requirements of the system. By utilizing system-level
models and identifying system-level threads within these models, we can develop a systematic
testing approach centered around these threads. This method integrates both requirements-based
testing and code-based testing, leading to improved testing outcomes.

To demonstrate this approach, we can apply it to a simple automated teller machine (SATM) system,
as discussed earlier. This practical example shows how a thread-based system testing method can be
valuable and implemented effectively.

7.1.1 What is System Testing?

ST

System testing is the phase in the software testing process where the complete and integrated software system
is evaluated to ensure that it meets specified requirements. This testing phase focuses on verifying that the
system functions correctly as a whole and that it performs according to the specified requirements and design.
System testing is typically performed after integration testing and before acceptance testing,

7.1.2 Objectives of System Testing
The main objectives of system testing are:
¢ To identify defects in the system.
¢ To verify that the system meets the specified requirements.

¢ To ensure that the system is usable and reliable.

¢ To improve the system's performance.

¢ To validate the system's security measures.

o To assess the system's scalability and robustness.

e To confirm the system's compatibility with external interfaces and systems.

e To validate the system's compliance with regulatory standards and industry best practices.
o To assess the system's maintainability and ease of support.

e To ensure that the system can recover effectively from failures and errors.

System Testing F'

—_—— =
7.1.3 Features or Characterisers of System Testing
System testing is a comprehensive evaluation of a fully integrated software product. It verifies that
the system meets specified requirements and functions correctly in real-world scenarios. The key
features of system testing are:
1. End-to-End Testing:

System testing examines the entire application, including interactions between different

components and subsystems. It validates the software's behavior from start to finish, ensuring

that all parts work together seamlessly. g o

i

Requirement Verification:

This testing phase ensures that the software meets all specified requirements. Test cases
are derived from requirements documentation, making sure that every feature and function
performs as expected.

3. User Perspective:
System testing is conducted from the end-user's point of view. It focuses on the user's
experience and validates that the system behaves as intended in real-world usage scenarios.
4. Environment Simulation:
The testing is performed in an environment that closely resemblesthe prodilction environment.

This includes hardware, software, network configurations, and other system dependencies to
ensure accurate results.

5. Non-Functional Testing:
System testing includes non-functional aspects such as pérformance, security, usability, and
reliability. It ensures that the system not only performs correctly but also meets performance
criteria and security standards.

6. Regression Testing:
System testing involves regression testing to ensure that new changes or additions do not
negatively impact the existing functionality. It verifies that previously developéd and tested
software still performs correctly after modifications. i

7. Acceptance Criteria Validation:
The tests are designed to validate that the system meets the acceptance criteria defined by
stakeholders or customers. This ensures that the software is ready for delivery and satisfies
customer needs.

8. Defect Detection:
While the primary goal is to validate correct behavior, system testing also aims to uncover
defects that might not have been detected in earlier testing stages. These defects could include -
functional errors, performance issues, and integration problems,

9. Documentation and Reporting:
Detailed documentation of test cases, test execution, and results is a critical aspect of
system testing. This helps in tracking the testing process, identifying defects, and ensuring
transparency for stakeholders.

‘ 7.4 | Software Testing

10. Simulating Real-World Scenarios:
Test cases are designed to simulate real-world scenarios, including edge cases and unusual
conditions. This helps in ensuring that the system can handle unexpected situations gracefully.
11. Automated and Manual Testing:
System testing often involves a combination of automated and manual testing technigues.
Automated tests are used for repetitive tasks and large-scale test execution, while manual
testing is applied to complex scenarios that require human judgment.

#

7.2 Atomic System Function (ASF)
The concept of an Atomic System Function (ASF) is crucial for effective system testing, It provides a
granular approach to understanding and validating the individual components of a system.,

o= ’_ﬁ.‘;ﬁ; #’,.v'——i_ E:giﬁ ;113-:5.%:‘% ¥ .’-':- ..__i:r_- i o = = - T . A
s _'ﬁig*ﬁg-qya v.--z-s_‘c":fﬁi::_-x:. ,;_ = q‘hﬁ&:“ - L : e G
An Atomic System Function (ASF) is the smallestunit of functionality within a system that can be independently
tested. Each ASF represents a single, indivisible operation that the system can perform. These operations
contribute directly to the overall behavior and functionality of the system. The ASFs are self-contained,
meaning they do not need to be decompased further for the purpose of testing.

-#

7.2.1 Importance of Atomic System Functions (ASFs)

The concept of Atomic System Functions (ASFs) plays a vital role in the system testing process.

« Enhanced Test Coverage: ASFs ensure that every smallest unit of functionality is tested,
which leads to comprehensive test coverage. This thorough examination helps in identifying
and addressing even minor issues.

« Fault Isolation: Testing ASFs individually allows for precise fault isolation. When an issue
arises, it can be quickly traced back to the specific ASF, making debugging and resolution more
efficient.

Incremental Testing and Integration: ASFs facilitate incremental testing, where new
functionalities can be tested as they are developed. This ensures smooth integration and
continuous validation of the system's evolving features.

« Foundation for Automation: The granularity and specificity of ASFs make them ideal
candidates for automated testing. Automating ASF tests ensures consistent and repeatable
testing processes, enhancing efficiency and reliability.

Improved Quality Assurance: By validating each ASF, testers can ensure that all individual
components function correctly. This leads to higher overall system quality, as each part has
been rigorously tested.

Risk Mitigation: Testing at the ASF level helps in early detection of defects, reducing the risk of
major issues during later stages of development or after deployment. This proactive approach
minimizes potential system failures.

Supports Agile Practices: ASFs align well with agile methodologies, where small, incremental
changes are made frequently. Testing ASFs ensures that each iteration is thoroughly validated,
supporting the agile process of continuous delivery and improvement.

System Testing ! 7.5 |

o Scalability: ASFs provide a scalable testing strategy that can be applied to systems ;)f varying
sizes and complexities. This flexibility makes the ASF approach suitable for both small projects
and large, complex systems.

7.2.2 Characteristics of Atomic System Functions (ASFs)

ASFs have distinct characteristics that define their role and functionality in system testing. The the
key characteristics are :

Granularity: ASFs are the smallest units of functionality within a system. They represent
single, indivisible operations that can be independently tested. e
Independence: Each ASF is designed to opérate independently, without relying on other
functions. This independence allows for isolated testing and precise fault identification.

Specificity: ASFs focus on specific actions or functions within the system. This specificity
ensures that each ASF has a well-defined scope and purpose, making it easier to test and
validate. ’

Self-Contained: ASFs are self-contained, meaning they encompass all the necessary logic
and data to perform their function. This self-containment simplifies testing and Teduces
dependencies.

Reusability: Due tovtheir well-defined and specific nature, ASFs can often be reused across
different parts of the system or in different projects. This reusability enhances development
efficiency and consistency.

« Clarity: ASFs have clear, concise definitions and purposes. This clarity helpsin creating precise
test cases and simplifies the testing process. '

Modularity: ASFs contribute to the modularity of the system. Each ASF represents a distinct
module that can be tested, maintained, and updated independently, supporting a modular
architecture.

o Testability: ASFs are designed with testability in mind. Their granular and specific nature
makes them straightforward to test, whether manually or through automated tests.

« Documentation: Each ASF can be documented independently, providing detailed information
about its functionality, inputs, outputs, and expected behavior. This documentation aids in
understanding and testing the ASE.

« Interoperability: While ASFs are independent, they are designed to interact s%amlessly with
other ASFs. This interoperability ensures that individual functions can be combined to form
higher-level operations and workflows.

Understanding ASF

To illustrate the concept of an Atomic System Function (ASF) in a simple and straightforward manner, let's
consider a basic operation in an:ATM: system: Withdrawing Cash.

Higher-Level Function: Withdraw Cash

The "Withdraw Cash" function involves several steps, each of which can be considered an ASF.

! 7.6 | Software Testing R System Testing | 7.7]

The prima g P p . ‘

List of Interconnected ASFs: corr:ctl e;}; g;::zpose oflthreads In system testu.1g Is to validate that the entire system supports and

1. Insert Card - S; e usecsot?)lpr?:i :ilze: svrvr?rkflhows(.iThll.s gilsures that users can achieve their goals without

00 i

2. Enter PIN P th and reliable experience.
— _

3. Select Withdrawal Amount Vo S

A thread in system testing is erconnected Atomic System Functions (ASFs) that together

4. Verify Account Balance
5. Dispense Cash acco.mplish a specific user task or workflow in a system. It include all the steps a user takes to achieve a
Let’s focus on one specific ASF: "Enter PIN". particular outcome to ensure that the system correctly executes the complete sequence of operations required.
Atomic System Function: Enter PIN
This ASF handles the user input of their Personal Identification Number (PIN) and verifies its correctness. gy Example of a Thread in an ATM System
Characteristics Scenario : A customer wants to withdraw cash from an ATM.
o Granularity: This ASF is a specific, small unit of functionality that performs a single operation—taking User Goal : To successfully withdraw a specified amount of cash from their bank account using the ATM.
and verifying the user's PIN. Thread Name : Withdraw Cash] =
¢ Independence: The PIN entry process can be tested independently of other ASFs. It does not require List of ASFs :
the cash dispensing process to function correctly for testing purposes. 1. InsertCard: User inserts their ATM card into the machine
e Specificity: It has a clear, concise purpose—accepting and verifying the PIN entered by the user. 2. Enter PIN: User enters their Personal Identification Numb. s A
o Self-Contained: This function includes all the logic needed to accept user input and verify the PIN 3. Select Withdrawal Amount : Us T i er (PIN) to authenticate.
I o nt : User sele e amount of money they wish to withdraw from the
agam.st St:-red da:. 5 - oo - . . displayed options or enters a custom amount. - -
Test.Scenanos E ;test e‘ gten b U e T T U oS (S 4. Verify Account Balance : The system checks the user's account to ensure there are sufficient funds for
Correct PI the requested withdrawal.
:re:tlmdlt:o:: The it:reldzZ;N is 1234. an 5. Dispense Cash : The ATM dispenses the requested amount of cash to the user.
‘est Input: User enters : . . .
p : . 6. Print Receipt : The ATM prints a receipt detailing the transaction including the amount withdra
Expected Outcome: PIN is verified successfully, and the system proceeds to the next step. and the remaining balance. ! Wil
e Incorrect PIN - ‘ 7. Eject Card : The ATM ejects the user’s card, completing the transaction.
Precondition: The stored PIN is 1234. By testing this thread, we ensure thatall the steps necessary for withdrawing cash from an ATM work together
Test Input: User enters 4321. seamlessly. This comprehensive approach validates the ATM's ability to support the complete withdrawal
Expected QOutcome: PIN verification fails, and the system promipts the user to re-enter the PIN. workflow from start to finish.
o Maximum Attempts Exceeded e ——
Precondition: The stored PIN is 1234, and the user has already entered thie incorrect PIN twice. 7.3.1 Objectives of a Thread
Test Input: User enters 4321. - | 1. User Wi P
. orkflow Validation : Ensure that the system cor]
Expected Qutcome: PIN verification fails, the system locks the card, and the user is prompted to : user workflows ' % LECEySupponeEnd exeFutes el
contact their bank. ; ¥
Example : In an ATM system, this involves confirming that a user can successfully withdraw

By focusing on the "Enter PIN" ASF in an ATM system, this short example illustrates how ASFs provide a
structured approach to testing individual units of functionality within a system. This ensures that each
component works correctly on its own before being integratad into the overall system.

cash from start to finish, The goal is to ensure that all steps in the process work together
without any issues, providing a smooth and seamless experience.

2. Integration Assurance : Verify that various Atomic System Functions (ASFs) integrate and
interact correctly. .

=
7.3 Concept of Threads in System Testing

It is important to distinguish that a thread in the context of system testing is different from a thread
in a programming language. In programming, a thread is a unit of execution within a process, often
used for concurrent operations. However, in system testing, a thread represents a sequence of Atomic
System Functions (ASFs) that together achieve higher-level functions or user goals.

Example: The transition from entering a PIN to selecting a withdrawa] amount should be
seamless to ensure that integrated components do not cause any disruptions or errors.

i

Real-World Simulation : Simulate real-world usage scenarios to identify potential issues that
may arise during actual use. '

l 7.8 l Software Testing

Example : In an ATM system, simulating different withdrawal amounts and account balances
helps ensure the system performs correctly under various conditions.

. Comprehensive Coverage : Achieve thorough test coverage by examining not only individual
ASFs but also their interactions and dependencies.

Example : Testing both the card insertion process and how it leads to PIN entry ensures that
no part of the workflow is neglected.

. Early Defect Detection : Detect defects that may not be apparent when testing ASFs in
isolation, particularly those that result from intera ctions between different parts of the system.
Example : Issues that only occur when transitioning from balance verification to cash
dispensing can be identified and resolved before the system is fully deployed.

. Performance Validation : Ensure that the system performs efficiently under various
conditions.

Example : An ATM should dispense cash promptly and handle multiple transactions in a short
period without slowing down or failing.

. Usability Verification : Validate that the system is user-friendly and intuitive.

Example: Confirming thatthe ATM's interfaceis straightforward and thatusers can.understand
prompts and complete transactions without confusion.

. Security Assurance : Verify that the system maintains security and privacy standards
throughout the workflow. i

Example : An ATM should ensure that PINs are encrypted and that users cannot access others’
account information.

. Compliance Check : Ensure that the system adheres to relevant standards, regulations, and
requirements.

Example : An ATM must comply with banking regulations and standards for electronic
transactions. :

System Testing | 79

3. Integration : It tests the integration and interaction of different ASFs to ensure they work
together seamlessly. Integration testing within a thread veriffes that different parts of the
system, or ASFs, interact correctly. It ensures that data flows accurately between components
and that there are no interruptions or errors during transitions. For example, after entering the
PIN, the system should correctly transition to balance verification and then to cash dispensing,
ensuring that integrated components do not cause disruptions.

4, End-to-End Testing : The thread validates the complete end-to-end process from start to
finish. End-to-end testing ensures that all steps in a user workflow are tested comprehensively.
This type of testing covers the entire process that a user would go through to achieve a
goal, from the beginning to the end. For instance, the thread for cash withdrawal must test
everything from card insertion to card ejection, covering all intermediate steps to ensure the
entire process functions as expected and delivers the intended outcome.

5. Real-World Simulation : Threads simulate actual user scenarios.This characteristic ensures
that the testing environment closely mimics real-world usage, including typical user behaviors
and edge cases, By simulating how users interact with the system in real life, including
varying scenarios such as different withdrawal amounts or incorrect PIN entries, the thread
helps ensure that the system can handle real-world conditions effectively. This enhances the
reliability and robustness of the system in actual use.

6. Fault Detection and Isolation : Threads help detect and isolate faults. By testing sequences
of operations, threads can identify where in the process 2 fault occurs, making it easier to
pinpoint and resolve issues. For example, if cash is not dispensed, the thread can help
determine if the fault lies in balance verification, the cash dispenser, or another part of the
process. This facilitates quick troubleshooting and resolution, ensuring that the system can be
quickly restored to proper functioning.

7. Dependency Testing : Threads account for dependencies between different ASFs. They
ensure that dependent functions interact correctly and that data flows accurately between
them. For example, verifying that the system checks the balance correctly after the user selects

— = the withdrawal amount ensures that all dependencies are managed properly.
—_————————

7.3.2 isti
Characteristics and Importance of a Thread) 7.3.3 Types of Threads in System Testing

. ions:Iti i i t ieve) . -
1. Sequence of Operations: Itincludes a specific order of operations Hhat nses follaiv D gelile System testing threads can be categorized based on the level of complexity and scope they cover. The

i i i i tem i l-world |
:Cg:::;;l:ﬁ?:::;;iﬂ;ai f;;x;‘:t:;yt;iesr:e‘;:?;ilum;:r:;_t;;r:::::ieo?;;;1 elnntgaam{:nt : primary types include unit-level threads, integration-level threads, and system-level threads. Each

A . H s a different se in the software testing lifecycle.
selection, balance verification, cash dispensing, receipt printing, and card ejection. Testing the ¢ SpeserveS At e EN URINROSCHME eS0T g lifecy
sequence ensures that transitions between each step are seamless and function as expected.

2. User-Centric: The thread is designed around the user’s perspective and interactions with the
system. The focus is on the user's journey through the system to ensure that their experience
is smooth and intuitive. This involves considering how users interact with the system, what
actions they take, and what feedback they receive at each step. The thread should cover all
actions a user takes to achieve a goal, such as withdrawing cash from an ATM, ensuring each
step is user-friendly and meets user expectations.

1. Unit-Level Threads : Unit-level threads focus on the smallest testable parts of a system,
typically individual functions or methods within a module.

nit Level Threads

1. Simple Arithmetic Function:
¢ Function : add(a, b)
e Thread : Test the function with different pairs of numbers to ensure it returns the correct
sum.
¢ TestCases: add(2,3), add(-1,5), add(0, 0)

7.10 | Software Testing

2. Validation Function:
¢ Function: isValidEmail(email)
* Thread : Check the function with different email formats to ensure proper validation.
* TestCases:
isValidEmail("skyward.publishers@gamail.com")->true
isValidEmail("ss@gmail") -> false

2. Integration-Level Threads : Integration-level threads focus on testing the interactions
between different modules or components to ensure they work together correctly.

| Integration Level Threads

1. Database Interaction
¢ Scenario : Test the interaction between a data access module and the database.
® Thread : Verify that data is correctly retrieved, inserted, updated, and deleted.
® Test Cases : Retrieve user data, insert a new record, update an existing record, delete a
record. .
2. API and Service Integration:)
® Scenario: Test the integration between a front-end application and a back-end APL
® Thread : Ensure that the front-end correctly sends requests and handles responses from
the APL

® Test Cases : Login API call, data retrieval API call, data submission API call.

3. System-Level Threads : System-level threads involve testing the complete and integrated
system to ensure it meets the specified requirements. These threads simulate real-world

usage scenarios.

System Level Threads

1. E-commerce Checkout Process
® Scenario : Test the entire checkout process in an e-commerce application.
® Thread : Simulate a user selecting items, adding them to the cart, entering shipping
information, making a payment, and receiving an order confirmation.
¢ Test Cases: Add items to cart, proceed to checkout, enter shipping details, select payment
method, complete payment, verify order confirmation. '
2. User Registration and Authentication 8
¢ Scenario: Test the user registration and login process in a web application.
® Thread: Ensure thata user can register, verify their email, login, and access their account
dashboard.
¢ Test Cases : Register with valid details, receive and click email verification link, log in with
3 correct credentials, access dashboard.
3. ATM Transaction Workflow :
® Scenario : Test the complete workflow of an ATM transaction.
¢ Thread : Simulate a user inserting a card, entering a PIN, selecting a transaction type,
performing the transaction, and retrieving the card.
e Test Cases : Insert card, enter PIN, select withdrawal, check balance, dispense cash, print

receipt, eject card.

System Testing 7.1

Different types of threads serve distinct purposes in the software testing hfecycle Unit-level threads
focus on individual functions or methods, integration-level threads test the interactions between
components, and system-level threads validate the entire system's functionality. By comprehensively
testing across these levels, we can ensure that each part of the system works correctly on its own and
in conjunction with other parts, ultimately leading to a robust and reliable system.

Ee==eaa s ————————

7.3.4 Thread Possibilities in the SATM System

Defining the endpoints of a system-level thread can be complex, but a graph theory-based approach
can help provide a structured definition. In graph theory, a thread can be viewed as a path connecting
aseries of nodes (representing ASFs) with clearly defined start and end points. By mapping out these
nodes and the transitions between them, we can visualize and analyze the complete user journey
through the system. This backward approach from the desired outcomes ensures that all critical
interactions and dependencies are captured. Using this method, we can identify four candidate
threads in the Simple Automated Teller Machine (SATM) system:

1. Entry of a Digit

2. Entry of a Personal Identification Number (PIN)**
3. ASimple Transaction

4. An ATM Session Containing Multiple Transactions

d’llL Thu ld'\ in \T\l 5\ t-le

1 Entry of a Digit: This is the simplest and most granular thread representing a minimal Atomic
System Function (ASF).
Sequence:
1. Port Input Event : Digit keystroke.
2. Port Output Event : Screen digit echo.
It qualifies as a stimulus/response pair, making it suitable for integration testirig. However, this
level of granularity is also fine for system testing purposes as it does not include a complete
user interaction.
2. Entry of a Personal Identification Number (PIN) : This thread represents a common ASF
and serves as a bridge between integration testing and system testing:
Sequence: :
1. Screen Request : A prompt requesting PIN digits.
2. User Input : An interleaved sequence of digit keystrokes.
3. System Feedback : Screen responses echoing the digits.
4. Cancellation Option : The possibility for the user to cancel the operation before
completing the PIN entry.
System Disposition:
e Correct PIN : After a correct PIN is entered within three attempts, the system
displays a screen requesting the transaction type.

L

| 7.12 | Software Testing

o Incorrect PIN : If the PIN is incorrect after three attempts, the system advises the
customer that the ATM card will not be returned, and access to ATM functions is

denied.
This thread exemplifies a family of stimulus/response pairs initiated by a port input event,
traversing programmed logic, and terminating in several possible responses (port output
events). It include a sequence of system-level inputs and outputs, marking the starting point of

system testing.
3. A Simple Transaction : This thread represents a complete, end-to-end user transaction
commonly executed by customers.
Sequence:
1. Card Entry : User inserts ATM card.
. PIN Entry : User enters their PIN.
Transaction Selection : User selects the transaction type _(e.g.; deposit or withdrawal).

Account Details : User provides account details (checking or savings, amount).

. Conduct Operation : The system processes the transaction.
6. Report Results : The system reports the transaction results and returns the card.
This is a good example of a system-level thread involving the interaction of several ASFs. It
ensures the end-to-end completion of a transaction, mak_ing it an ideal candidate for system
testing. | ‘
4. An ATM Session Containing Multiple Transactions : This thread represents a complex
scenario where a user performs multiple transactions within a single session.
Sequence:
1. Card Entry : User inserts ATM card.
2. PIN Entry : User enters their PIN.
3. First Transaction : User performs an initial transaction (e.g., withdrawal).
4. Additional Transactions : User performs one or more additional transactions (e.g.,
deposit, balance inquiry).
5. End Session : User ends the session, and the card is returned.

This thread is a sequence of multiple threads and is part of system testing. At this level, the
focus is on the interactions among different threads. It ensures that the system can handle
multiple transactions in a single session, maintaining state and functionality throughout.

Summary

I summry, each of these candidate threads represents different levels of complexity and granularity
in system testing:
1. Entry of a Digit : Too granular for system testing, suitable for integration testing.
2. Entry of a PIN : Upper limit of integration testing and the starting point of system testing,
involving multiple stimulus/response pairs.

System Testing 713

3. ASimple Transaction : An end-to-end system-level thread, commonly executed by cu.stomers,
involving multiple ASFs.

4. An ATM Session with Multiple Transactions : A sequence of threads, focusing on interactions
among threads, representing a higher complexity level in system testing,

By understanding and testing these threads, we can ensure that the SATM system is robust, reliable,
and user-friendly, capable of handling various user interactions and scenarios.

e
7.4 Basic Concepts for Requirements Specification

Instead of anticipating all the variations in scores of requirements specification methods, notations,
and techniques, we will discuss system testing with respect to a basis set of requiremerits specification
constructs: data, actions, devices, events, and threads. Every system can be modeled in terms of these
five fundamental concepts (and every requirements specification model uses some combination of
these). Each concept plays a crucial role in defining how a system operates and how it can be tested
effectively. We examine these fundamental concepts here to see how they support the tester’s process
of thread identification. '

1. Data: Data in a system refers to the information used and created by the system. It includes
variables, data structures, fields, records, data stores, and files, Data models, such as Entity/
Relationship (E/R) models, describe the relationships between different data entities. Data
can be created, retrieved, updated, or deleted (CRUD operations).

Example : In the SATM system, data includes account information, such as Account Number,
Account Type, PINs, and account balances. For instance, each account might have a data
structure with the account type, Expected PIN, and current balance. As ATM transactions
occur, the system updates this data.

2. Actions: Actions are the operations performed by the system, often described as transforms,
processes, activities, tasks, methods, or services. Actions have inputs and outputs, which canbe
data or events. They can be decomposed into lower-level actions, particularly in methodologies
like Structured Analysis with data flow diagrams.

Example : An action in the SATM system could be the process of verifying a PIN. This action
takes the entered PIN as input, compares it with the stored PIN, and produces an output
indicating whether the PIN is correct or incorrect.

3. Devices : Devices, or ports, are the sources and destinations of system-level inputs and
outputs. Ports include physical interfaces like keyboards, screens, and card readers, which
translate physical actions (like keystrokes) into logical events and vice versa.

Example : The SATM system includes devices such as the keypad for entering PINs, the display
screen for showing prompts and transaction results, the card reader for reading ATM cards,
and the cash dispenser for dispensing money.

4. Events: Events are system-level inputs or outputs that occur at port devices. Events can be

discrete (like keystrokes) or continuous (like temperature readings). Events translate real-
world actions into logical actions within the system and vice versa.

Software Testing

Example : In the SATM system, pressing a key on the keypad generates an event. Fox: ir-nstance,
pressing the "1” key sends a digit entry event to the system, which then processes this input to
display the digit on the screen or use it as part of the PIN.

5. Threads : Threads represent sequences of actions and events that achieve a specific user goal.
They describe the interaction among data, events, and actions within the system. Threads are
crucial for testing complete workflows from the user's perspective.

Example : A thread in the SATM system could be the process of withdrawing cash:

Insert ATM card (Device: Card Reader, Event: Card Inserted).

. Enter PIN (Device: Keypad, Event: PIN Entry).

Select withdrawal transaction {Action: Transaction Selection).

. Enter amount to withdraw (Device: Keypad, Event: Amount Entry).

. Verify account balance (Action: Balance Verification).

. Dispense cash (Device: Cash Dispenser, Event: Cash Dispensed).

. Print receipt (Device: Printer, Event: Receipt Printed).

. Eject card (Device: Card Reader, Event: Card Ejected).

0N W

Relationships among Basis Concepts

The basis concepts are interconnected through many-to-many relationships. Data and evepts s.erve
as inputs and outputs for actions. Events occur on devices, and many events can happen o.n a smgl.e
device. Actions can belong to multiple threads, and threads are composed of several actions. This
complex interplay requires thorough testing to ensure all relationships function correctly.

input To

1.n r

Data 1.n

.n
———outputOf ——— Action

Event 1.n

sequenceOF
occursOn
1n 1.n
Device Thread

Figure 7.1: E/R Model of Basis Concepts
Example : In the SATM system:
1. Data: Account details and transaction records.
2. Events : Card insertion, PIN entry, button presses.

System Testing 7.15

3. Actions : Verify PIN, check balance, dispense cash.

4. Devices : Keypad, screen, card reader, cash dispenser.

5. Threads : Complete workflows like cash withdrawal and balance inquiry.
By understanding these basis concepts and their relationships, testers can effectively identify and
validate threads, ensuringthatall aspects of the system work together seamlessly. This comprehensive
approach helps in identifying potential issues and verifying that the system meets its requirements.

el ————— = —————— =
7.5 Finding Threads in System Testing

Insystem testing, threads are sequences of actions and events that represent user interactions with the
system to achieve specific goals. Defining and identifying these threads is crucial for comprehensive
system testing. A graph theory-based approach can be used to define these threads by mapping out
the states and transitions within the system. Finite state machines (FSMs) are a powerful tool for
modeling these threads, as they capture the stages of processing and the transitions between them
caused by various events. '

_—
7.5.1 Core Concepts for Finding Threads

1. Finite State Machines (FSMs) : FSMs consist of states and transitions:
* States: Represent different stages in a process, each reflecting a specific condition or

situation within the system. For example, in an ATM system, states can include "Card
Entry," "PIN Entry," and “Transaction Processing."

¢ Transitions: These are the changes from one state to another, triggered by events such
as user inputs or system conditions. In the ATM example, a transition occurs when a user
inserts a card, moving from the "Idle" state to the "Card Entry” state.

FSMs help visualize the flow of operations, making it easier to identify and define threads. By
mapping out these states and transitions, testers can see the entire process a user might go
through and ensure that all possible paths are tested.
2. Threads: Threads are sequences of system actions and events that a user follows to accomplish
a specific task:
* In FSMs, threads correspond to paths through the state machine from an initial state to a
final state,

* Athread ensures that all intermediate steps and transitions are considered. It provides a
comprehensive view of the user journey.

Example : In an ATM system, a thread might involve:
¢ Card Entry (initial state)
e PIN Entry
* Transaction Selection
¢ Transaction Execution
* Receipt Printing
¢ Card Ejection (final state)
Each step involves transitions that must be tested to ensure the system functions correctly.

7.16 | Software Testing

9

3. PortEvents or Device Events : Port events or Device events are interactions between the user
and the system:

e These include actions like keystrokes, screen displays, card insertions, and cash

dispensing.

o Port events are crucial for defining transitions in FSMs because they trigger state changes.
Example : Pressing a key on the ATM's keypad is a port event that might transition the system
from the "PIN Entry" state to the "Transaction Selection” state if the entered PIN is correct.

4. Hierarchy of State Machines : Hierarchy of FSMs involves nesting FSMs to manage complexity:

* High-level FSMs represent broader states, while lower-level FSMs provide detailed

breakdowns of these states.

o This hierarchical approach helps in handling complex systems by breaking them down

into manageable components. '
Example : In an ATM system:
¢ The top-level FSM might include states like "Card Entry," "PIN Entry,” and "Transaction
Processing.”
e The "Transaction Processing" state can have a nested FSM detailing the steps for different
transactions like "Withdrawal," "Deposit," and "Balance Inquiry.”
This hierarchical structure ensures that each aspect of the system is thoroughly tested at
different levels of detail.

== m——]
7.5.2 General Procedure for Finding Threads in System Testing
Finding threads in system testing involves the following steps:

1. Define the Scope of the System: Identify the main functionalities and boundaries of the
system to be tested.

2. Identify Key User Interactions: Determine the primary tasks users will perform with the
system. These tasks will help in identifying the main threads.

3. Model the System with Finite State Machines (FSMs): Create FSMs to represent the system
states and transitions based on user interactions and system responses.

o States: Different stages or conditions of the system.
e Transitions: Events or actions that cause the system to change from one state to another.

4. Identify Port Events: Determine the input and output events at the system's ports. Port events
are crucial for triggering state transitions.

« Port Input Events: User inputs like keystrokes, card insertions, etc.
¢ Port Output Events: System outputs like screen displays, printéd receipts, etc.

5. Create a Hierarchy of State Machines: For complex systems, break down the FSM into
hierarchical levels. High-level FSMs represent broad states, while lower-level FSMs provide
detailed breakdowns.

6. Trace Paths Through the FSMs: Identify all possible paths (threads) from the initial state to
the final state, considering all transitions and states. Each path represents a possible sequence
of user interactions and system responses.

System Teshng 717

7. Define Test Cases Based on Threads: Develop test cases that cover each identified thread
Ensure comprehensive coverage of all possible scenarios, including normal and edge cases.

7.5.3 Example - Finding Threads in the SATM System

Let us understand the process of finding threads in the SATM (Simple Automated Teller Machine)
system

= - -

Step 1: Deﬁne the Scope of the SATM Sy stém

o

The SATM system handles user interactions for tasks such as card insertion, PIN entry, and transaction
processmg [e 8 thhdrawals deposits).

Step 2: Identlf} I\e) User Interactions

A ——

e Inserting the ATM card. ¢ Entering the PIN.

e Selecting a transaction type. ¢ Performing the transaction.

° Recelvmg the card and receipt.

Step B: \Iodel the Sy stem with FS\Is

@) Top-Level SATM State Machine : The Top-Level SATM State Machine as shown in below figure
provides a high-level overview of the ATM system's main states and transitions. The primary
states include "Card Entry," "PIN Entry," and "Await Transaction Choice,” which represent the
key stages of user interaction. Transitions between these states are triggered by events such
as inserting a legitimate card, entering a correct or incorrect PIN, and selecting a transaction.
This diagram 7.2 helps visualize the overall workflow of an ATM transaction, ensuring that
each critical step is accounted for in the system testing process.

/ Display Screen |
Wrong Card Legitimate Card

Display ScreenS | | Display Screen 2
Eject Card

Failed PIN
Display Screen 4

Successful PIN
Display Screen 5
) 4

3. Await
Transaction
Choice

Figure 7.2: Top-Level SATM State Machine

7.18 | Software Testing

e States: Card Entry, PIN Entry, Await Transaction Choice.
* Transitions: Legitimate Card, Wrong Card, Successful PIN, Failed PIN.

(b) PIN Entry Finite State Machine : The PIN Entry Finite State Machine as shown in below figure
provides a detailed view of the PIN entry process within the SATM system. It includes states
such as "First PIN Try," "Second PIN Try," and "Third PIN Try," allowing for multiple attempts
to enter the correct PIN. Transitions are triggered by events like entering a correct or incorrect
PIN and cancelling the operation. Successful entry of the correct PIN transitions the system to
the "Await Transaction Choice" state, while incorrect PIN entries or cancellations lead to error
states, guiding the system's response to various user inputs during PIN verification.

/ Display Sereen |
Incorrect PIN or Cancelled |

] Wrong Card . Display Screen 4, then1 |
Legitimate Card = Display Screen ST
Display Screen 2 Eject Card

Incorrect PIN or Cancelled
Display Screen 3, then 2

Correct PIN
Display Screen 5

4
Correct PIN
Display Screen 5

5

3. Await-
Transaction
Choice

Correct PIN
Display Screen 5

Figure 7.3: PIN Entry Finite State Machine

* States: Card Entry, First PIN Try, Second PIN Try, Third PIN Try, Await Transaction Choice,
Incorrect PIN or Cancelled. ‘

* Transitions: Correct PIN, Incorrect PIN, Cancelled.

(c) Detailed PIN Entry State Machine : The Detailed PIN Entry State Machine as shown in below
figure offers a granular view of the digit-by-digit entry process for the PIN within the SATM
system. This FSM starts with the state "0 Digits Received" and progresses through “1 Digit
Received,” "2 Digits Received," up to "4 Digits Received," reflecting the user's entry of each
digit. Transitions occur with each digit entered and are shown by events like "digit/echo”
and "cancel Upon entering the fourth digit, the FSM transitions to either "Correct PIN" or
"Incorrect PIN" based on the accuracy of the entered PIN. Additionally, the user can cancel
the operation at any point, transitioning to the "Cancel Hit" state. This detailed state machine
ensures that every step of the PIN entry is accurately modeled and tested, capturing all possible
user interactions.

T T T

System Testing 7.19

2x1
0 Digits
Received
digit/echo ‘X’

2x.2
1 Digit
Received
digit/echo XX’
2.x.3 2.x.6
2 Digits Cancel
Received x9 Hit

digit/echo ‘XXX’

cancel

digit/ e(:hof;_J

2x.5
4 Digits
Received

Correct Pin Incorrect Pin Cancelled
X5 | X6

Figure 7.4 : Detailed PIN Entry State Machine

* States: 0 Digits Received, 1 Digit Received, 2 Digits Received, 3 Digits Received, 4 Digits
Received, Cancel Hit, Correct PIN, Incorrect PIN,.

¢ Transitions: Digit Entry, Cancel, Correct PIN, Incorrect PIN.

Step 4: Identify Port Events
P Lor

Port Input Events :

¢ Digit: User entering digits on the keypad.

¢ Cancel: User pressing the cancel button.
Port Output Events

¢ Legitimate Card: Display Screen 2

¢ Wrong Card: Display Screen 1

¢ Correct PIN: Display Screen 5

¢ Incorrect PIN: Display Screen 4

¢ Cancelled: Display Screen5

| 7.20 I Software Testing

Step 5 Create a Hlel ar chv of State \Iachme:

e —r—

For detalled interactions, use lower—level FSMs like the Detailed PIN Entry State Machine to capture
ﬁne-grained user interactions.

Step 6: Tnace Paths Thl oudh the FS\Is

Example Threads in the SATM System:
1. Thread for Successful Transaction:

e Path: Card Entry - PIN Entry (Correct PIN) - Await Transaction Choice
 Top-Level SATM State Machine: Card Entry (Display Screen 1) — Legitimate Card —
PIN Entry (Display Screen 2)
¢ PIN Entry Finite State Machine: First PIN Try - Correct PIN — Await Transaction
Choice
2. Thread for Incorrect PIN Entry with Retry:
e Path: Card Entry — PIN Entry (Incorrect PIN) - Retry — Correct PIN — Await Transaction
Choice
« Top-Level SATM State Machine: Card Entry (Display Screen 1) — Legitimate Card - PIN
Entry (Display Screen 2}
 PIN Entry Finite State Machine: First PIN Try — Incorrect PIN — Second PIN Try -
Correct PIN — Await Transaction Choice
3. Thread for PIN Entry Cancellation:
¢ Path: Card Entry — PIN Entry (Partial Entry) — Cancel — Eject Card
¢ Top-Level SATM State Machine: Card Entry (Display Screen 1) - Legitimate Card - PIN
Entry (Display Screen 2)
o PIN Entry Finite State Machme First PIN Try — Cancelled — Eject Card

Er———

Step e Def'me Te<t Ca:es Based on Thl eads

e s B e ——

Test Case 1: Successful Transaction :
¢ Preconditions: Valid ATM card, correct PIN.
e Steps:
a. Insert ATM card.
b. Enter correct PIN.

c. Select transaction type.
d. Complete the transaction.
e. Receive card and receipt.
Test Case 2: Incorrect PIN Entry with Retry
¢ Preconditions: Valid ATM card, incorrect PIN on first attempt, correct PIN on second attempt.

e Steps:

System Testing 7.21

. Insert ATM card.

. Enter incorrect PIN.

. Re-enter correct PIN.

. Select transaction type.

. Complete the transaction.

o A T

f. Receive card and receipt.
Test Case 3: PIN Entry Cancellation

¢ Preconditions: Valid ATM card.
¢ Steps:

a. Insert ATM card.

b. Start entering PIN.

c. Press cancel.

d. Card is ejected.

By followmg these steps, we can systematically identify threads. in the SATM system. Using FSMs,
we visualize the states and transitions, allowing us to trace paths that represent complete user
interactions. Each thread is then used to create comprehensive test cases, ensuring thorough
system testing. This approach helps in verifying that the SATM system handles all possible scenarios
effectively, providing a robust and reliable user experience. -

7.6 Structural Strategies for Thread Testing

Structural strategies for thread testing focus on the system's architecture and its underlying state
machines (FSMs). These strategies ensure that all possible paths, nodes, and edges in the state
machines are covered during testing. The goal is to achieve comprehensive coverage by testing all
possible transitions and states to ensure that every part of the system's structure is validated.

The below given structural strategies ensure that the software is thoroughly tested by covering all
possible states and transitions and validating each level of interaction from the most granular to the
most complex

. . - —

I\nde and Edﬂe Coverage Metrics

= 2 = = =i

1. Node Coverage: Node coverage is a fundamental metric in FSM-based testing. It ensures
that every state in the state machine is visited at least once during testing.

e Definition: Node coverage ensures that every state (node) in the state machine is visited
at least once during testing.

* Purpose: The objective is to verify that the system canreachall possible states, confirming
that no state is skipped or inaccessible. This is crucial for validating the completeness of
the system's functionality.

| 7.22 l Software Testing

e Example: In an ATM system, node coverage would require testing all states such as
"Card Entry,” "PIN Entry," "Await Transaction Choice," "Transaction Processing," etc. For
instance, a test case would ensure that the system can successfully transition to the "PIN
Entry" state after the user inserts a card. _

2. Edge Coverage : Edge coverage extends the concept of node coverage by ensuring that the
transitions between states are also tested. This metric is critical for validating the interactions
and sequences within the system.

¢ Definition: Edge coverage ensures that every transition (edge) between states is
traversed at least once during testing.

® Purpose: The objective is to verify that all possible transitions between states are
correctly implemented and functional to ensure that the system can handle all pathways
users might take. This helps identify any issues in the flow of operations within the

system.

¢ Example: In an ATM system, edge coverage would require testing transitions such as
from "Card Entry” to "PIN Entry" "PIN Entry" to "Await Transaction Choice," "Await
Transaction Choice” to "Transaction Processing,” and any error handling transitions. For
example, a test case would verify that after entering the correct PIN, the system correctly
transitions from "PIN Entry” to "Await Transaction Choice.”

Bottom-Up Threads

Bottom-up testing is a structured methodology that begins with the most detailed and specific
components of the system, progressively integrating and testing higher levels of the system hierarchy.
This approach ensures thorough validation at each level before moving to more complex interactions.
¢ Methodology: Bottom-up testing involves starting with the lower-level FSMs and progressively
moving up to higher-level FSMs. This approach ensures that all fundamental interactions are
validated before they are integrated into more complex workflows.
* Process:
1. Test Low-Level FSMs: Begin by thoroughly testing the most detailed and specific FSMs
that handle basic, granular functions or interactions.
Example: In the SATM system, start by testing the detailed digit-by-digit PIN entry FSM.
2, Validate Interactions: Ensure that all states and transitions within these low-level FSMs
are correctly implemented and functioning.
Example: Confirm that each digit entered transitions the system to the next state (e.g,
from "1 Digit Received” to "2 Digits Received") and that the cancel operation works
correctly.
3. Integrate and Move Up: Once the lower-level FSMs are validated, integrate them and
move to the next higher level in the hierarchy.
Example: After validating the digit-by-digit FSM, integrate it with the higher-level PIN
entry FSM to test the complete PIN entry process.

r\‘,-u.-;.m....l-..h N LA i o

System Testing 7.23

4. Repeat: Continue this process until the highest level FSMs, which handle broad, overall
system interactions, are tested.
Example: Finally, test the top-level FSM that includes states like "Card Entry," "PIN Entry,"
and "Await Transaction Choice."
¢ Focus : The bottom-up approach focuses on detailed testing at each level, ensuring
comprehensive coverage by thoroughly validating each component before integration.
¢ Detailed Testing: By starting at the bottom, testers can focus on detailed, specific interactions
and ensure their correctness before integrating them into more complex interactions.
Example: In the SATM system, focusing on the detailed digit entry ensures that each possible
user action is accounted for and handled correctly before moving to higher-level interactions.
¢ Comprehensive Coverage: Thisapproach helps ensure that no part of the system is overlooked
and that interactions between various levels of the system are thoroughly tested.
Example: In the SATM system, this ensures that transitions from "Card Entry” to "PIN Entry"
and further to "Await Transaction Choice” are all tested, covering every possible interaction
path.

7.7 Functional Strategies for Thread Testing

Functional strategies for thread testing focus on the system's functionality and the behavior specified
by the requirements. These strategies ensure that the system performs as expected by testing specific
functionalities and scenarios described in the requirements. The goal is to validate that the system
meets its functional requirements and behaves correctly in various scenarios.

Functional strategies for thread testing ensure that the system's behavior aligns with its specified
requirements by focusing on different aspects of functionality. Event-based testing ensures
comprehensive coverage of all user interactions, port-based testing validates the handling of input
and output events at each lnterface, and data-based testing confirms the integrity of data operations.

I. l vent- |:d LsI Thw ld 'I'L-'-.mlr‘.

Event-based thread testing centers on the various events that can occur in a system, particularly at
the points where users interact with the system. This approach ensures that all possible user actions
and system responses are tested comprehensively.
1. Approach: ;
e Focus on Port Input Events and Their Sequences: Identify all possible events that can
be triggered by user interactions, such as keystrokes, button presses, or other inputs.
Define sequences of these events to create realistic and edge-case scenarios.
¢ Testing Common and Uncommon Sequences: Ensure that not only typical user
interactions are tested but also less common or rare event sequences that might reveal
hidden issues.
2. Metrics:

e Ensure Each Port Input Event Occurs: Verify that every possible event is triggered at
least once during testing.

7.24 | Software Testing

» Coverage of Common and Uncommon Sequences: Test both regular usage patterns
and unusual sequences of events to ensure robustness.

Example in the SATM System:
¢ Common Sequence: Insert card — Enter PIN - Select transaction — Complete transaction.

o Uncommon Sequence: Insert card — Enter incorrect PIN twice — Cancel transaction -
Remove card.

2. Pori-Based Thread Testing

Port-based thread testing focuses on the interaction between the system and its ports (input/output
interfaces). This approach ensures that the system correctly handles all interactions at each port,
including input and output events. ’

1. Approach:

¢ Focus on Events Occurring at Each Port: Identify all ports (e.g., card reader, keypad,
display) and the events associated with each port. Create test scenarios that involve
various combinations of port interactions.

. » TestingInteractions and Resulting Outputs: Ensure that the system correctly processes
inputs and generates appropriate outputs for each port event.
2. Objective:
¢ Validate System's Handling of Port Events:
e Test how the system responds to each port event and the correctness of the resulting
outputs.
Example in the SATM System:
1. Card Reader Port:
¢ Input Event: Insert card.
* Qutput Event: Display prompt for PIN entry.
2. Keypad Port:
¢ Input Event: Enter PIN digits. !
¢ Output Event: Echo digits on the screen and validate PIN.

3. Data-Based Thread T

ey

Data-based thread testing focuses on the system's handling of data, ensuring that data is correctly
created, retrieved, updated, and deleted (CRUD operations). This approach validates the integrity and
correctness of data interactions within the system.

1. Approach:

¢ Focus on Data Interactions: Identify all data entities and their interactions within the
system. Create test cases that cover all CRUD operations for each data entity.

o Testing CRUD Operations: Ensure that data can be accurately created, retrieved,
updated, and deleted as per the requirements.

mli‘r.min-.;.—.‘... [e

System Testing 7.25

2. Objective:

e Validate Data Handling: Confirm that the system correctly manages data throughout its
lifecycle, maintaining data integrity and consistency.
Example in the SATM System:

1. Account Data:
e (Create: Adding new accounts.
e Retrieve: Querying account balances.
e Update: Modifying account balances after transactions.
o Delete: Removing closed accounts.

T
7.8 Review Questions

. What is System Testing?

. What is Atomic System Function (ASF)?

. What is a Thread in System Testing ?

. Give an example of a Thread in an ATM System.

. Mention the types of Tlhreads in System Testing.

. What are Unit-Level Threads? Give an example.

. What are Integration Level Threads? Give an example.

. What are System Level Threads? Give an example.

O 0 NN 1w N

. What is Event-Based Thread Testing?

[
o

. What is Port-Based Thread Testing?

—_
[N

. What is Data-Based Thread Testing?

* Edch'Question Carriés Five Marks ¢

1. Whatis System Testing? What are the Key Objectives of System Testing.
2. Explain the Features or Characterisers of System Testing.

3. What is Atomic System Function (ASF)? Explain the Importance of Atomic System Functions
(ASFs).

7.26 | Software Testing

4. Explain the Characteristics of Atomic System Functions (ASFs).
. What is a Thread in System Testing ? Explain the Objectives of a Thread.

)

6. Explain the Characteristics and Importance of a Thread in System Testing.
7. Explain the Types of Threads in System Testing.
8
9

. Discuss the Basic Concepts for Requirements Specification in System Testing.

. Explain the General Procedure for Finding Threads in System Testing.

1. What is System Testing? Explain the Features, Objectives and Importance of System Testing.
= Introduction to Interaction Testing

< What is Interaction Testing?
<= Key Aspects of Interaction Faults in System Testing

2. What is a Thread in System Testing ? Explain the Features, Objectives and Importance of a
Thread.

. Explain Thread Possibilities in the SATM System.

<= Importance of Interaction Testing
< Features (or) Characteristics of Interaction Testing
= Advantages and Disadvantages of Interaction Testing -

. Explain the Structural Strategies for Thread Testing.

3
4. Explain the process of Finding Threads in the SATM System.
5
6. Explain the Functional Strategies for Thread Testing.

= Context of Interaction in Interaction Testing
= Taxonomy of Interactions
< Static Interactions in a Single Processor
= Static Interactions in Multiple Processors

0
<
RS
o
03
o
03
o
R

<= Dynamic Interactions in a Single Processor
<= Dynamic Interactions in a Multiple Processors
Client-Server Testing

Review Questions

I 8.2 I Software Testing

8.1 Introduction to Interaction Testing

Interaction testing focuses on faults and failures that occur due to interactions within a system.
These interactions are often difficult to detect as they may remain hidden even after extensive
testing. Interaction faults typically have a low probability of occurrence and often surface only
after a significant number of threads have been executed. This chapter discusses the importance of
specifying interactions as a first step in detecting and testing for these faults.

Interaction faults are difficult to detect because they occur iinder specific conditions that may not be
easily replicated during standard testing procedures. They often involve complex dependencies and
interactions between different components of a system, making them less predictable and harder to
isolate.

To effectively detect and test for interaction faults, it is crucial to specify the interactions within the
system as a first step. This involves identifying all possible interactions between components and
understanding the conditions under which they occur. By doing so, testers can create more targeted
and effective test cases.

8.1.1

What is Interaction Testing?
Tt T = .-/h;v T e e T
Wit i Intesack %ﬁﬁ’%‘éﬁ?&a%w

R
e iy e A ff;“!'u'f‘.':’-%k"i?}lﬁ;i_: S 3

Interaction testing involves examining the interactions between various components of a system to uncover
faults that occur during these interactions. These faults can arise from complex depeﬁdencies and sequences

of events that are not immediately noticeable. Interaction testing aims to identify and address these issues by

focusing on how different parts of the system interact under various conditions.

8.1.2 Key Aspects of Interaction Faults in System Testing

1. Complex Dependencies: Interaction faults often occur from complex dependencies between
different cSmponents. These components may work correctly in isolation but fail when
combined due to unforeseen dependencies. .

Example: [n a web application, an interaction fault might occur when the database, application
server, and frontend all interact in a specific sequeﬁce that was not anticipated during unit
testing.

2. Sequences of Events: The order in which events occur can significantly impact the system's
behavior. An event sequence that works correctly in one scenario might fail in another due to
differences in timing or context.

Example: In an ATM system, a specific sequence of card insertion, PIN entry, and transaction
selection might work correctly, but reversing the order of these actions or adding additional
steps might reveal faults.

3. Hidden Faults: These faults are typically not apparent during initial testing phases. They
remain dormant until a specific set of conditions triggers them.

e S —

A ol T i P Pt o, b i e

~ Interaction Testing | 8.3 I

Example: A hidden fault in an e-commerce system might only surface when a user tries to

apply multiple discount codes in a specific order, which was not covered in standard test cases.
4. Low Probability of Occurrence: Interaction faults often have a very low probability of

occurring and hence it is difficult to detect without extensive testing. '

Example: A fault that only occurs when two users simultaneously atteript to book the last
available slot for a service may only be discovered after numerous transactions.

5. Comprehensive Testing: To uncover interaction faults, comprehensive testing is required.
This includes not only functional testing but also testing under different conditions, load
levels, and configurations.

Example: Stress testing an ATM system to simulate peak usage times can reveal interaction
faults that do not appear under normal usage conditions.

6. Scenario-Based Testing: Interaction testing often involves creating detailed scenarios that
mimic real-world usage. These scenarios are designed to explore different combinations and
sequences of interactions.

Example: Testing an online banking system by simulating different user scenarios, such as
simultaneous fund transfers and bill payments, to uncover potential interaction faults.

8.1.3 Importance of Interaction Testing

Interaction testing is crucial for ensuring the seamless functioning of complex systems. By focusing on
how various components interact, it uncovers hidden issues that might only emerge during specific
sequences of events or under certain conditions. The importance of Interaction testing are listed
below.

1. Uncovers Hidden Issues: Detects problems that arise only when components interact.
. Ensures System Integrity: Verifies that all parts of the system work together correctly.
. Enhances Reliability: Improves the overall stability and dependability of the system.

2
3
4. Validates Complex Scenarios: Tests interactions under various conditions and sequences.
5. Prevents Failures: Identifies potential faults before they impact users.

6

. Optimizes Performance: Ensures that component interactions do not negatively affect
system performance.

7. Supports Maintenance: Helps in detecting issues that could arise from future updates or
changes.

8. Improves User Experience: Ensures a seamless and efficient experience for end-users.
9. Reduces Risk: Minimizes the likelihood of critical failures in production.

10. Strengthens Robustness: Enhances the system's ability to handle unexpected or rare
conditions.

| 8.4 | Software Testing

8.1.4 Features (or) Characteristics of Interaction Testing

Interaction testing is designed to thoroughly examine how various components of a system work
together to ensure seamless and efficient performance. The Key features are :

1. Component Interaction Analysis: Examines how different parts of the system work together.

2. Complex Dependency Testing: Identifies and tests complex dependencies between
components.

3. Scenario-Based Testing: Uses various scenarios to simulate real-world conditions and
interactions.

. Sequential Event Validation: Checks for issues that arise from specific sequences of events.

. Dynamic Testing: Adapts to changes in the system and tests new interactions as they arise.
. Automated Test Execution: Utilizes automated tools to efficiently test numerous interaction
scenarios.
8. Risk-Based Prioritization: Focuses on interactions with the highest potential impact on
system performance.
9. Performance Monitoring: Assesses the impact of interactions on overall system performance.

4
5. Comprehensive Coverage: Ensures all possible interactions are tested for faults.
6
7

10. FaultIsolation: Helps in pinpointing the exact location and cause of interaction faults.

11. Regression Testing: Ensures new changes do not introduce new interaction issues.

12. Real-Time Feedback: Provides immediate insights into the effects of interactions during
testing.

13. Scalability: Can be applied to both small and large systems with complex interactions.

14. Documentation and Reporting: Generates detailed reports on interaction faults and testing
outcomes.

== —————

8.1.5 Advantages and Disadvantages of Interaction Testing
Interaction testing offers significant benefits by uncovering hidden faults, ensuring comprehensive
coverage, and improving system reliability. However, it also presents challenges such as high resource
requirements, complex test design, and difficulty in isolating issues. Balancing these advantages and
disadvantages is key to effective interaction testing and maintaining a robust system.

1. Uncovers Hidden Faults:
Benefit: Detects issues that arise only when components interact, ensuring a more reliable system.

Example: Identifying faults in a web application that only appear when the database, server, and
frontend interact in specific ways.
2, Ensures Comprehensive Coverage:
Benefit: Tests a wide range of scenarios and interactions, providing thorough validation.
Example: Using scenario-based testing to cover various user behaviors in an online banking system.

Interaction Testing 8.5

3. Improves System Reliability:
Benefit: Enhances the overall stability and performance by addressing complex dependencies.
Example: Validating that an ATM system handles all possible sequences of user actions correctly.
4, Validates Real-World Scenarios:
Benefit: Mimics actual usage conditions, leading to more accurate and relevant test results.

Example: Simulating peak usage times to identify potential issues in an e-commerce platform.
5. Prevents Critical Failures:

Benefit: Reduces the risk of major issues occurring in production by catching them early.
Example: Detecting a rare fault in a service booking system where simultaneous bookings can cause a

1. Resource Intensive:
Drawback: Requires significant time, effort, and computational resources to perform extensive testing.

Example: Running comprehensive interaction tests on a large-scale entefprise application can be
costly and time-consuming.

2. Complex Test Design:
Drawback: Designing tests for all possible interactions and sequences can be very complex and
challenging.
Example: Creating detailed scenarios for a complex healthcare management system to cover all
interactions.

3. Difficult to Isolate Issues:
Drawback: Pinpointing the exact cause of interaction faults can be challenging due to the complexity
of dependencies.
Example: Troubleshooting a fault in a financial system where multiple components and interactions
are involved.

4. Low Probability Faults:
Drawback: Interaction faults often have a low probability of occurring, making them difficult to detect
without extensive testing.

Example: A rare fault in a social media platform that only occurs under specific conditions with
simultaneous user actions.

5. High Maintenance:

Drawback: Keeping interaction tests up-to-date with system changes requires ongoingﬂeffort and can
be difficult to manage.

Example: Continuously updating tests for a rapidly evolving software application to ensure all new
interactions are covered.

8.2 Context of Interaction in Interaction Testing

Understanding the context of interaction is essential for effective interaction testing. This involves
examining how different entities within the system interact and the specific conditions under which
these interactions occur. By thoroughly understanding the context, testers can design more acturate
and effective test cases to identify potential faults. Key factors to consider include the nature of the

| B.6 I Software Testing

interactions, their timing, their physical or logical positions, and the rules governing their execution.
This approach ensures that all possible scenarios and conditions are covered, leading to a more
robust and reliable system.
1. Interacts With Relationship:
« This relationship indicates that entities such as data, actions; events, and threads interact
with each other.
o Example: In an ATM system, the interaction between entering a PIN (action) and
verifying it against stored data (data). Understanding these interactions helps identify
where faults may occur.

2. Location (Time and Position):

« Time: Interactions have a temporal component, occurring at specific moments or over
durations.

« Position: Interactions occur at specific physical or logical locations.

 Example: User performs a transaction at an ATM located in a busy urban area at 3

| PM. This specific time and location are critical because high usage can lead to different
interactions compared to a less busy time.
Testing under various times and locations ensures the system can handle peak usage
and different environmental conditions, such as network connectivity issues in specific
’ locations.
3. Time Views: 2

. Instantaneous View: Focuses on events happening at a specific point in time.

« Duration View: Considers the length of time an event or interaction lasts.

« Example: The duration from when a user inserts their card to when it is ejected might
take longer during peak hours due to system load. An instantaneous view would checkthe
exact moment the card is read, while a duration view would consider the entire process
time. Both views are essential for ensuring smooth and timely transactions, especially
under varying load conditions. .

4, Processor Rules:

« Execution Time: Threads have a positive time duration, meaning they take time to
execute.

« Simultaneity: Multiple threads cannot execute simultaneously on a single processor.

o Event Duration: Events have positive time durations and cannot occur simultaneously
across processors.

« Example: When an ATM processes a transaction, it must handle multiple operations in
sequence: card reading, PIN verification, transaction processing, and receipt printing.
These operations cannot happen simultaneously but must follow a strict sequence to
prevent errors. Adhering to processor rules ensures that each operation completes
correctly without interference, which is crucial for maintaining transaction integrity and
user trust.

sty g M R

e

P P

s e

Interaction Testing ‘ 8.7 |

P ———— == ——]
8.3 Taxonomy of Interactions

Taxonomy of interactions refers to a structured classification system that categorizes different types
of interactions within a system based on specific criteria. This classification helps in understanding
and managing the complexity of interactions, making it easier to identify, test, and address potential
faults.

The main purpose of creating a taxonomy of interactions is to systematically organize and describe
the various ways in which components of a system can interact. This facilitates more targeted and
effective testing by providing a clear framework for identifying and understanding the different types
of interactions that can occur.

of Interactions in System Testing: Classification Based on Time and Position

In the context of system testing, interactions can be classified based on two primary aspects: location,
which includes time and position.

1. Time:

A Time-Independent (Static) Interactions: Interactions that are not time-dependent and
occur regardless of timing. For instance, interactions between two data items that occur
regardless of when they are accessed or modified.

Example : When a user approaches the ATM, the machine displays a welcome screen. This
interaction involves the ATM's processor fetching the static welcome message stored in
its memory and displaying it on the screen. The timing of this interaction is irrelevant; the
welcome message will always be the same, regardless of when it is accessed or displayed.

A Time-Dependent (Dynamic) Interactions: Interactions where the timing or sequence
of operations is critical. It require specific order or timing. For example, operations that
must occur in a specific order or within a certain timeframe,

Example : When a user requests their account balance, the ATM sends a request to the
bank's server to retrieve the most up-to-date account balance. This interaction is time-
dependent because the account balance can change with each transaction made by the
user or other users. The ATM must request the balance from the bank’s server at the
exact time of the us‘éF"siinquiry to provide the current balance.

2. Position:

A Single Processor Interactions: Interactions that occur within a single processing unit.
These interactions do not require coordination between multiple processors and are
confined to one processing environment.

Example : After verifying the user's credentials and checking the account balance, the
ATM dispenses the requested amount of cash. This involves internal operations such as
triggering the cash dispenser, updating the local transaction log, and printing a receipt,
all managed by the ATM's single processor. The ATM'’s processor controls the mechanical
components that count and dispense the cash, update the transaction log stored in the
local memory, and print the receipt.

I 8.8 I Software Testing

A Multiple Processors Interactions: Interactions that span across multiple processing
units. It require synchronization and coordination between multiple processors. These
interactions are more complex due to the need for managing communication and data
consistency between processors.

Example : When a user requests a balance inquiry, the ATM’s local processor sends a
request to the central bank’s server to fetch the latest account balance. This interaction
involves the ATM processor communicating with the remote server, receiving the
response, and displaying the balance to the user. In this case, ATM's server communicates
and coordinates with central bank's server and hence it is considered as multiple
processor interactions.

The detailed types of interactions in software systems based on time dependency and the number of

processors involved are as follows:

1. Static Interactions in a Single Processor: Interactions independent of time within a single

Processor.

Example: : Accessing and displaying the ATM's welcome screen. When a user approaches the

ATM, the machine's processor fetches the static welcome message stored in its local memory

and displays it on the screen. The timing of this interaction is irrelevant; the welcome message

will always be the same, regardless of when it is accessed or displayed.

Static Interactions in Multiple Processors: Time-independent interactions across multiple

processors. Synchronizing static data between different processors to maintain consistency.

By

Example: Synchronizing static configuration data between the ATM and the central server.
For instance, updating the list of supported languages or currencies in the ATM. The central
server periodically sends updated static data to all connected ATMs to ensure consistency. This
process is independent of the specific timing of individual updates as long as the data remains
consistent across the network.

3. Dynamic Interactions in a Single Processor: Time-dependent interactions within a single

processor. Executing a sequence of instructions where the order of operations is critical for
correctness. .
Example: Entering and validating a user's PIN. When a user enters their PIN, the ATM's
processor must validate the entered PIN against the stored hash of the correct PIN. This
involves reading the PIN input, processing it, and verifying it in the correct sequence. The order
and timing are crucial to ensure the security and correctness of the authentication process.

4. Dynamic Interactions in Multiple Processors: Time-dependent interactions spanning
across multiple processors. Distributed computing tasks where processes must coordinate
based on timing for proper execution

Example: Performing a balance inquiry. When a user requests to check their account balance,
the ATM’s processor sends a request to the central bank's server to retrieve the latest account
balance. This interaction involves the ATM processor communicating with the remote server,
receiving the response, and displaying the balance to the user. The timing is critical because
the account balance can change with each transaction made by the user or other users. The
ATM must request and display the balance in real-time to ensure accuracy.

o

e £ g e b g L

Interaction Testing 8.9

— —
8.3.1 Static Interactions in a Single Processor

Static interactions in a single processor refer to data interactions that remain consistent over time
and are entirely processed within one processing unit. These interactions are crucial for maintaining
data integrity and preventing data corruption or inconsistency within the system. Understanding and
managing these static interactions ensure that the system operates correctly and rehably

r:ﬁ‘;g-’-'n.:"‘k.. =

tare Sta

'L'Q_f.r M

Static interactions in a smgle processor refer to the relatlonshlps and dependenaes between components or
elements within the processor that remain constant and do not change during the execution 6f a program.
These interactions are typically defined at design time and do not involve dynamic changes based on inputs
or events.

Static Interactions in a Single Processor

Scenario: ATM Welcome Screen Display
1. Static Welcome Message Display:
o Data: Welcome message stored in the ATM's memory.
o Event: ATM powers on.
o Thread: The ATM processor retrieves and displays the welcome message.
» Interaction: The welcome message is consistently displayed on the screen every time the ATM is
powered on, regardless of any other operations or timing, managed by the single processor.
2. Card Reader Activation:
¢ Data: Status of the card reader (ready or not ready).
» Event: ATM initialization.
« Thread: The processor checks the card reader status.
¢ Interaction: The card reader is set to 'ready’ status upon ATM initialization, ensuring it is
prepared to accept cards, managed solely within the single processor.

ncepts:
Dete————
In the context of static interactions in a single processor, it is crucial to understand the concepts of
duration and port devices because these elements play a significant role in how the system processes

and maintains data integrity without being influenced by timing. This understanding helps in
identifying and resolving potential conflicts or inconsistencies within the system.

Byunderstanding the key conceptsrelated to staticinteractions, suchas port devices, datainteractions,
and propositional logic, we can effectively analyze and manage these interactions to maintain system
functlonahty and data 1ntegr1ty

18 Duratlon and Poxt Devnces

1. Port Devices:
A No Duration: Port devices and data are unique constructs in a system because they
do not have a duration. They exist in a state that does not change over time within the
context of the processor. -

| 8.10 | Software Testing

Example: The card reader in the SATM (Secure Automated Teller Machine) is a port
device that continuously exists as long as the ATM is operational. The card reader does
not have a specific duration associated with its presence; it is always available to interact
with customers' ATM cards whenever they are inserted.

A Physical Interaction: Port devices interact physically within the system, consuming
space and power. They are responsible for the physical transfer of data between different
parts of the system.

Example : When a customer inserts their ATM card into the card reader, the card reader
facilitates the physical transfer of data from the magnetic strip or chip on the card to the
ATM's processor. This interaction consumes physical space (the slot in the ATM where
the card is inserted) and power (the mechanism that reads the card's data). The card
reader plays a crucial role in transferring account information from the card to the ATM
system for processing transactions.

2. Data Interactions:

A Logical Interaction: Data interactions occur logically and are essential for maintaining
data integrity within a database. These interactions involve operations such as reading,
writing, updating, and deleting data.: Ensuring data consistency and integrity is vital to
avoid corruption, which can lead to incorrect system behavior and data loss.

Example: When a customer checks their account balance using the SATM, the interaction
involves several logical steps. The ATM reads the customer's account information from
the card, communicates with the bank's central database to retrieve the current balance,
and then displays the balance on the screen. This logical interaction ensures that the data
is accurately retrieved and presented to the customer.

[eo=rr————n

2. Propositional Logic

Propositional logic provides a structured framework for analyzing static interactions within a single
processor. By defining propositions and examining their logical relationships, we can reason about
the truth values of different statements related to the system's data and operations. Understanding
logical concepts such as contraries, sub-contraries, contradictories, and sub-alterns helps in
evaluating the consistency and validity of data interactions within the system.

Scenario: Withdrawing Cash
« Proposition p: WithdrawalAmount = 3500.00
 Proposition g: SufficientBalance = True

In the SATM (Simple Automated Teller Machine) system, when a user attempts to withdraw cash, the following
static interactions occur:

« The system checks the requested withdrawal amount.
« It verifies whether the account has a sufficient balance to cover the withdrawal.

« These checks are independent of timing and always produce the same results if the data remains
unchanged.

e

AT b i ko8 8

! i

D b e iy B b o b L

Interaction Testing 8.11

Propositional Logic Analysis:
1. Contraries:

« Definition: Contraries are two propositions that cannot both be true at the same time.

o Example: If the system's rules state that a withdrawal of ¥500.00 cannot be processed due to
insufficientbalance, then the propositions "WithdrawalAmount=%500.00" and "SufficientBalance
= True" cannot both be true simultaneously. If there is not enough balan¢e (SufficientBalance
= False), the system cannot process the withdrawal amount of 3500.00 (WithdrawalAmount =
%500.00 must also be False).

2. Sub-contraries:

¢ Definition: Both propositions cannot be false at the same time.

o Example: If the system ensures sufficient balance before allowing any withdrawal, either the
proposition "WithdrawalAmount = X500.00" or "SufficientBalance = True" must be true. This
ensures that the system functions correctly by preventing withdrawals when the balance is
insufficient

3. Contradictories:
 Definition: If one proposition is true, the other must be false, depending on the system's rules.
e Example: If the system requires sufficient balance for processing a withdrawal and the
balance is insufficient (SufficientBalance = False), then the withdrawal amount of 3500.00

(WithdrawalAmount = %500.00) must also be false because the system will not process the
withdrawal without sufficient balance.

4. Sub-alterns:
» Definition: If one proposition is true, the other must also be true.

» Example: If the system processes a withdrawal amount of ¥500.00 (WithdrawalAmount =
%500.00) and requires sufficient balance for processing, then the proposition "SufficientBalance
= True” must also be true. This ensures that the withdrawal amount can only be processed if the
account has sufficient balance.

By understanding these logical relationships, we can see how the ATM system operates based on certain
conditions and rules to ensure secure and accurate transactions.

Testing Static Interdctions in‘a Single Processor:

Testing static interactions within a single processor involves ensuring that data interactions occur
consistently and correctly, independent of timing. i

1. Identify Static Data Interactions : Determine all data interactions that do not depend on time
and are confined within a single processor.

Example : Identifying the data flow within the ATM processor that does not rely on timing,
such as retrieving customer account information from the local database.

2. Define Propositions and Logical Relationships : Use propositional logic to define and
analyze the relationships between data interactions.

Example: Using propositional logic to define relationships, like ensuring that a customer must
enter a correct PIN to access their account information.

8.12 | Software Testing

3. Develop Test Cases: Create test cases that ensure data interactions are consistent and logical.
Example : Creating a test case where a customer enters an incorrect PIN three times
consecutively to validate if the system locks the account as per logic.

4. Execute Tests and Monitor Results : Run the test cases in a controlled environment to check
for consistency and correctness.

Example : Running the test case in a controlled environment to observe if the system locks the
account after three incorrect PIN entties as expected.

5. Analyze Results and Identify Issues : Analyze the outcomes of the test executions to identify
inconsistencies or logical errors.

Example: Analyzing the test outcome to determine if the system behaved logically by locking
the account after three failed PIN attempts.

6. Implement Fixes and Retest : Correct any identified issues and verify the fixes through
retesting.

Example : If any issues are identified, correct the logic related to lockmg the account and
retest to ensure the fix resolves the issue.

7. Continuous Monitoring and Maintenance : Continuously monitor the system to ensure that
static interactions remain consistent over time.

Example : Continuously monitoring the system to ensure that the static interactions related to
account access and security remain consistent and error-free over time,

=

8.3.2 Static Interactions in Multiple Processors
Static interactions in multiple processors refer to interactions that are not dependent on timing
but occur across multiple processing units. These interactions require careful synchronization and
coordination between processors to ensure data con51stency and mtegrlty

Static interactions in multiple processors refer to mteracuons.that are not dependent on timing but occur
across multiple processing units. These interactions are fixed and do not change during the execution of tasks
across multiple processors.

Static Interactions in Multiple Processors

Scenario: Synchronizing ATM Maintenance Logs
1. Log Synchronization:

= Data: Maintenance logs stored in each regional server.

» Event: Daily maintenance check.

o Thread: Each regional server collects and updates logs.

« Interaction: Each regional server independently collects logs and synchronizes with the central
server without the need for timing coordination. For instance, each ATM records its maintenance
activity and sends this data to a regional server. The regional server then synchronizes the logs
with the central server at a scheduled timé, ensuring data consistency across the network.

e T I e L

Interaction Testing 8.13

2. Software Version Check
* Data: Current software version installed on ATMs.
e Event: Routine software check initiated by the central server.
* Thread: Each ATM reports its software version to the central server.

* Interaction: The central server collects software version data from each ATM without requiring
synchronized nmmg Each ATM independently sends its software version information during the
routine check to ensure all ATMs are running the latest software version as verified by the central
server.

1. Location of Data: In systems with multiple processors, data may be distributed across

different locations. Synchronizing this data involves énsuring that updates made to the data in
one location are reflected accurately in all other locations. This synchronization is essential to
maintain consistency and coherence in the system.

Example : Each ATM maintains a local copy of configuration data that should be consistent
with the master data stored on the central server. This mcludes language options, transaction
limits, etc,

. Contrary Data: Contrary data refers to situations where different processors hold conflicting
information about the same entity. Resolving contrary data is crucial to prevent inconsistencies
and ensure that the system operates based on accurate and up-to-date information.

Example : Imagine ATM-A in Bangalore has a configuration that includes English and Kannada,
while ATM-B in Hyderabad includes English and Telugu. If a new language (e.g., Hindi) is added
to the central server but the update fails on ATM-B, this creates contrary data situations where
the configurations are inconsistent.

. Distributed Data Challenges: Distributed data interactions involve managing data spread
across multiple processors, which can introduce complexities in maintaining consistency.
Challenges include ensuring timely updates, resolving conflicts, and preventing data
discrepancies that can arise due to the distributed nature of the system.

Example : In a distributed banking system with a central server, regidnaf’;'é‘servers, and
ATMs, managing data consistency poses significant challenges. For instance, when a new
language (e.g. Hindi) is added to the central server, this update must be propagated quickly
to the regional servers and ATMs to avoid discrepancies. Thus, ensuring timely updates,
conflict resolution, and data consistency are crucial for maintaining reliable distributed data
interactions. Efficient synchronization protocols and distributed consensus algorithms help
resolve such conflicts. Additionally, network latencies or partial failures can lead to data
discrepancies, which robust error detection and correction mechanisms can mitigate. Thus,
ensuring timely updates, conflict resolution, and data consistency are crucial for maintaining
reliable distributed data interactions.

Testing static interactions in multiple processors involves ensuring that data interactions occur
consistently and correctly across different processors. This process requires careful synchronization
and monitoring to maintain data integrity across the distributed system.
1. Identify Static Data Interactions : Determine all data interactions that are not dependent on
time and occur across multiple processors. ‘

Example: Identifying the synchronization of configuration settings between ATMs, regional
servers and the central server in a banking system. Configuration settings such as supported
languages, transaction limits, and security protocols typically remain static until explicitly
changed.

2. Define Propositions and Logical Relationships : Use propositional logic to define and
analyze relationships between data interactions across processors.

Example: Using propositional logic to ensure that any update to the configuration settings on
the central server is reflected in the regional servers.

Proposition p: ConfigurationSettingCentral = "Enabled”

Propaosition g: ConfigurationSettingRegional = "Enabled"
Proposition r: ConfigurationSettingAM = "Enabled”

Logical Relationship: p,qand r shoule be equal for consistency. :

3. Develop Test Cases : Create test cases to ensure that data interactions are consistent and
logical across multiple processors.

Example: Creating a test case to simulate updating a configuration setting on the ceniral
server and verifying that the update is correctly propagated to all regional servers and ATMs.
For instance, if the central server enables a new security feature, the test case should verify
that this change is applied across all regional servers as well as ATMs.

4. Execute Tests and Monitor Results : Run the test cases ina controlled environment to check
for consistency and correctness. .

Example: Running the test case in a controlled environment where the central server updates
a configuration setting, and monitoring to ensure all regional servers and ATMs reflect the
change accurately.

5. Analyze Results and Identify Issues : Analyze the outcomes of the test executions to identify
inconsistencies or logical errors.

Example: Analyzing the test results to ensure that the configuration setting update on
the central server is accurately reflected on all regional servers and ATMs without any
discrepancies. r i

6. Implement Fixes and Retest : Correct any identified issues and verify the fixes through
retesting.

i g AL A

Interaction Testing 8.15

Example: If discrepancies are found, correcting the synchronization logic between the central
server, regional servers and ATMs, and retesting to ensure the issue is resolved. For instance, if
aregional server did not update the configuration setting correctly, the issue might be due toa
synchronization bug that needs fixing. i

7. Continuous Monitoring and Maintenance : Continuously monitor the system to ensure that
static interactions remain consistent over time.

Example: Implementing continuous monitoring tools to ensure that configuration settings are
consistently synchronized between the servers, and that no discrepancies occur over time.
Any detected inconsistencies should trigger alerts for immediate resolution.

p——— =]
8.3.3 Dynamic Interactions in a Single Processor

Dynamic interactions within a single processor consider the implications of time and sequence for
system operations. Unlike static interactions, which are time-independent, dynamic interactions are
highly sensitive to the order and timing of events. These interactions involve not only data but also
events and threads, expanding the scope to cover various system states and transitions. In dynamic
interactions, the system must manage the flow of operations in a way that respects the sequénce and
timing constraints to ensure correct functionality.

that change over time or in response to specific inputs or events. These interactions involve the dynamic

processing of data, state changes, and the execution of tasks within a single processing unit.

Scenario: ATM Transaction Authentication and Logging
1. Card Insertion and PIN Entry:

o Data: User's card information and entered PIN.
o Event: User inserts card and enters PIN.

e Thread: The system reads the card data, verifies the PIN against stored information, and checks
for valid authentication.

o Interaction: The system dynamically verifies the PIN and authentication status in real-time,
ensuring the correct PIN is entered before allowing further actions. All these operations are
managed within the single processor of the ATM.

2. Transaction Selection:
o Data: Available transaction types (e.g., balance inquiry, withdrawal).
o Event: User selects the desired transaction type.
e Thread: The system processes the user’s selection and prepares to execute the chosen transaction.

o Interaction: The system updates the display and internal state based on the user’s selection, to
ensure that the selected transaction is prepared for execution within the single processor.

| 8.16 | Software Testing

3. Logging the Transaction:

® Data: Details of the transaction, such as type, timestamp, and user actions.

¢ Event: Completion of the transaction selection process.

¢ Thread: The system logs the transaction details into a local log file for record-keeping and
auditing.

® Interaction: The system dynamically logs the transaction in real-time to ensure that all details
are accurately recorded for future reference. This process is entirely handled within the single
processor of the ATM.

1. N-connectedness : N-connectedness refers to the degree of dependency between data items

or events within a system. It can be classified into various types based on their interaction and
dependency levels:
® 0-connected data: These are independent data items with no dependencies.
Example: Consider an ATM system where a customer’s name and account type (savings
or current) are stored as independent data items. These data items do not affect each
other and can exist independently.
® 1-connected data: Data items that are inputs to the same action.
Example: In an ATM, when a customer initiates a transaction, both the account number
and PIN are inputs to the authentication action. They are 1-connected because they are
required together to perform the authentication. d
¢ 2-connected data: Data items used together in computations or workflows.
Example: When calculating the available balance after a withdrawal, the ATM uses the
current balance and the withdrawal amount. These data items are 2-connected as they
are used together in the balance computation process.
¢ 3-connected data: Data items that are deeply related, often involving repetition or
semaphore mechanisms.
Example: The ATM keeps a log of multiple transactions (deposits, withdrawals) for a
customer. These transaction entries are 3-connected because they represent a sequence
of related data items involving repetitive interactions and checks.

2. Interaction Types

¢ Data-Data Interactions: Multiple data items interacting with each other.
Example: During a funds transfer in an ATM, the system updates both the sender's
and receiver's account balances. The data for both accounts interact to ensure that the
transfer is correctly reflected in each account.

¢ Data-Events Interactions: Data interactions triggered by events.
Example: When a user requests an account balance, the ATM retrieves the account data
and triggers the event to display the balance on the screen. The retrieval of account data
is initiated by the user's request event.

oo e T

beirkiel

I

59

©n

Interaction Testing I 8.17 '

¢ Events-Events Interactions: Interactions between different events.

Example: If a user cancels a transaction after entering the PIN but before selecting the
transaction type, the cancel event interacts with the PIN entry event to halt the process
and reset the system state.

¢ Events-Threads Interactions: Events causing changes in thread execution.
Example: In the ATM, the event of detecting card insertion initiates a new thread for
the transaction process. The thread then handles subsequent events like PIN entry,
transaction selection, and completion.

¢ Threads-Threads Interactions: Interactions between different execution threads.

Example: In an ATM, one thread might handle user authentication while another
manages transaction logging. These threads interact to ensure that once a transaction is
authenticated, it is correctly logged in the system.

. Identify Dynamic Interactions: Determine all operations and data interactions dependent

on timing and sequence.

Example: Identifying steps in the withdrawal process from PIN éntry to cash dispensing.
Define Interaction Sequences: Map out the sequence of events and data interactions.
Example: Sequence from account verification, balance check, cash dispensing, and receipt
printing.

Develop Test Cases: Create test cases covering all possible sequences and timing variations.

Example: Test case for successful withdrawal, insufficient funds scenario, and card retention
after incorrect PIN entries.

Simulate Events: Simulate the dynamic interactions by triggering events in the defined
sequences.

Example: Simulate card insertion, PIN entry, balance check, and cash withdrawal.

Monitor System Responses: Observe and log the system's responses to ensure they match
expected outcomes.

Example: Verify that the system correctly dispenses cash only if sufficient balanc%is available.

. Analyze and Validate Results: Compare the actual outcomes with expected resuits to identify

discrepancies.
Example: Check if the receipt printed correctly reflects the transaction details.

. Address Issues and Retest: Fix any identified issues and rerun tests to ensure the fixes work.

Example: Correct any errors in the withdrawal sequence and retest for consistency.

. Continuous Monitoring: Continuously monitor the system to ensure dynamic interactions

remain consistent over time.
Example: Regularly check the accuracy of transactions and system logs for anomalies.

| 8.18 I Software Testing
p————

8.3.4 Dynamic Interactions in a Multiple Processors

Dynamic interactions in multiple processors involve the coordinated execution of processes across
multiple processors, where the timing and sequence of operations are crucial. These interactions
are not limited to a single processor and must manage the complexities that arise from the need 4
for synchronization, real-time data exchange, and consistency across multiple systems. This type
of interaction is essential in distributed computing environments where tasks are shared among

iy &+ AL il

e N b=, 248

R e e e s A iR RO

Interaction Testing 8.19

4. Transaction Logging and Recelpt Printing:
e Data: Transaction details.
Event: Completion of the transaction.
Thread: The ATM logs the transaction and prints a receipt.
Interaction: The transaction details, including the amount dispensed and the updated account

balance are logged in both the ATM's local memory and the central bank’s server. The ATM then
prints a receipt for the user.

Dynamic interactions in multiple processors refer to the interactions that occur i
more than one processor, where data and tasks are dynamically distributed and processed across

R e

Dynamic interactions in multiple processors involve the coordination and “synchronization of
operations across different’ processing units. These interactions are crucial for ‘ensuring that
distributed systems function correctly and efficiently.

these processors. These interactions are influenced by factors such as timing, synchronization,
resource sharing, and communication between processors. Managing these interactions is crucial
for ensuring the system's performance, consistency, and reliability.

ynamic Tnteractions in Multiple Processors

Scenario: Withdrawal Process
1. ‘Initiating Withdrawal Request:
e Data: User’s account details stored on the central bank server.
o Event: User requests a withdrawal at an ATM.
e Thread: The ATM sends a withdrawal request to the regional serve:r.

e Interaction: The ATM processor sends the user’s account information and requested withdrawal
amount to the regional server, which then forwards it to the central bank server for verification.
This interaction requires communication and synchronization between the ATM's processor, the
regional server, and the central bank server.

2. Account Balance Verification:
¢ Data: Real-time account balance on the central bank server.
e Event: Central bank server processes the withdrdwal request.
e Thread: The central bank server verifies the accour_ltbalance and approves or denies the request.

e Interaction: The central bank server checks the current balance, deducts the requested amount
if funds are sufficient, and sends a confirmation back to the regional server. This process must
occur dynamically and promply to ensure the transaction status is based on real-time data.

T T

3. Dispensing Cash:

e Data: Approval message from the central bank server.

e Event: ATM receives approval to dispense cash.

e Thread: The ATM processor triggers the cash dispenser.

o [nteraction: Upon receiving approval from the central bank server via the regional server, the
ATM processor initiates the cash dispensing mechanism. This dynamic interaction ensures that
the user receives the correct amount of cash and that the transaction is logged correctly in the
central bank’s records.

Pt B B i BB 1] A s WA

A,

1. Concurrency and Parallelism:

» Concurrency: Refers to the ability of a system to manage multiple tasks simultaneously.
In a multi-processor environment, tasks can be executed concurrently, which requires
careful management to avoid conflicts and ensure data consistency.

¢ Parallelism: Involves dividing a task into smaller sub-tasks that can:be executed
simultaneously on different processors. This improves performance but requires
mechanisms to synchronize the tasks.

2. Synchronization: _

e Mutexes and Locks: Used to prevent concurrent access to shared resources. A mutex
(mutual exclusion) ensures that only one processor can access a resource at a time.

o Semaphores: A signaling mechanism used to control access to shared resources by
multiple processors. Semaphores help in coordinating complex interactions.

3. Communication Protocols:

¢ Message Passing: Processors communicate by sending messages to each other. This is
essential in distributed systems where processors do not share memory.

e Shared Memory: Some systems use shared memory for communication, where
processors read from and write to a common memory space. Proper synchronization
mechanisms are required to manage access to shared memory.

4. Data Consistency and Coherence:

e Consistency Models: Define the rules for how data changes are propagated across
processors. Examples include strong consistency, eventual consistency, and causal
consistency.

o Cache Coherence Protocols: Ensure that multiple copies of data across different caches
are kept consistent. Protocols like MESI (Modified, Exclusive, Shared, Invalid) are used to
manage cache coherence.

5. Fault Tolerance and Reliability:

o Redundancy: Implementing redundant components to handle failures. If one processor
fails, another can take over its tasks.

B.20 | Software Tﬂslmg

. Checkpomtmg and Rollback: Penodrcally saving the state of a system so that it can be
restored to a previous state in case of failure,
6. Load Balancing:
¢ Static Load Ba]ancmg Drsmbutmg tasks:to processors at the start of exécution based
.on predeﬁned criteria. of .
¢ Dynamic Load Balancing: Adjusting the distribution of tasks ainong processors dunng
execution based on current load and performance metrics. :

1. Identify Dynamic Data Interactions: Determine the, data interactions that depend on ummg
and involve multiple processors. PR —

Example: Coordinating account balance updates between.the ATM central server;and r_eglonal
servers. p .

. 2. Define Interachon Scenanos. Outlme scenarios that mvolve muluple processors interacting
dynamically. m BN i
Example: User initiates a -withdrawal, and the system updates balances across different
Servers. e B e T : »

3. Develop Test Cases: Create test cases to validate dynamic interactions across processors.
Example: Test cases for withdrawal transactions that verlfy the balarce updates cotrectly on
both the central and regional servers. : R (i N TS S

4, Simulate Multi-Processor Environment: Set up a testing environment that mimics the
- distributed system. . e 7 o
Example: Use a network of servers-to-simulate the ATM, central server, and regional servers.

5. Execute Tests and Monitor Interactions: Run the test cases and moniter‘the:interactions
between processors. - : x
Example: Observe how the balance is updated and ensure no inconsistencies occur during
transactions. . ! ; o

6. Analyze Results and Resolve Issues: Analyze the test results to identify any synchromzatlon

or data consistency issues.
Example: If discrepancies are found in account balances, determine the cause and fix the
synchronization mechanism.

. Implement Fixes and Retest: Correct identified issues and retest to ensure fixes are effective.

~

Example: Adjust the communication protocol between servers to ensure timely and consistent
balance updates. '

8. Continuous Monitoring: Continuously monitor the system to ensure dynamic interactions
remain consistent over time.
Example: Regularly check the accuracy of transactions and system logs for anomalies.

Interaction Testing 8.21

e =
8.4 Client-Server Testing

Client-server systems are a fundamental architecture in computing where multiple clients (users)
connect to a central server to access resources and services. These systems are common in various
applications ranging from web services to banking systems like ATMs. The complexity of client-
server interactions, especially dynamic ones across multiple processors, makes testing these systems
challenging. Ensuring reliable and secure communication between clients and servers; as well as
verifying the correctness of operations performed by the server, is crucial for the robustness of the
entire system

Client-server testing involves evaluating the interactions and communications between the client applications
and the server. The goal is to ensure that requests from the client are correctly processed by the server, and the
responses are accurately and efficiently returned to the client.

Characteristies of Client-Server Testing

The key characteristics of Client-Server Testing are:

1. Functionality : Ensuring that the server correctly processes client requests and performs the
intended operations.

¢ Importance: Functionality testing verifies that the client-server interactions work as
expected. It ensures that all functions of the software application perform as specified in
the requirements.

e Example: In a banking application, functionality testing would check if the server
correctly processes a client's request to transfer money between accounts.

2. Performance : Evaluating the response time and throughput of the server under various load
conditions.

* Importance: Performance testing assesses how well the client-server system performs
under normal and peak conditions. It identifies bottlenecks and ensures the system can
handle expected user loads.

¢ Example: Testing how quickly a server can process multiple simultaneous requests for
account balance inquiries from multiple clients, 7

3. Security : Verifying that data transmission between the client and server is secure and thatthe
system can withstand potential threats.

* Importance: Security testing ensures that the client-server communication is
protected against unauthorized access and vulnerabilities. It checks for data encryption,
authentication mechanisms, and other security protocols.

o Example: Ensuring that user login credentials are transmitted securely using HTTPS and
that the server is protected against SQL injection attacks.

4. Concurrency : Ensuring the system handles multiple simultaneous requests without data
corruption or performance degradation.

8.22 | Software Testing

—

o Importance: Concurrency testing checks the system’s-ability”to handle multiple
transactions at the same time. It ensures that the systém remains stable and accurate
when accessed by many users simultaneously.

* Example: In an e-commerce application, testing the server's ability to handle multiple
users checking out their carts at the same time without causing errors in.inventory:
management.

5. Reliability : Ensuring that the system remains stable and performs consistently over time.

o Importance: Reliability testing assesses the system’s ability to perform its functions
under expected conditions without failure. It ensures that the system can be depended
upon for continuous operation.) ;

¢ Example: Testing a server’s uptime and error rate over a prolonged period to ensure it
can handle continuous client requests without crashing,

Components of Client-Server S

Client-server systems consist of several key components that work toget]'ler to deliver services and
functionality to users. These components include: S ' B
1. Server:

« Role: The server is the backbone of the client-server architecture. It hosts the central
database management syétem (DBMS) and the application logic.

e Functions: The server processes requests from clients, performs the necessary
computations or data retrieval operations, and sends back the responses to the clients.

o Example: In a banking system, the central server would handle tasks such as processing
transactions, updating account balances, and maintaining customer records.

2. Client:

¢ Role: The client is the interface through which users interact with the system. It runs the
user interface (UI) and presentation logic.

e Functions: The client sends requests to the server (e.g., querying account balances or
submitting transaction requests) and displays the server's responses to the user.

+ Example: In the same banking system, the client would be the application on a user’s
smartphone or computer or ATM through which they access their account information
and perform banking operations.

3. Network:

e Role: The network is the medium that connects the clients to the server to enable
communication between them.

o Functions: It facilitates data transmission to ensure that requests and responses can
travel back and forth between the client and server reliably and efficiently.

o Example: The internet or a private organizational network (intranet) serves as the
network connecting clients and servers in a banking system.

S I ke & b Db 0 it Pt

N Interaction Testing - | 8.23 |

Types of Client=-Server Syvstems

Client-server systems can be categorized based on where the majority of processing takes place: on
the client side or the server side.

1. FatClient:

o Description: In a fat client architecture, most of the processing and computational tasks
are performed on the client side. The server's primary role is to manage data storage and
handle requests for data retrieval.

¢ Benefits: This approach can reduce the load on the server since much of the-processing
is distributed to the clients. It can also lead to faster response times for the-user since the
client does not have to wait for the server to process every request.

o Drawbacks: Fat clients can be more complex to maintain and update since the application
logic resides on the client devices. This can lead to inconsistencies if clients are not
uniformly updated. :

o Example: A graphics-intensive application where rendering and processing of images
are done on the client device, while the server stores the image files and handles data
requests.

2. FatServer:

o Description: In a fat server architecture, most of the processing is done on the server
side. The client is primarily responsible for managing the user interface and handling
input/output operations.

e Benefits: This approach simplifies client devices since they only need to handle the
presentation logic. It also centralizes the application logic, making maintenance and
updates easier and more consistent.

o Drawbacks: Fat server architectures can place a significantload on the server, especially
if there are many clients. This can lead to scalability issues and the need for p’owérfui
server hardware.

¢ Example: Web applications where the server handles all the business logic and database

operations, while the client (web browser) simply renders the user interface and captures

user input.

in _Cim_m-f;'m

1. Complex Interactions: The dynamic interactions between clients and servers across multiple
processors can be difficult to predict and test.

2. Network Issues: Network latency, packet loss, and bandwidth constraints can affect the
performance and reliability of client-server communications.

3. Concurrency: Handling multiple simultaneous requests without data corruption or
performance degradation requires robust concurrency control mechanisms.

4. Security: Ensuring secure data transmission and protecting against threats such as SQL
injection, cross-site scripting, and man-in-the-middle attacks.

|- 8.24 | Soﬁwgré Testing _

5. Data Consistency: Ensuring that data remains consistént: across the chent and senrer,

especnally in the face of concurrent updates.

Testing Stritesy

1. Identify Client-Server Interactions: Determine all interactions that occur between the client

and server, including data requests, processing, and responses.

Example: In the SATM system, interactions between the ATM client (user mterface) and the
bank’s central server (processing transactions) must be tested.

2. Develop Test Cases: Create test cases that cover different scenarios of client-server

interactions,including normal operations, error handling, and edge cases.

Example: A test case where the ATM client requests a balance inquiry, and the server processes
this request and returns the current balance.

3. Simulate Network Conditions: Test under various network conditions, such as latency,

packet loss, and bandwidth constraints, to ensure robustness.

Example: Simulate a network delay to see how the ATM system handles slow responses from
the central server.

4. Concurrency Testing: Ensure that the system can handle multiple simultaneous requests

without data corruption or performance degradation.

Example: Multiple ATMs simultaneously requesting transaction processing from the central
server.

5. Security Testing: Ensure that data transmitted between the client and server is secure and
that the system can withstand potential security threats.

Example: Test for SQL injection, cross-site scripting (XSS), and secure data transmission
protocols (e.g., HTTPS).

Exccution and Monitoring

1. Run Test Cases: Execute the test cases in a controlled environment and monitor the system’s

responses. '

Example: Execute a withdrawal transaction test case to verify if the server correctly deducts
the amount and updates the balance. ;

2. Analyze Results: Analyze the test results to identify any issues or inconsistencies in the client-

server interactions.

Example: Check if the server correctly handles multiple simultaneous balance inquiries
without causing data inconsistencies.

3. Fix Issues and Retest: Correct any identified issues and perform retesting to ensure that the

fixes are effective.

Example: If an issue is found in handling concurrent transactions, fix the server logic and
retest with multiple ATMs.

= hi v

a2} W e i

E T ey

Interactign Tasting - | 8.25 |:

4. Continuous Monitering: Continuously monitor. the system to detect any issues that méy arise

during normal operations.

Example: Monitor the ATM network for any s:gns of performance degradatioo or security
breaches i

-k
el

8.5. Review Questions

o0 N 0N e W N

. What is Interac_tion Testing?

. What are Taxonomy of lnteractlons"

. What are Static Interactlons ina Smgle Processor 2

. What are Static Interactions in Multiple Pro.cgs;_or_s ?

. What are Dynamic Interactions in a Single Processor ?

. What are Dynamic Interactions in Multiple Processors ?
. What s Client Server Testing ?

. What is Fat Client?

. What is Fat Server?

1
2
3
4
5
6
7
8
9

[s =
O NCR Sy =Y

. What is Interaction Testing ? Discuss the Key Aspects of Interaction Faults in System Testing.
. Explain the Importance of Interaction Testing.

. Explain the Features (or) Characteristics of Interaction Testing.

. Write the Advantages and Disadvantages of Interaction Testing.

. Explain the Context of Interaction in Interaction Testing.

. What are Static Interactions in a Single Processor ? Explain the Key Concepts.

. Explain the Procedure for Testing Static Interactions in a Single Processor.

. What are Static Interactions in Multiple Processors ? Explain the Key Concepts.

. Explain the Procedure for Testing Static Interactions in Multiple Processors.

. What are Dynamic Interactions in a Single Processor ? Explain the Key Concepts.

. Explain the Procedure for Testing Dynamic Interactions in a Single Processor.

. What are Dynamic Interactions in Multiple Processors ? Explain the Key Concepts.

. Explain the Procedure for Testing Dynamic Interactions in Multiple Processors.

o 0 A et

14. What is Client Server Testing ? Write the Characteristics of Client-Server Testing:
15. Explain the Components and Types of Client-Server Systems.

Section - C | OBJECT ORIENTED TESTING

1. What is Interaction Testing ? Explain thg Featurés and Importance of Interaction Testing. s G U I T E S T I N G

2. Explain the Types of Interactions in System Testing. ioT

3. Explain Static Interactions in a Single Processor with detailed example: - ; C ontents =

4. Explain Static Interactions in Multiple Processors with detailed example.] .

S. Explain Dynamic Interactions in a Single Processor with detailed example. ; < Introduction to Object Oriented Testing

6. Explain Dynamic Interactions in Multiple Processors with detailed example. : = Conventional Testing Vs Object Oriented Testing
7. What is Client Server Testing ? Explain the Testing Startegy. = Issues in Object Oriented Testing

| = Units for Object-Oriented Testing
~ < [mplication of Composition and Encapsulation
FPPPPR X = Implication of I}nh'eritance
= Implication of Polymorphism
- 5 = Levels of Object-Oriented Testing
<« Object Oriented Unit Testing
= -Object-Oriented Integration Testing
< GUI Testing
= Key Objectives of GUI Testing
= Types of GUI Testing
< Examples of GUI Testing
= Tools for GUI Testing:
< GUI Testing Strategies
= Review Questions

I

T T c— TP — P —

| 9.2 l Software Testing

— g ————————]
9.1 Introduction to Object Oriented Testing
Testing of Object Oriented Software is different from testmg software created usmg procedural
languages. The most of the methods for testing Object Oriented Software were justa simple extensjon
of existing methods for conventional software. However, they have béen shown to be -not very
appropriate. Hence, new techniques have been developed :

Object-oriented programs involve many unique features that are not present in thelr convennnnal
programs. Examples are message passing, synchronization, dynamic binding, object instantiation,
persistence, encapsulation; inheritance, and polymorphism. Testing for such program is, therefore,
more difficult than that for conventional programs. Object-orientation has rapidly becorhe accepted
as the preferred paradigm for large-scale system design. The whole object oriented testing revelves
around the fundamental entity known as “class”. With the help of “class” concept, larger systems can
be divided into small well defined units which may then be implemented separately i

Ob]ect-Orlented Testlng isa software testing process that is conducted to test the software using object-
oriented paradigms like, encapsulation, inheritance, polymorphism, etc. The software typically undergoes
many levels of testing from unit testing to system testing. In simple words; Object Oriented Testing is a
collection of testing techniques to verify and validate object oriented software.

Conventional testing defined for procedural programs do not fit well in the case of testing an object-
oriented program. Conventional software testing tends to focus much on the algorithmic detail of a
module and the data that flows across the module interface, whereas object-oriented software tends
to focus on the operations that are encapsulated by the class and the state behavior of the class.
Several object-oriented features such as data abstraction, inheritance, polymorphism, dynamic
binding etc., heavily impact on testing that is not straightforward to make object-oriented systems
fit the conventional testing levels. There arises the need for object-oriented testing techniques which
suits for object oriented system.

9.1.1 Conventional Testing Vs Object Oriented Testing

Conventional testing defined for procedural programs do not fit well in the. case of testing an object-
oriented program. The three levels of testing (unit testing, integration testing, system testing) used in
conventional testing is not clearly defined when it comes to object oriented testing. The main reason
for this is that 00 development uses incremental approach, while traditional development follows
a sequential approach. In terms of unit testing, object oriented testing looks at much smaller units
compared to conventional testing. Let us see the major differences between conventional testing and
object oriented testing,

: Oh}ect Onented 'Restmg

Conventmnal 'Iestmg

Convennonal testing is the traditional
approach to testing mostly done when
water fall life cycle is used for development.

Object oriented testing is used when object orlented
analysis and design is used for developing enterprise
software

Object Qriented Testing & GUI Testing I 9.3 |

Convgnﬁonal . Festing focuses more on | Qbject oriented testing focuses more on 'cum'p;ositioﬁ.
decomposition and functional approaches. ;

In conventional testing, the module or|In object-oriented Testing, a class is considered as a
subroutine, or procedure are considered as | unit.
a unit.

A single operation of a procedure can be|We cannot. test a single operation in isolation but
tested. rather as partof a class.

It uses a sequential approach in the testing | It uses an incremental approachin the testing:process.
process,
This testing does not have any hierarchical | This tésting hasa hisrarchical control structure.
control structure. : ;

:I'he th_ree ley‘el’s of l:esi:'mg (system, Ob]ect oriented testing also has the same levels of
integration, unit) 'used in conventional testing but the approach is different.
testing.

=" ——————~————~—
9.2 Issues in Object Oriented Testing

In this section, we want to discuss the testing issues that come up when working with object-oriented
software. First, we need to figure out the different levels of testing needed and understand what
object-oriented units are. Then, we will look at the effects of using composition instead of functional
decomposition as a design approach. Object-oriented software includes features like inheritance,

encapsulation, and polymorphism, so we will explore how traditional testing methods can be adapted
to handle these complexities.

_re-—————————---
9.2.1 Units for Object-Oriented Testing

In object-oriented software development, the concept of a "unit” can be defined in a few different
ways:

1. Smallest Executable Component: A unit is the smallest software component that can be
compiled and executed.

2. Single Developer Responsibility: A unitisa software component that would be assxgned to
only one developer to design and implement.

These definitions can conflict. For example, some large classes in industrial applications are too
complex to be designed by a single developer. In such cases, it is more practical to define a unit based
on what a single person can handle, which might be just a subset of a class's operations or methods.
Simplified Unit Testing
For smaller units (like individual methods or small groups of methods), unit testing becomes similar
to traditional testing. This approach simplifies testing but shifts much of the testing burden to
integration testing. It also doesn't fully utilize the benefits of encapsulation, which is key in object-
oriented programming.

| 9.4 ‘ Softwaore Testing i

Class-as-Unit Approach B _ | .
In object-oriented software, defining a unit can be tricky due to véryi_n_g sizes and complexities of
classes. While smaller units simplify initial testing, treating whole classes as units can leverage state
management tools and clear integration goals. This approach can improve the overall reliability and
maintainability of the software. Treating an entire class as a unit for testing offers several advantages:
1. State Management: In UML (Unified Modeling Language), a class often has an associated
StateChart that describes its behavior. This is very helpful for identifying test cases. '

2. Clear Integration Goals: Object-oriented integration testing aims to ensure that separately
tested-classes work together correctly. This goal is similar to traditional software integration
testing. '

—

9.2.2 Implication of Composition and Encapsulation

Composition and encapsulation are fundamental principles in object-oriented design that provide
flexibility and modularity. However, they also present challenges for testing due to complex
interactions and hidden internal states. Let us understand the challenges in testing.

1. Composition

Composition involves building a class using objects of other classes, establishing a "has-a" relationship.
This principle enhances flexibility and reuse in software design.

i Composition - A Car class composed of Engine, Transmission, and GPS classes.

public class Car { :
private Engine engine;

private Transmission transmission;

private GPS gps;

public Car(Engine engine, Transmission transmission, GPS gps) {
this.engine = engine;)
this.transmission = transmission;
this.gps = gps;

}

public void start() {
engine.start();
transmission.setGear(1);
gps.initialize();
System.out.println("Car started.");

}

public void stop() {
engine.stop();
transmission.setGear(9);
gps.shutdown();

System.out.println("Car stopped.");

I
5T I e

ik LM LB | Wi o b s 55

Object Oriented Testing & GUI Testing | 9.5 |

public boolean isReady() {
return engine.isRunning() && gps.isInitialized() && transmission.getGear() > @;

// Additional methods...

¥

This Car class composes the Engine, Transmission, and GPS classes. It provides methods to start
arid stop the car, which involve starting/stopping the engine, setting the transmission’ gear, and
initializing/shutting down the GPS. It also includes a method to check if the car is ready (i.e., the

engine is running, the GPS is initialized, and the transmission is in gear).

This example demonstrates composition by having the Car class depend on instances of Engine,
Transmission, and GPS classes. It also encapsulates the behavior of starting and stopping the cay
providing a clean and controlled interface.

1. Complex Interactions:

« Challenge: Ensuring correct interactions between composed objects.
Testing the Car involves ensuring the Engirie, Transmission, and GPS interact correctly.
 Example: In the Car class, starting the car involves the interaction of the Engine,
Transmission, and GPS. The Engine must start, the Transmission must be set to the
appropriate gear, and the GPS must be initialized. Testing must verify that these
interactions occur correctly and in the right order. ‘
2. Unknown Combinations:

« Challenge: Handling various configurations and versions of composed objects.

« Example: The Car class might use different models of Engine, Transmission, or GPS
systems, each with unique behaviors or interfaces. Ensuring compatibility and proper
functionality with all possible combinations is challenging.

3. Dependency Management:

« Challenge: Managing dependencies between the composed objects can be tricky,
especially when testing in isolation. “

o Example: The Car class depends on Engine, Transmission, and GPS. Each dependency
introduces potential points of failure and complexity in managing their interactions.

% Testing Sirategies®
=
1. Unit Testing:
o Approach: Test each component independently to ensure they work correctly in

isolation.
« Example: Testing the Engine alone to ensure it starts correctly.

Software Testing

2. Mocking Dependencies:

* Approach: Use mock objects to simulate the behavior of dependent classes when testing
the composed class.

* Example: Creating mock objects for Engine, Transmission, and GPS when testing the Car
to isolate the unit test.

3. Integration Testing:

* Approach: Test the composed class with actual instances of its components to ensure
they interact correctly.

+ Example: Testing the Car with a real Engine, Transmission, and GPS to verify the entire
start-up sequence.

2. Eoeapsaliadcion

Encapsulation is a core principle of object-oriented programming that involves bundling the data
(attributes) and methods (functions) that operate on the data into a single unit or class. It also involves
restricting access to some of the object’s components, which means that the internal representation of
an object is hidden from the outside. This is achieved through access modifiers like private, protected,
and public.

i Encapsulation - A Car class composed of Engine, Transmission, and GPS classes.

The Car class in previous example demonstrates the principle of encapsulation by bundling together data
(attributes) and methods (functions) that operate on that data. Encapsulation ensures that the internal
workings of the Car class are hidden from the outside world, providing a controlled interface for interacting
with its components (Engine, Transmission, and GPS).
* The Car class has private fields for its components: Engine, Transmission, and GPS. These fields are not
directly accessible from outside the class. By making these fields private, the Car class controls how
these components are used and interacted with,

* The Car class provides public methods start and stop to control the behavior of the car.These methods
encapsulate the complex interactions required to start and stop the car, ensuring that the operations
are performed in the correct sequence. ‘

1. Accessmg Private Data:

* Challenge: Encapsulation hides the internal state, making it difficult to test the internal
logic directly.
* Example: The Car class hides its components (Engine, Transmission, GPS), making it
hard to directly verify their states during testing,
2. Ensuring Correct Interface:
 Challenge: Tests must ensiire that the public interface works correctly and that internal
state changes as expected through this interface.

+ Example: Ensuring that the start method of the Car class correctly initializes all
components through the public interface.

R L

Object Oriented Testing & GUI Testing | 9.7 |

3. Hidden Dependencies:

¢ Challenge: Encapsulated components might-have hidden dependencies -that are not
obvious, complicating testing efforts.

 Example: The Car class may have implicit dependencies on the order of ope‘raﬁons (eg,
the engine must start before the transmission can be engaged). -

1. Public Interface Testing:

* Approach: Focus on testing the public methods and ensuring they manipulate the
internal state correctly.

* Example: Testing the start method of the Car to ensure it correctly mltlahzes the engme
transmission, and GPS.

2. Behavioral Testing:

¢ Approach: Ensure that the class behaves correctly in’ all scenarios that the pubhc
interface should support.

« Example: Verifying that the Car can start, drive, and stop as expected through its public
methods.

3. Integration Testing with Real Components:

* Approach: Use real components instead of mocks to test how the class interacts with its
dependencies in a realistic setting.

» Example: Testing the Car with an actual Engine, Transmission, and GPS to see how it
behaves in real-world conditions.

=— e ——————————1

9.2.3 Implication of Inheritance

Iniheritance allows classes to inherit attributes and ‘methods ffom other classes, promoting code
reuse and logical hierarchy. However, it introduces compiexltles in testing, especxally regarding the
behavior of subclasses and their interaction with superciass componants.

Consider a banking system with a base class Account and derived classes Checking Account and
Savings Account.

Banking System with Inheritance

public class Account {
protected String accountNumber;
protected double balance;

public Account(String accountNumber, double balance) {
this.accountNumber = accountNumber;
this.balance = balance;

| 9.8 | Software Testing

public void deposit(double amount) {
balance += amount;

}

public void withdraw(double amount) {
balance -= amount;

}

public double getBalance() {
return balance;

}

public class CheckingAccount extends Account {
private double checkProcessingCharge;
public CheckingAccount(String accountNumber, double balance, double
checkProcessingCharge) {
super(accountNumber, balance);
this.checkProcessingCharge = checkProcessingCharge;

}

public void processCheck(double amount) {
withdraw(amount + checkProcessingCharge);
}
}

public class SavingsAccount extends Account {
private double interestRate;

public SavingsAccount(String accountNumber, double balance, double interestRate) {
super(accountNumber, balance);
this.interestRate = interestRate;

} L

public void addInterest() {
balance += balance * interestRate;

1. Flattening Classes

« Challenge: Flattening involves merging all attributes and methods from superclasses
into subclasses. It complicates testing due to increased complexity.

« Example: Testing CheckingAccount would involve ensuring all inherited methods from
Account behave correctly in the context of the subclass.

D L e =

B e

Object Oriented Testing & GUI Testing I 9.9

2. Special-Purpose Test Methods

* Challenge: Adding special-purpose test methods for inherited attributes and methods

raises the issue of maintaining these methods and ensuring they are not part of the final *
system. '

e Example: Creating test methods specifically for withdraw in CheckingAccount might
introduce redundancy and confusion.

1. Unit Testing of Inherited Methods

= Approach: Test inherited methods in the context of the subclass to ensure they behave
correctly.

« Example: Testing the withdraw method in both Account and CheckmgAccount to ensure
correct behavior.

2. Integration Testing

« Approach: Ensure that interactions between subclasses and their superclasses work as
expected.

o Example: Testing CheckingAccount and SavingsAccount together to verify they handle
common Account operations correctly.

—

9.2.4 Implication of Polymorphism
Polymorphism is one of the core concepts of object-oriented prngrammmcr (OOP) thatallows methods
to be used interchangeably across different classes, as long as those classes share the same interface
or base class. The term "polymorphism" means "many shapes and it refers to the ability of different
classes to be treated as instances of the same class through a common interface.
There are two main types of polymorphism in OOP:

1. Compile-time (Static) Polymorphism: Achieved through method overfoadlng and operator
overloading.

2. Runtime (Pynamic) Polymorphism: Achieved through method overndmg, typlcally using
inheritance and interfaces.

Consider a Shape interface with an area method. Different shapes like Clrcle a{ﬂd _qhéi'e will
implement this interface, providing their own specific calculations for the area,

F : pl‘t Polymorphism
publlc abstract class Shape {
public abstract double area();

}

public class Circle extends Shape {
private double radius;

9.10 | Software Testing

public Circle(double radius) {
this.radius = radius;

}

@0verride
public double area() {
return Math.PI * radius * radius;
}
}

public class Square extends Shape {
private double side;

public Square(double side) {
this.side = side;

}

@0verride
public double area() {
return side * side;

}

public class PolymorphismExample {
public static void main(String[] args) {
Shape circle = new Circle(5.8);
Shape square = new Square(4.0);

System.out.println(“Area of Circle: " + circle.area());
System.out.println("Area of Square: " + square.area());

!

== r,.“ JarT){-—-MA_u‘ 0

LS. OO

Testing All Implementations
e Challenge: Ensuring that all 1mplementatlons of a polymorphic method behave correctly
requires thorough testing.
« Example: Testing the area methed in both Circle and Square to ensure it calculates the area
correctly for different shapes. Comprehensive unit tests are necessary for each class that
1mplements the polymorphlc method.

o Unit Testing of Polymorphlc Methods: Test each implementation independently.
« Polymorphic Testing: Use a common interface to verify that all implementations behave
correctly.

A DA W A A 4 Y i 0

WY v

Object Oriented Testing & GUI Testing 9.11

= ———— =————y
9.3 Levels of Object-Oriented Testing
Testing object-oriented software can be categorized into different levels, each focusing on specific
aspects of the system. : ’
1. Unit Testing : Unit testing in object-oriented systems involves testing individual units or
components of the system in isolation to ensure they function correctly.
a. Operation/Method Testing: Test individual methods or operations to ensure they
perform their intended functions correctly.
b. Class Testing: Test a class in isolation, including all its methods and interactions with
internal components.
2. Integration Testing: Test interactions between classes to ensure they work together as
expected
3. System Testmg Test the entire system in an environment that closely resembles production
to ensure it meets all spécified requlrements
—_——————
9.4 Object Oriented Unit Testing
Unit testing in object-oriented systems involves testing individual units or components of the system
in isolation to ensure they function correctly. Unit testing focuses on testing the smailest testable
parts of a software application, known as units or components. In object-oriented programming,
classes are often considered as units for testing. The purpose of unit testing is to validate the behavior
of individual classes, methods, or functions to ensure they meet the specified requirements.

Unlike procedural programming, object-oriented programming introduces concepts such as
composition, encapsulation, inheritance, and polymorphism, which create unique challenges and
opportunities for testing. Effective unit testing helps identify issues early, ensures that each part of
the system behaves as expected, and facilitates easier integration and mairiteriance.
1. Unit Testing of Composition : Composition involves buildinga class using objects of other
classes, establishing a "has-a" relationship. This principle enhances ﬂex1b111ty modularlty, and
‘reuse in software design. : o 26 2R At 3 B o
Steps: : :
‘(a)’ Identify Composed Classes:
* Determine which classes are composed within another class.
o Example: A Car class composed of Engine, Transmission, and GPS classés.
(b) TéstEach Component Class Independently:: :
* Create unit tests for each component class to ensure they function correctly on
their own. gl
¢ Example: Test the Engine class to.ensure it starts and stops correctly..
(c) Ensure the Composed Class Correctly Initializes and Interacts with Its Components:
 Write tests for the composed class to verify it initializes its components and that
the components interact correctly.
 Example: Test the Car class to ensure it correctly starts the engine, sets the
transmission, and initializes the GPS.

| 9.12 | Software Testing)

2. Unit Testing of Encapsulation : Encapsulation involves bundling data and methods within a
single class and restricting access to some components, usually with private access modifiers.
This ensures that the internal state of the object is hidden from the outside and can only be
manipulated through well-defined interfaces.

Steps:
(a) Focus on Testing Public Methods:
« Write tests for the public methods of the class, as these are the primary means of
interacting with the object.
o Example: Test the start and stop methods of the Car class.
(b) Ensure Public Methods Manipulate Internal State Correctly:
o Verify that the public methods correctly manipulate the internal state of thie object.
« Example: Ensure that the start and stop methods correctly change the states of the
Engine, Transmission, and GPS components.
3. Unit Testing of Inheritance : Inheritance allows a class to inherit methods and attributes
from another class, promoting code reuse and logical hierarchy.
Steps:
(a) Test the Base Class:
« Ensure that the base class's methods work correctly.
o Example: Test the deposit and withdraw methods in the Account class.
(b) Test Derived Classes to Erisure Correct Inihetitarice aiid Methidd Overtiditig:
« Verify that the derived classes correctly inherit methods from the base class and
override them as necessary.
« Example: Ensure that CheckingAccount correctly applies a fee when withdfaw is
called.

4. Uit Testing Polymorphisin : Polymorphism allows mmiethiods to be used ititerchangeably
across different classes, provided they share the same intérfacé or base class. This enhances
flexibility but cotfiplicates testing due to theneed to verify thatall polymorphiciniplementations
behave correctly. -

Steps:

(d) Test Each Imiplementation of the Polymorphic Method liidepefidently:
s Ensure that each class implemeniting the polymoiphic wiethod works cortéctly.
« Example: Test the area method in both Circle and Squdre clas§es.

(b) Use Polymorphism iri Tests to Verify All limpleineritatibis Betiavé Corréctly Thirotigh

a Common Interface:
« Write tests that use the base class or interface to en$ure that diffetent
implementations work as expected.

« Example: Use the Shape interface to test the area method ifi both Circle anid Square.

Ry LN B i 4 Pt b i | 3 ot

Object Oriented Testing keul Testing 9.13

ammm————————————————— = -——————
9.5 Object-Oriented Integration Testing

Integration testing is a crucial phase in software development, especially in object-oriented systems,
where the goal is to ensure that different classes and their methods interact correctly after individual
unittesting is complete. This process involves combining tested units (classesand methods) into larger
modules and testing them as a group. Integration testing can be challenging due to the complexities
introduced by object-oriented principles such as encapsulation, inheritance, and polymorphism. We

« Integrate methods into a full class.
« Integrate the class with other classes.

This strategy is used when classes are very large, and several designers are involved in developing
ﬂ}em_.A The goal is to ensure that individual methods work correctly within the context of the class and
that the class interacts properly with other classes.

| Operation/Method Integration Testing

Consider an e-commerce application with a Cart class and a Product class. Each methed in the Cart class,
such as addItem and removeltem, would be integrated into the full Cart class. Then, the Cart class would be
integrated with the Product class.
public class Cart {

private List<Product> items;

public cart() {
items = hew Arraylist<>();

}

public void ‘addItem(Product product) {
items.add(product);
}

plblic ybid remoVEItém(Pboducf prodiict) {
itefs. remove(prodtict) ;
}
public ift getTotaitteris() {
petirh itéfs.sizé();
i
}

public class Product {
private String name;
private double price;

| 9.14 I Software Testing

public Product(String name, double price) {
this.name = name;
this.price = price;

}

// Getters and setters...

¢ Method to Class Integration:
» Ensure that addItem and removeltem methods correctly modify the iterns list. -
> Verify through unit tests that each method behaves as expected when called independently.

¢ Class to Class Integration:

> Ensure that Cart interacts correctly with Product, such as verifying that a Product added to the
Cart can be retrieved and has correct properties.
> Integration tests should validate that Cart correctly handles Product objects and maintains the

import org.junit.Test;

public class CartIntegrationTest {
@Test
public void testAddItem() {
Cart cart = new Cart();
Product product = new Product(“Laptop”, 1608.00);
cart.addItem{product});
assertEquals(1l, cart.getTotalltems());

@Test

public void testRemoveItem() { '
Cart cart = new Cart();
Product product = new Product("Laptop”, 1600.60);
cart.addItem(product);
cart.removeItem({product);
assertEquals(0, cart.getTotalltems());

s-Unit Integrat

For the class-as-unit choice, once unit testing is complete, two steps must occur:
* Restore the original class hierarchy if flattened classes were used.

» Remove any test methods that were added during unit testing.

B I b T S A

Object Oriented Testing & GUI Testing 9.15

This strategy is more common and focuses on ensuring that fully tested classes work correctly when
integrated with other classes. It ensures that interactions between different parts of the system
function as intended.

Example: Consider a library management system with Library, Book, and Member classes. After unit
testing these classes individually, integration testing will focus on interactions between these classes

Class-as-Unit Integration Testing

.public class Library {
private List<Book> books;
private List<Member> members;

public Library() {
books = new Arraylist<>();
members = new ArrayList<>();

}

public void addBook(Book book) {
books.add(book) ;

}

public void registerMember(Member member) {
members .add(member) ;

}

// Other methods...
}

public class Book {
private String title;
private String author;

public Book(String title, String author) {
this.title = title;
this.author = author;

}

// Getters and setters...

}

public class Member {
private String name;

public Member(String name) {
this.name = name;

}

// Getters and setters...

] 9.16 , Software Testing

Class to Class Integration:
« Ensure that Library can add Book and Member objects and interact with them correctly.

« Integration tests should verify that the Library class can handle the addition of books and members,
and that these objects maintain their state and functxonahty w1t:hm the lerary

5 q‘,—n——_—ﬁ'

import static org.junit.Assert.*
import org.junit.Test;

public class LibraryIntegrationTest {

@Test

public void testAddBook() {
Library library = new Library(); £
Book book = new Book("Effective Java", "Joshua Bloch");
library.addBook(book);
// Verify that the book is added correctly
assertTrue(library.getBooks().contains(book));

}

@Test

public void testRegisterMember() {
Library library = new Library();
Member member = new Member("John Doe");
library.registerMember(member);
// Verify that the member is registered correctly
assertTrue(library.getMembers().contains(member));

e e

3 UML Suppmt fon Intefrl at'on Testm<r

R———

Umﬁed Modeling Language [UML) provides valuable tools for visualizing and designing object-
oriented systems, which can also be leveraged for integration testing. UML diagrams, such as
collaboration and sequence diagrams, help identify and understand the interactions between classes
and methods, forming a basis for creating comprehensive integration tests.

1. Collaboration Diagrams : A collaboration diagram, also known as a communication diagram,
shows the message traffic among classes, similar to a call graph. It depicts how objects interact
to perform a specific behavior. Collaboration diagrams are useful for pairwise integration
testing, where each class is tested in terms of adjacent classes that send OF receive messages.

Example: Consider a social media application with User, Post, and Comment classes. A
collaboration diagram might show interactions between these classes:

¢ User creates Post
s Post has Comment

o User likes Post

el

T T e

Obiject Oriented Testing & GUI Testing 92.17

Pairwise Integration Testing:
¢ User and Post, with stubs for Comment.
¢ Post and Comment, with stubs for User.

For pairwise integration, a class is tested in terms of separate adjacent classes. For example,
integrating User and Post while using stubs for Comment to ensure that interactions between
User and Post work as expected.

Palmlse Integration Testing

import static org.junit.Assert.*;
import org.junit.Test;

public class UserPostIntegrationTest {
@Test
public void testUserCreatesPost() {
User user = new User(“John");
Post post = new Post("Hello World!");

user.createPost(post);

assertTrue(user.getPosts().contains(post));

}

@Test

public void testPostHasComment() {
Post post = new Post("Hello World!"};
Comment comment = new Comment("Nice post!");
post.addComment (comment);

assertTrue(post.getComments().contains(comment));

i

 Explanati

Pairwise integration testing involves testing the interactions between pairs of classes that directly
communicate with each other while using stubs for other related classes. This approach ensures that
the adjacent classes' interactions are verified independently of the complete system, thus isolating and
identifying issues more effectively. For example, in the provided UserPostIntegrationTest, the interaction
between the User and Post classes is tested to ensure that a User can successfully create a Post and that
a Post can successfully have a Comment added. The Comment class is used as a stub when testing the
interaction between User and Post, and vice versa. This method simplifies the integration process by
focusing on one pair of interacting classes at a time, ensuring their interaction works correctly before
they are integrated into the broader system.

In the UserPostIntegrationTest: |
1. Testing User Creates Post: |
» The test testUserCreatesPost verifies that a User object can create a Post abject.

« A new User named "John" and a Post with the content "Hello World!" are instantiated. 1

Software Testing

o The user.createPost(post) method is called, and the test asserts that the post s successfully
added to the user's list of posts.
2. Testing Post Has Comment:
« The test testPostHasComment verifies that a Post object can have a Comment added.
« Anew Post with the content "Hello World!" and a Comment with the content "Nice post!"
are instantiated.
o The postaddComment(comment) method is called, and the test asserts that the comment
is successfully added to the post's list of comments.
This approach confirms that the User can manage Post objects and that Post objects can manage
Comment objects independently, ensuring that these interactions function correctly before the
complete system is tested.

2. Sequence Diagrams : A sequence diagram traces the execution path ﬂlroqgh a collaboration
diagram, showing the sequence of messages sent between objects over time. It provides a
dynamic view of interactions and can be used to create detailed integration tests.

Example; For a payment processing system with Payment, Order, and Invoice classes, a
sequence diagram might show the process of creating an invoice after a payment is made:

¢ Create a Payment.

e Associate the Payment with an Order.

» Generate an Invoice for the Order.

A sequence diagram shows the order of interactions between objects. For the payment
processing system, the sequence diagram illustrates how a Paymerit triggers the creation of an
Order, which then leads to the generation of an Invoice.

Sequence Diagram-Based Integration Testing

import static org.junit.Assert.*;
import org.junit.Test;

public class PaymentProcessingTest {
@Test
public void testPaymentProcessing() {
Payment payment = new Payment(1€0.00);
Order order = new Order("Order123");
Invoice invoice = new Invoice(order);

order.setPayment (payment);
invoice.generate();

// Verify the invoice details
assertEquals("Orderi23", invoice.getOr‘der‘()‘.ggtOrderId());
assertEquals(100.00, invoice.getAmount(), ©.61);

——

Object Oriented Testing & GUI Testing ' 9.19 ,

The PaymentProcessmgTest illustrates sequence diagram-based integration testing by validating the
interactions between Payment, Order, and Invoice classes in a payment processing system. This test
follows the sequence of operations typically depicted in a sequence diagram: a Payment is created,
associated with an Order, and then used to generate an Invoice. The test ensures that the Order correctly
records the Payment, and that the Invoice accurately reflects the details of the Order. Specifically,
it verifies that the Invoice is associated with the correct Order ID and that the payment amount is
accurately reflected in the Invoice. This approach ensures that the sequence of operations works as
expected, validating the integration of these classes in a real-world scenario.

In the PaymentProcessingTest:

1. Creating and Associating Objects:
¢ A new Payment of 100.00 is created.
¢ An Order with the ID "Order123" is instantiated.
* AnInvoice linked to the Order is created.

2. Setting Payment and Generating Invoice:
* The Payment is associated with the Order using ordersetPayment(payment).
« The Invoice is generated by calling invoice.generate().

3. Verification:
* The test asserts that the Invoice is correctly linked to the Order with the ID "Order123".

= Italso verifies that the Invoice amount matches the payment amount of 100.00, with an
allowable margin of error of 0.01.

9.6 G6UI Testing

Graphical User Interface (GUI) testing involves testing the user interface of an application to ensure it
functions correctly and provides a positive user experience. It is a crucial aspect of software testing,
focusing on the front-end aspect of an application, which interacts directly with users. GUI testing
aims to validate that all visual elements, such as buttons, menus, icons, and dialogs, work as expected
and that the appllcatlon behaves correctly in response to user interactions.

1. Functional Validation: Verify that all GUI elements perform their interided functions, such as
buttons triggering actions or forms accepting input.

2. Layout and Design: Check the alignment, spacing, fonts, colors, and overall aesthetics of the
GUI for consistency and adherence to design guidelines.

3. Navigation and Interactivity: Test the flow of the GU], including menu navigation, links, pop-
ups, and interactive elements like sliders or drag-and-drop features.

4. Error Handling: Validate how the GUI responds to user errors, such as displaying appropriate
error messages or guiding users to correct input.

I 9.20 I Software Testing

9.6.1 Key Objectives of GUI Testing
1. Functionality Testing:
« Ensure that all GUI elements perform their intended functions.
o Verify that buttons, links, menus, and other controls trigger the correct actions.
2. Usability Testing:
o Assess the user-friendliness and intuitiveness of the application.
« Ensure that the interface is easy to navigate and understand.
3. Consistency Testing:
o Verify that the GUI follows a consistent design pattein.
o Ensure that visual elements are uniformly styled and behave consistently across different
screens and resolutions.
4. Compatibility Testing:
o Ensurethatthe GUI works correctly across different devices, operating systems, browsers,
and screen sizes.
« Check for responsive design and adaptability to various environments.
5. Performance Testing:
o Evaluate the responsiveness of the GUL
« Ensure that actions are performed within acceptable time limits and the interface
remains responsive under load.
6. Accessibility Testing:
o Verify that the GUI is accessible to users with disabilities.
« Ensure compliance with accessibility standards such as WCAG (Web Content Accessibility
Guidelines).

p————— s
9.6.2 Types of 6UI Testing !
1. Manual Testing: _
« Testers manually interact with the application to validate GUI functionality.
o Useful for exploratory testing and identifying usability issues that automated tests might
miss.

2. Automated Testing:
« Uses automated tools to execute predefined test scripts on the GUL
« Efficient for repetitive and regression testing.
3. Exploratory Testing:
o Testers explore the GUI dynamically to uncover unexpected issues and assess the overall
user experience.

ok s 4 s

Object Oriented Testing & GUI Testing 9.21

= ——————————————
9.6.3 Examples of G6UI Testing
1. Login Page Testing: Verify that the login form accepts valid credentials, displays error
messages for invalid inputs, and redirects users to the correct page upon successfut login.
2. E-commerce Checkout Testing: Test the checkout process for an online store, including
adding items to the cart, entering shipping details, and processing payments.
3. Mobile App GUI Testing: Validate the responsiveness and layout of a mobile app on different
devices and screen sizes to ensure a consistent user experience.
4. Dashboard Testing: Test the functionality of a dashboard interface, including data
visualization, filtering options, and drill-down capabilities.

=== __— 2 —=
9.6.4 Tools for GUI Testing:
1. Selenium: A popular open-source tool for automating web application testing, including GUI
testing.

2. TestComplete: A comprehensive GUI testing tool that supports desktop, web, and mobile
applications.

3. Applitools: A visual testing tool that automates GUI validation for layout, design, and content
changes.

9.6.5 6UI Testing Strategies
GUI testing strategies focus specifically on testing the graphical user interface ofa software application
to ensure its functionality, usability, and visual appeal. Here are some GUI testing strategies along
with explanations:

1. Functional Testing :

« Objective: Verify that all GUI elements work as intended and perform the specified
functions.

. App‘roa"ch: Testers interact with buttons, menus, input fields, and other Ul components
to validate their behavior.

« Examples: Clicking buttons, entering text in input fields, selecting options from
dropdown menus, and verifying form submiSsions. 2

2. Usability Testing:

« Objective: Evaluate the user-friendliness and intuitiveness of the GUI design.

+ Approach: Real users or testers assess the layout, navigation, responsiveness, and overall
user experience of the interface.

« Examples: Testing navigation flow, assessing color schemes, checking font sizes, and
ensuring consistency in design elements.

]
I 9.22 | Software Testing) : Object Oriented Testing & GUI Testing | 9.23
3. Compatibility Testing: S — T
* Objective: Ensure that the GUI displays correctly and functions properly across different 9.7 Review Questions
devices, browsers, and screen sizes.
 Approach: Test the application on various platforms and configurations to identify m
compatibility issues.
 Examples: Testing on different browsers (Chrome; Firefox, Safari), devices (desktop,
mobile), and operating systems (Windows, macOS, iOS, Android). 1. What is Object Oriented Testing ?
4. Localization Testing: 2. How Unit Testing is done in Object Oriented Software?
* Objective: Verify that the GUI adapts to different languages, regions, and cultural 3. What is GUI Testing?
P : I
Pyelerences 4, Mention the types of GUI Testing.

 Approach: Testers validate text translations, date formats, clirrency symbols, and other
localized elements.
 Examples: Testing language support, checking alignment of translated téxt, and ensuring Seclion- B
proper display of special characters.
5. Accessibility Testing:
« Objective: Ensure that the GUI is accessible to users with disabilities and complies with
accessibility standards.

= Approach: Testers assess the interface for screen reader compatlblhty, keyboard
navigation, color contrast, and other acceSSIblhty features:

1
2
3
o Examples: Testing with screen readers, keyboard-only nawga'ltion, checking alt text for 4. Explain the Implication of Polymorphism in Software Testing,
. .
6

5. Mention any two tools for GUI Testing.

- Differentiate Between Conventional Testing Vs Object Oriented Testing.
- Explain the Implication of Composition and Encapsulation in Software Testing.

. Explain the Implication of Inheritance in Software Testing.

images, and verifying color contrast ratios. . What is GUI Testing? Explain the Objectives of GUI Testing.

CRSo=SnonsenlestnE: . Explain GUI Testing Strategies.

* Objective: Validate that the GUI functions consistently across different web browsers.

« Approach: Test the application on multiple browsers to identify rendering issues, layout m
discrepancies, and functional inconsistencies.

¢ Examples: Testing on Chrome, Firefox, Edge Safari, and ensuring compatibility with
older browser versions.

7. GUI Automation Testing:
* Objective: Automate GUI tests to improve efficiency, coverage, and regression testing.
* Approach: Use tools like Selenium, TestComplete, or Appium to automate test scripts for

1. Explain the Issues in Object Oriented Testing. "
2. Explain and Eloborate on Object Oriented Unit Testing.

3. Explain and Eloborate on Object-Oriented Integration Testing

4. Explain and Eloborate on GUI Testing.

GUI interactions.
 Examples: Writing test scripts to automate button clicks, form submissions, validations, i
and Ul interactions. BN

By implementing a combination of these GUI testing strategies based on the specific requirements
and characteristics of the software application, teams can ensure that the graphical user interface
meets quality standards, provides a seamless user experience, and functions reliably across different
environments.

| 9.24 | Software Testing

Note

Contents

= Exploratory Testing
<= What is Exploratory Testing ?
<= The Context-Driven School
Exploring Exploratory Testing
<= Exploring a Familiar Example - The Commission Problem
< Exploratory and Context-Driven Testing Observations
< Advantages and Disadvantages of Exploratory Testing
<+ Model Based Testing -
= Key Components of Model Based Testing
Features or Characteristics of Model-Based Testing (MBT)
Testing Based on Models

(<
< Appropriate Models
(<=

Commercial Tool Support for Model-Based Testing
= Advantages and Disadvantages of Model Based Testing
< Use Case Based Testing
<= Key Concepts of Use Case Based Testing
= Steps in Use Case Based Testing]
< Advantages and Disadvantages of Use Case Based Testing

= Review Questions

| 10.2 | Software Testing

10.1 Exploratory Testing .

Consider a person admitted to a hospital emergency room (ER) who has trouble in breathing. The ER
physician is tasked with identifying the underlying problem and then devising a medical response.
_How does the ER physician proceed? First, a case history of relevant information about the patient is
gathered. The next likely step is a few bread-spectirum tests that are intended to elimjnate common
causes of the breathing difficulty. Knowledge obtained from one test usually leads to follow-up, more
specifictests. Throughout this process, the ER physician is guided by extensive experience and dorain
knowledge. This same pattern applies to software testing in the process known as exploratory testing.
This structured methodology mirrors the principles of exploratory testing in software testing; where
testers navigate through the application, leveraging their expertise to uncover issues, iterate en
testing strategies, and ensure the software’s quality and functionality.

?

test cases based on their domain knowledge, experience, and intuition. Unlike traditional scripted testing,
exploratory testing involves testers exploring the software application dynamically, without predefined test
cases, Testers learn about the application as they test, uncovering defects, understanding functionalities, and
identifying potential risks through an iterative and explorative approach. The goal of exploratory testing is to
discover issues that might not be found through structured testing techniques.

3| Understanding Exploratory Testing

An example of exploratory testing could involve a tester tasked with testing a new e-commerce website.
Instead of following predefined test cases, the tester explores the website by navigating through different
pages, adding items to the cart, and simulating various user interactions like creating an account, making a
purchase, and updating personal information. During this exploration, the tester may encounter issues such as
incorrect pricing display, broken links, or usability issues like confusing navigation. By dynamically adjusting
their testing based on these findings and documenting the process, the tester can provide valuable feedback to
improve the website's quality before its release. =

10.1.2 The Context-Driven School

The Context-Driven School of thought as developed by Cem Kaner, James Bach, and Bret Pettichord,
emphasizes understanding the specific context of a testing situation and applying the most effective
practices based on that understanding. This philosophy acknowledges that there is no one-size-fits-
all approach to testing and that what works in one situation may not be ideal in another.

=]

The Principles of the Context-Driven School:

1. The value of any practice depends on its context: This principle recognizes that the
effectiveness of a testing practice is influenced by the specific context in which it is applied.

a4 | R

S o U TR a4 WA S S i B e st

o L b L APy A TR e S

Exploratory Testing & Model Based Testing 10.3

2. There are good practices in context, but there are no best practices: This l;rinciple
Emphasizes that testing practices should be evaluated based on their suitability for the given
context rather than assuming a universal "best" practice.

3. People, working together, are the most important part of any project’s context: This
principle highlights the significance of collaboration and teamwork in testing projects.

4. Projects unfold over time in ways that are often not predictable: This principle
acknowledges the dynamic and evolving nature of software projects, requiring adaptability in
testing approaches.

5. The productisa solution: This principle ,e)‘(plains that the ultimate goal of softWare is to solve
a problem, and testing should ensure that the product meets this objective.

6. Good software testing is a challenging intellectual process: This principle recognizes
tﬁﬂﬁng as a complex and intellectually demanding activity that requii'es critical thinking and
skill. .
7. Only through judgment and skill, exercised cooperatively throughout the entire project,
are we able to do the right things at the right times to effectively test our products:
This principle highlights the importance of judgment; skill, and collaboration in conducting
effective testing throughout the project lifecycle.
Exploratory Testing aligns with the principles of the Context-Driven School by encouraging testers
to be investigative, adaptive, and context-aware in their testing approach. Testers leverage their
knowledge of the product and context to make informed decisions about what to test next, reflecting
the principles of adaptability, collaboration, and the value of human testers emphasized by the
Context-Driven School. :

o ——
10.1.3 Exploring Exploratory Testing

Exploratory testing is a dynamic and informal approach to software tésting where testers actively
engage with the software to uncover defects and learn about its behavior sirhultz_meously. This
method empha;izes simultar}equs test design and execution, making it highly interactive, creative,
and adaptive. Andy Tinkham and Cem Kaner, prominent figures in this field, describe five essential
characteristics of exploratory testing e

Characteristics of Exploratory Testing

1. Interactive: Exploratory testing involves real-time interaction with the software. Testers
actively engage with the application, exploring its functionalities and behavior.
Example: A tester navigates through a new social media app, trying out various features like
posting updates, sending messages, and changing privacy settings to identify potential issues.
2. Concurrent Cognition and Execution: Testers think and test simultaneously, learning about
the system while interacting with it. This allows them to adjust their testing strategy based on
immediate feedback.
Example: While testing a shopping cart feature, a tester might notice an issue with item
quantities updating incorrectly and immediately focus on testing different scenarios related to
this behavior.

10.4 | Software Testing

3. Highly Creative: Exploratory testing requires creativity and intuition. Testers use their skills
and experience to identify potential problem areas and design tests on the fly.)
Example: A tester creatively manipulates input fields on a form by entering various types of
data (e.g. special characters, long strings) to see how the system handles them.

4. Quick Results: The goal is to quickly uncover defects and issues. Exploratory testing is often
used when there is a need for rapid feedback or when time constraints limit the ability to
perform extensive scripted testing. ‘ :

Example: During a tight release cycle, testers use exploratory testing to quickly assess the
stability of new features in a mobile app update.

5. Reduced Emphasis on Formal Documentation: Unlike traditional testing, exploratory
testing relies less on predefined test cases and detailed documentation. Instead, testers
document their findings as they go.

Example: A tester explores a new feature and notes any bugs or issues directly in a shared
document or bug tracking system without following a strict test case template.

Exploratory Testing in Various Scenarios

Example 1: E-Commerce Application
Context: A team is working on an e-commerce application with a tight deadline. The focus is on quickly
identifying critical defects in the checkout process.
Testing Approach: p
The tester starts by adding various products to the cart, checking for issues with product details, prices,
and cart updates.
They proceed to the checkout process, entering different types of payment informatioti and shipping
addresses to test validation and error handling.
The tester also explores edge cases, such as applying multiple discount codes and attempting to
purchase out-of-stock items.
Dutcomme: The tester discovers several issues, including incorrect price caleulations with multiple discounts,
validation errors with international addresses, and crashes when trying to purchase more items than available.

Example 2: Medical Device Software) ')
Context: The software controls a medical device and must comply; with strict regulatory standards. Thotough
testing is required, but time is also a factor.
Testing Approach:
Thé tester explores the user interface, checking how the software responds to various user inputs and
device settings.

-They simulate different patient scenarios, adjusting device parameters and monitoring responses.

The tester documents findings in real-time, focusing on potential safety issues and compliance with

T e S

regulatory requirements.

Outcome: The tester identifies critical issues, such as incorrect parameter settings under specific conditions

and inconsistencies in the user interface that could lead to user errors.

Exploratory Testing & Model Based Testing 10.5

trip led by Captain Meriwether Lewis and Second Lieutenant William Clark. It was ordered by
President Thomas Jefferson after the U.S. bought the Louisiana Territory in 1803. The main goals
were to explore and map the new land, claim it for the U.S. before others could, study its resources
and geography, and firid a way to the Pacific Ocean.

Starting in May 1804 from St. Louis, Missouri, the team traveled up the Missouri River, facing tough
weather, rough land, and meeting’_Naﬁve American tribes. They carefully recorded their discoveries,
making maps, studying plarits ahitl animals, and learning about the Native peoples.

Sacagawea, a Shoshone woman, played a crucial role as a guide and translator, ising her knowledge
and connections with tribés. '

They reached the Pacific Ocean in November 1805 and returned to St. Louis in September 1806. Their
findings greatly expanded America's knowledge of the West and encouraged further exploration. The
expedition is a famous part of American history, representing exploration, learning, and bravery.

___(:f]_;_)ip_‘;l_l:i5011 Gijgxplormor}: Ti.".-;ti;r_:; and tl';e Lé\\'i-:.i and Cl;il_'l.-;.[';x-[J;a.l-.l.iti.on
Exploratory testing is a dynamic and adaptive approach to software testing where testers investigate
the software's functionalities and behavior in real-time, similar to how explorers navigate uncharted
territories. This method can be likened to the historic Lewis and Clark Expedition, a significant
journey of discovery and documentation across the newly acquired western territories of the United

States in the early 19th century.

1. Goal-Oriented Explb’ration:
o Lewis and Clark: Their mission was to find a practical route to the Pacific Ocean and
gather comprehensive information about the newly acquired territory.
. Ex_ploratory 'l'_'estirig: The objective is to discover defects and understand the software's
beliavior by investigating its functionalities.
2. Team Composition and Resources: _
+ Lewis arnd Clark: They assembled a divefse team, including military personnel, hunters,
trappers, craftsmien, naturalists, and a guide familiar with the terraiti.
» Exploratory Testing: Testers use a combination of skills, knowledge, tools, and
techriiques to explore atd test the software effectively.
3. Learning Through Exploration:
. Li?wis andr Clark: They learned about the land, people, flora, and fauna as they traveled,
adjiisting their plahs based ofi new information. g
. Expiorat(_)ry Testiiig: Testers continuously learn about the system under test, using
their finidings to inform and refine their testing strategy. '
4. Detailed Docitimentation:

« Lewis and Clark: They meticulously documented their observations, findings, and
interactions with native tribes.

‘ 10.6 | Software Testing

« Exploratory Testing: Testers document their testing process, discoveries, and any
defects found to provide valuable information to stakeholders.

‘5. Adaptive Approach:

* Lewis and Clark: They adapted their route and methods based on the challenges and
opportunities they encountered during their expedition.

« Exploratory Testing: Testers adapt their testing techniques and focus areas based on
the results of their ongoing exploration and the specific context of the software.

e
10.1.4 Exploring a Familiar Example - The Commission Problem

The commission problem offers a practical scenario for understanding the principles of exploratory
testing. This approach to testing goes beyond verifying the presence of faults and seeks to uncover
the nature and root causes of those faults.

Scenarvio Overview

In this scenario, a salesperson sells interchangeable rifle parts: locks, stocks, and barrels. The pricing
for these parts is as follows:

Locks cost $45
Stocks cost $30
Barrels cost $25
A complete rifle costs $100. The commission structure for the salesperson is:-
10% on the first $1000 in sales ‘
- 15% on sales between $1001 and $1800
20% on sales over $1800

Initially, the salesperson’s commissions are accurate when sales are under $1000. However,
discrepancies arise as sales increase, prompting an exploratory investigation to identify the
underlying issues.

Expl ory I-'i-'r_';t-'r_u_ar: ¢
1. First Exploration :

The salesperson begins by examining simple cases to verify the correctness of the basic
- commission calculations. The following equations are used:

Sales Calculation:
Sales =45 * locks + 30 * stocks + 25 * barrels
Commission Calculations:
Commission = 0.10 * sales for $0 < sales < $1000
Commission = $100 + 0.15 * (sales - $1000) for $1000 < sales < $1800
Commission = $220 + 0.20 * (sales - $1800) for sales > $1800

Exploratory Testing & Model Based Testing 10.7

Test Cases:

1. Simple Sales: Sales of one of each item (locks, stocks, barrels) result in expected and
computed commissions matching perfectly. .

2. Increasing Sales: As sales increase, expected commissions are correct up to $1000.

Discrepancies start to appear above $1000, indicating potential issues with the
commission calculation formula.

Results;

SERSLs retinge COT S
1 1 1 $100.00 $10.00 ; $0.00
2 8 8 8 $800.00 $80.00 $80.00 Pass:| - $0.00
3 10 10 10 $1000.00 $100.00 _ $100.00 Pass $0.00
4 11 11 11 $1100.00 $115.00 $100.00 Fail $15.00
S 17 17 17 '$1700.00 $205.00 $190.00 Fail $15.00
6 18 18 18 $1800.00 $220.00 $205.00 Fail $15.00
7 19 19 19 $1900.00 $240.00 $260.00 Fail -$20.00

2. Second Exploration:

To further investigate, the salesperson tests scenarios with only one type of item sold to isolate
potential errors in the sales calculation.

Test Cases: Selling only locks, stocks, or barrels individually.

Results:
45. d Pass $0.00
2 0 10 0 $300.00 $30.00 $30.00 Pass $0.00
3 0 0 10 $250.00 $25.00 $25.00 Pass $0.00

3. Third Exploration:

Next, the salesperson devises sales scenarios near the $1000 commission threshold to pinpoint

bRl

where the calculation error occurs.

Test Cases: Testing sales amounts just below, at, and above $1000.

Results:
il 22 JI™0 0 $990.00) 0.
2 21 0 2 $995.00 | $99.50 $99.50 | Pass| $0.00
3 21 i 1 |$100000| $100.00 $100.00 | Pass | $0.00
4 21 2 0 |$100500| $100.75 $85.75 | Fail | $15.00

I 10.8 I Software Testing

Root Cause Analysis

Upon analyzing the discrepancies, the salesperson discovers that the fault lies in the amount
subtracted from sales in the commission calculation for sales over $1000. The formula erroneously
subtracts $1100 instead of $1000:

Expected Formula: Commission = $100 + 0.15 * (sales - $1000)

Faulty Formula: Commission = $100 + 0.15 * (sales - $1100)
This example illustrates the exploratory testing process, where the tester (salesperson) uses domain
knowledge to identify potential faults, conducts targeted tests to isolate the issue, and applies
analytical reasoning to uncover the root cause. This approach not only verifies the presence of faults
but also helps understand their nature, making it an effective testing strategy in various scenarios.

#
10.1.5 Exploratory and Context-Driven Testing Observations
James Bach argues that anyone who tests software does a certain amount of exploratory testing. Itis
more accurate to say that debugging one’s own code is exploratory testing. Because the descriptions
of these forms of testing are so general and dynamic. Given the broad and somewhat general nature of
exploratory testing, drawing precise conclusions can be challenging, However, based on experience,
the following are the key observations:
1. Suitability in Agile Environments:
+ Observation : Exploratory testing is appropriate, but difficult, in an agile programming
environment. & -
o Condclusion : While exploratory testing is valuable in agile contexts, it relies on having a
reasonably stable application. The iterative nature of agile can make it difficult to conduct
follow-up tests based on previous results if the application is frequently changing.

2. Dependence on Domain Experience:

« Observation : The effectiveness of exploratory testing is heavily reliant on the tester’s
domain knowledge and expertise.

« Conclusion: Just as a computer science professor might struggle to conduct an oral
examination of chemistry, a tester without sufficient domain knowledge -may miss
critical issues. Domain experience enables testers to ask relevant questions and design
meaningful tests.

3. Tester Motivation and Creativity:

« Observation : Successful exploratory testing requires a motivated, curious, and creative
tester.

« Conclusion : A disinterested tester will struggle to create effective follow-up tests. The
tester’s ability to think creatively and explore different scenarios is crucial for uncovering
hidden defects.

4. Challenge of Predictive Measurement:

« Observation : Exploratory testing resists predictive measurement, similar to other

creative activities.

pelia

Ay 0 B,

Exploratory Tesfing & Model Based Testing 10.9

¢ Conclusion : Estimating the amount of testing needed or the number of remaining
faults is theoretically impossible. Effective exploratory testers rely on their judgment
to decide when to stop testing, usually when no new faults are being discovered. This
unpredictability parallels the uncertainty Meriwether Lewis would have faced in
predicting the completion date of his expedition.

5. Management of Exploratory Testing:

* Observation: Managing exploratory testing involves ensuring a clear testing charter and
requiring detailed documentation of tests and results.

» Conclusion: Clear objectives and thorough documentation are essential to keep track
of what has been tested and the findings. This structured approach helps manage the
inherently unstructured nature of exploratory testing.

6. Effectiveness Relative to System Size and Complexity:

¢ Observation: The effectiveness of exploratory testing diminishes as the size and
complexity of the system increase.

 Conclusion: While exploratory testers can explore large, complex systems, keeping
track of all follow-up tests becomes challenging. Exploratory testing is most effective
for smaller, more comprehensible systems, where an individual tester can manage and
remember the various aspects being tested.

10.1.6 Advantages and Disadvantages of Exploratory Testing

Exploratory testing is a dynamic and flexible approach to software testing that emphasizes real-
time learning, test design, and execution. While it offers several benefits, it also has its drawbacks.
Understanding these can help testers and organizations effectively integrate exploratory testing into
their overall testing strategy.

exibility:
Advantage: Testers can quickly adapt their testing strategy based on immediate findings and feedback
from the system.
Example: If a tester discovers an unexpected behavior in the software, they can immediately focus on
that area to investigate further without waiting for predefined test cases.

2. Rapid Feedback:
Advantage: Exploratory testing provides quick feedback on the system’s behavior and stability, which
is particularly valuable in fast-paced development environments like Agile.
Example: During a sprint review, a tester can rapidly explore new features to identify any critical
issues before the feature is deemed complete.

3. In-depth Investigation:
Advantage: Testers can delve deeply into specific areas of the application, exploring edge cases and
complex scenarios that might be overlooked by scripted testing.
Example: A tester investigating a payment processing system can explore various combinations of
payment methods, currencies, and user inputs to uncover subtle defects.

I 10.10 | Software Testing

4, Creative Problem Solving:
Advantage: The approach encourages testers to think creatively and use their intuition and experience
to uncover hidden defects.
Example: A tester might try entering unexpected input values, like special characters or extremely
long strings, to see how the system handles them.

5. Real-Time Learning:
Advantage: Testers learn about the system as they test, which helps them build a more comprehensnve
understanding of its behavior and potential issues.
Example: As a tester explores different functionalities, they gain insights that can hélp them identify
related defects and areas that need more thorough examination.

6. Reduced Documentation Overhead:
Advantage: Less upfront planning and documentation are reduired compared to traditional testing,
allowing testers to focus more on actual testing.
Example: Instead of writing extensive test cases in advance, testers document their findings and

1n51ghts as they hest. makmg the process more efﬁcxent.

5 Unpredlctable Coverage:
Disadvantage: It is difficult to ensure comprehensive coverage of all functionalities, as exploratory
testing relies on the tester’s intuition and experience.
Example: Testers might miss some parts of the application if they focus too much on spec1ﬁc areas that
seem more problematic.

2. Dependence on Tester Skill:
Disadvantage: The effectiveness of exploratory testing heavily depends on the tester’s expertise,
creativity, and domain knowledge.
Example: An inexperienced tester might not be able to identify subtle defects or might miss important
test scenarios that a more experienced tester would catch.

3. Lack of Reproducibility: U
Disadvantage: Because exploratory testing is less structured, it can be challenging to reproduce the
exact steps that led to the discovery of a defect.
Example: If a tester finds a bug but does not document the exact steps taken, it might be difficult for
developers to reproduce and fix the issue.

4. Difficult to Measure Progress:
Disadvantage: It is hard to measure progress and coverage since there are no predefined test cases or
metrics to track.
Example: Managers might find it challenging to assess how much testing has been done or how much
more is needed without clear documentation and metrics.

5. Limited to Individual Testing:
Disadvantage: Exploratory testing is less effective when multipleé testers need to work together, as it

relies on individual intuition and exploration.

wq'.ﬁ Figgespiner

Exploratory Testing & Model Based Testing l 10.11 I
—

Example: Coordinating and sharing findings among a team of testers can be difficult without a
structured approach, leading to potential gaps in testing.

6. Potential for Incomplete Documentation:

Disadvantage: The focus onreal-time exploration canlead to incomplete orinconsistent documentation
of the testing process and findings.

Example: If testers do not consistently document their activities and findings, it can be challenging to
track what has been tested and what still needs attention.

—_————
10.2 Model Based Testing

Model-Based Testing (MBT) is an innovative approach to software testing that utilizes models to
design, execute, and analyze test cases. In MBT, a model represents the intended behavior of the
system under test, capturing its functionalities, interactions, and constraints. These models can
take various forms such as finite state machines, statecharts, or UML diagrams, depending on the
complexity and requirements of the system. .

The core idea behind MBT is to generate test cases automatically ﬁ'oro these models to ensure
comprehensive test coverage while reducing manual effort and human error. By systematically
deriving test cases from the model, testers can uncover potential defects early in the development
lifecycle and validate the system against its specified requirements.

MBT offers several advantages including improved test coverage, faster test case ‘generation, and
enhanced:traceability between requirements and test cases. Additionally, by maintaining a clear
separation between the model and test implementation, MBT promotes reusability and scalability
in testmg efforts.

Model-Based Testmg (MBT) isa methodology in software testing where test cases are denved from models
that represent the desired behavior of the system under test. These models can be viewed as abstract
representations of the system's functionalities, capturing the various states, transitions, inputs, and outputs.
The primary goal of MBT is to ensure that the system behaves as expected by systematically exploring these
models to generate comprehensive test cases.

I = — = |
10.2.1 Key Components of Model Based Testing .
1. Models: .

* Definition: Models are simplified representations of the system that capture essential
behavior and logic. They can take various forms, such as state machines, flowcharts, Petri
nets, or UML diagrams.

* Purpose: Models serve as the basis for generating test cases and providing a blueprint of
the system’s expected behavior.
2. Test Case Generation:
* Process: Test cases are automatically or manually derived from the models. This involves

identifying all possible paths or sequences of actions within the model that need to be
tested.

| 10.12 I Software Testing

Exploratory Testing & Model Based Testing | 10.13 |
« Benefits: This systematic approach helps ensure coverage of different scenarios, edge 7. Cost-Effectiveness:

cases, and potential points of failure. By automating test case generation and reducing manual effort, MBT can lower the overall cost
of testing. Models and automated test cases require less maintenance compared to traditional
test scripts, which can become outdated as the system evolves.

3. Execution and Validation:
« Execution: The generated test cases are executed on the actual system to verify its
behavior against the model.
« Validation: Results are compared with the expected outcomes defined in the model. Any
deviations are analyzed to identify defects or inaccuracies in the model or the system.

8. Support for Complex Systems:

MBT is particularly effective for complex systems with numerous states and interactions,
where manual testing would be impractical. MBT is capable of modeling and testing concurrent
processes and time-dependent behaviors, which are challenging to test manually.

#

10.2.2 Features or Characteristics of Model-Based Testing (MBT) B X 9. Improved Communication:

Models provide clear and concise documentation of the system’s behavior, which can be easily
understood by all stakeholders, including developers, testers, and business analysts.

10. Adaptability to Changes:

Model-Based Testing (MBT) boasts several distinctive features that differentiate it from traditional
testing approaches. These characteristics make MBT a powerful and efficient methodology for
ensuring software quality.

1. Model-Driven Approach:

In MBT, models serve as the foundation for the entire testing process. These models represent
the expected behavior of the system under various conditions.

Models provide an abstract view of the system, focusing on key behaviors and interactions
rather than implementation details.

. Automated Test Case Generation:

Test cases are systematically derived from the models to ensure comprehensive coverage of the
system's behavior. Automation Tools can automate the generation of test cases from models by
significantly reducing the time and effort required to create and maintain test suites.

. Increased Test Coverage:

By exploring all possible paths within a model, MBT ensures thorough testing, including edge
cases and unexpected scenarios that might be missed in manual testing. Path Coverage ensures
that different sequences of actions and events are tested.

. Early Detection of Defects:

By creating models early in the development f)rocess, MBT can identify inconsistencies,
ambiguities, and defects before the system is fully implemented.

. Consistency and Traceability:

Models serve as a single source of truth for the system's expected behavior to ensure that all
test cases are aligned with this reference. MBT provides clear traceability from requirements
to test cases, making it easier to understand the impact of changes in the requirements on the
tests.

. Reusable Models:

Models can be reused across different projects or different versions of the same project,
providing a consistent testing approach and saving time in the long run.

e -,

e T

Models can be feasily updated to reflect changes in requirements or design to ensure that test
cases remain relevant and accurate. ’

10.2.3 Testing Based on Models

Testing Based on Models involves creating a model of the system's behavior to derive insights and
generate test cases. The process typically includes the following steps:

1.

Model the system: The first step in MBT is to create a model that accurately reflects the
system's behavior. This model serves as an abstract representation of the system and can take
various forms, such as finite state machines, Petri nets, or StateCharts. The chosen model type
depends on the nature of the system and the specific behaviors that need to be tested.

. Identify threads of system behavior in the model: Once the model is created, the next step

is to identify threads of system behavior within the model. A thread of behavior is a sequence
of actions or events that the system can undergo. This involves tracing possible paths through
the model that represent valid sequences of user interactions or system operations.

. Transform these threads into test cases: The identified threads of behavior are then

transformed into concrete test cases. Each test case corresponds to a specific path through the
model and includes the necessary inputs, preconditions, and expected outputs. .,

. Execute the test cases: The generated test cases are executed on the actual system. This

involves running the system through the specified sequences of actions and observing the
outcomes. The results are recorded to verify whether the system behaves as expected.

. Revise the model: Based on the results of test case execution, the model may need to be

revised. If discrepancies are found between the model's predictions and the actnal system
behavior, the model should be updated to reflect the observed behavior. This iterative process
helps refine the model and improve its accuracy. A

10.14

Software Testing

1. Model the System: Create a StateChart model of the ATM system with states and transactions.
States:
Idle
Card Inserted
PIN Entered
Transaction Type Selected
Processing Transaction
Transaction Completed
Transitions:
Insert Card (from Idle to Card Inserted)
Enter PIN (from Card Inserted to PIN Entered)
Select Transaction (from PIN Entered to Transaction Type Selected)
Process Transaction (from Transaction Type Selected to Processing Transaction)
Complete Transaction (from Processing Transaction to Transaction Completed)
Return to Idle (from Transac/u'on Completed to Idle)
2. Identify Threads of System Behavior:
Thread 1: User inserts card -> Enters correct PIN -> Selects withdrawal -> System dispenses cash
-> Returns card.
Thread 2: User inserts card -> Enters incorrect PIN -> System prompts for re-entry -> User re-
enters correct PIN -> Selects balance inquiry -> System displays balance -> Returns card.
3. Transform These Threads into Test Cases:
Test Case 1:
Inputs: Card insertion, correct PIN entry, withdrawal selection.
Preconditions: Card is valid, account has sufficient funds.
Expected Outputs: Cash dispensed, card returned, transaction receipt printed.
Test Case 2:
Inputs: Card insertion, incorrect PIN entry, correct PIN re-entry, balance inquiry selection.
Preconditions: Card is valid.
Expected Outputs: System prompts for re-entry of PN after incorrect entry, displays balance after
correct PIN and selection.
4. Execute the Test Cases:
Execution of Test Case 1: Insert card into ATM, enter correct PIN, select withdrawal. Observe and
record whether cash is dispensed and card is returned.
Execution of Test Case 2: Insert card, enter incorrect PIN, re-enter correct PIN, select balance
inquiry. Observe system prompts and balance display.
5. Revise the Model:
If during execution of Test Case 1, the ATM does not return the card, update the model to reflect
this behavior and generate additional test cases to explore variations of this scenario.

If during Test Case 2, the system fails to prompt for re-entry of PIN after an incorrect entry, update
the model to include this potential issue and test further.

AR D §vrig b ey

Exploratory Tesfing & Model Based Texfing 10.15

== ——— ——

10.2.4 Appropriate Models

It crucial to select a model that accurately reflects the system's behavior without adding unnecessary
complexity. Appropriate models in Model-Based Testing (MBT) should strike a balancé between
expressiveness and practicality. The model's choice hlghly influences the testmg approach and
outcomes.

Avvinare : The term avvinare, an Italian word, is used metaphorically to emphasize the importance
of preparing properly for an effective MBT process. In the same way that wine bottles need to be
thoroughly rinsed to ensure the:quality of the wine, selecting the correct model is essefitial to ensure
the accuracy and effectiveness of MBT. An inappropriate model can lead to-incomplete testing and
missed defects, just as improperly prepared bottles can spoil the wine. i

Peterson's Lattice

Peterson’s Lattice is a conceptual framework developed by james Peterson in 1981 to categorize
different computational models based on their expressive power. The lattice structure visualizes
the relationships between various models, indicating how one model's expressiveness compares to
another. In essence, Peterson's Lattice helps in understanding which models can be used to represent
specific behav10rs in a system and assists in selecting the most appropriate model for a given
application.

Key Concepts of Peterson's Lattice

1. Expressive Power: The primary focus of Peterson's Lattice is to compare the expressive power
of different models. A model with greater expressive power can represent more complex
behaviors and scenarios than a less expressive one. For example, if Model :A can express
everything that Model B can, plus more, then Model A is considered more expressive.

2. Hierarchy of Models: The lattice arranges models in a hierarchical manner. More expressive
models appear higher in the lattice, while less expressive models are lower. This hierarchy
helps in choosing a model that is sufficiently expressive to capture the required behavior
without adding unnecessary complexity.

3. Use Cases: Peterson's Lattice is particularly useful in Model-Based Testing (MBT) for
determining which model to use based on the specific requirements of the system under test. It
ensures that the chosen model is capable of representing all necessary aspects of the system's
behavior. s

Example Models:

1. Finite State Machines (FSMs):

Characteristics: Suitable for systems with a limited number of discrete states and
straightforward transitions.

Expressive Power: Can model simple sequential behaviors but Struggles with
concurrency and complex interactions.

2. Petri Nets:

Characteristics:
synchronization.

Ideal -for modeling systems with concurrent processes and

10.16 | Software Testing

Expressive Power: More expressive than FSMs, capable of representing concurrent
activities and resource sharing. :

3. StateCharts:
Characteristics: Useful for complex systems with hierarchical and concurrent states.
Expressive Power: More expressive than both FSMs and Petri Nets. It allows detailed
modeling of complex behaviors including concurrency and nested states.

4. Vector Addition Systems, Semaphore Systems:
Characteristics: These models capture specific computational behaviors such as
synchronization and resource management.
Expressive Power: Positioned in the lattice based on their ability to represent partlcular
types of system behavior. :

Visualization of Peterson's Lattice

Peterson's Lattice can be visualized as a directed graph where nodes represent different models and
directed edges indicate the "more expressive than" relationship as shown in below diagram.

Extended
Petri nets

Vector Vector UCLA
replacement addition Petri nets émphs
systems systems

Massage syatems

¥

(Semaphore (P. V) syatems j

Finite state
machines

Fig 10.1: Visualization of Peterson's Lattice
In this lattice:
« Finite State Machines and Marked Graphs are at the lower end, representing basic state
transitions.
« Semaphore Systems are more expressive, capturing additional behaviors such as
synchronization.

o it e st 14

Exploratory Testing & Model Based Testing | 10.17 |

* Petri Nets offer higher expressiveness, suitable for concurrent systems.

o StateCharts are at a similar or higher level of expressiveness than Extended Petri Nets,
capturmg complex hlerarchlcal and concurrent behaviors.

e C d]’ld]l!]ltll“h n! . mlmt \I{idl‘]\

Peterson categorizes models based on their ability to express various behavioral issues. These issues
include aspects such as data flow, control flow, mutual exclusion, synchronization, and more. Each
type of model has its strengths and weaknesses in addressing these issues.

Example: Petri Nets is highly expressive for representing concurrency and synchronization in
systems, making them suitable for modeling network protocols. Petri nets can illustrate how multiple
processes interact and coordinate with each other, which is essential for understanding and testing
complex, concurrent systems.

Modeling Issues

Modeling issues involve understanding both the structural and behavioral aspects of a system.
Structural models describe what a system is, focusing on its components and their relationships.
Behavioral models describe what a system does, focusing on the interactions and state changes over
time.
Examples:
1. Structural Model: UML class diagram showing the relationships between classes, attributes,
and methods. It provides a blueprint of the system's static aspects.
Use Case: Useful in understanding the system's architecture and ensuring that all
necessary-components are included.
2. Behavioral Model: UML sequence diagram showing the interaction between objects over
time. It captures the dynamic behavior and flow of messages.
Use Case: Useful in capturing the sequence of operations, message exchanges, and
interactions among system components during execution.

 Making Ap)

Choosing the right model involves understanding the system's nature and aligning it with the model's
capabilities. The model should be simple enough to be manageable but sufﬁc1ently expressive to
capture all necessary aspects of the system's behavior. i

Examples:

1. Finite State Machine (FSM): For a system primarily involving user interactions with clear,
distinct states, such as an elevator control system, an FSM might be sufficient. It can clearly
represent each state (e.g,, floors) and transitions (e.g, moving up/down).

2. StateChart: For a system with complex, event-driven behavior, such as an automated teller
machine (ATM), a StateChart might be more appropriate. StateCharts can represent nested
states and concurrent regions, providing a detailed view of the system's behavior in response
to different events and conditions.

10.18

Software Testing

Choosing the Right Model for an E-Commerce Platform

Scenano: Testm the Checkout Process
1. Finite State Machine (FSM):
« Simplicity: The checkout process can be modeled with states suc_h as"Cart" "Billing Information,"
"Payment,” and "Confirmation.” :
« Use Case: Suitable if the process is linear and has a few distinct steps with clear transitions.

2. Petri Net:
» Concurrency: If the checkout process involves concurrent activities, such as handling multiple
payment methods or real-time inventory chiecks, a Petri Net would be more appropriate.

« Use Case: Represents parallel actions and synchronization points effectively.

3. StateChart: _

o Complexity: If the checkout process involves complex user interactions; SilCil as ﬁ:cdifying

the cart; applying discounts, or handling asynchronous events like payment confirmations, a
StateChart would capture these behaviors more effectively.

o Use Case: Suitable for detailed modeling of interactions and hierarchical states, providing a

comprehensive view of the system’s behavior.

_————————————— ==
10.2.5 Commercial Tool Support for Model-Based Testing

Model-Based Testing (MBT) leverages various tools to support the testing process. According to Alan
Hartman (2003), these tools can be categorized into three main groups: Modeling Tools, Model-Based
Test Input Generators, and Model-Based Test Generators. Each group plays a specific role in the MBT
workflow, contributing to the overall efficiency and effectiveness of the testing process.

1. Modeling Tools : Modeling tools are designed to create and manage models that represent
the system's behavior. These tools are crucial for the initial phase of MBT, where the system's
functionalities and interactions are modeled.

Examples: , _]
« IBM's Rational Rose: A comprehensive software modéling tool that uses UML (Unified
Modeling Language) to create visual models of software architecture and behavior.
« Telelogic’s Rhapsody: A modeling tool that supports UML and SysML (Systems Modeling
Language) for designing and analyzing complex systems.
« Stalemate: Another tool that provides modeling capabilities, although less common in
mainstream use.
These tools primarily provide inputs to true model-based test generators but do not generate
test cases by themselves.
2. Model-Based Test Input Generators : Model-Based Test Input Generators are a step up from
basic modeling tools. They can automatically generate the input portion of test cases from the
models. However, they do not generate the expected output portion of the test cases.

Exploratory Testing & Modal Based Testing I 10.19 ,

Functionality:
* Generate input data and conditions based on the model's specifications.

* Automate the creation of various test scenarios by exploring different paths through the
model.

3. Model-Based Test Generators : Model-Based Test Generators go beyond generating inputs;
they also generate the expected outputs for the test cases. These tools require an oracle to
identify and validate the expectéd outputs, making the testing process more automated and
comprehensive. Several proprietary and university-developed test genefau'on systems claim to
offer full model-based test generation capabilities. However, widespread commercial viability
is still limited. ‘ ' ' : '

In the context of software testing, the term "oracle” refers to a mechanism or entity that
determines the expected outcome of a test. A test oracle is a source of ihformation that
determines the correct behavior of a system for a given set of inputs. It can be a formal
specification, a mathematical model, an existing system, or even a human expert. The primary
role of a test oracle is to validate the outputs generated by the system under test (SUT) agéinst
the expected outputs.

Challenges:

In Model-Based Testing (MBT), the oracle is crucial for automating the validation process. Full
model-based test generators require an oracle to automatically generafe both the inputs and
the expected outputs for the test cases. Without an oracle, the validation step remains manual,
which reduces the efficiency and effectiveness of MBT.

————————————————

10.2.6 Advantages and Disadvantages of Model Based Testing

Model-Based Testing (MBT) offers a structured and automated approach to testing by leveraging
models that represent the desired behavior of the system under test. While it brings numerous
benefits, it also comes with certain challenges.

=3 »w-.n.unﬂr__\» Lo AT S il s : e,
1. Systematic Approach: MBT ensures comprehensive coverage of the system’s behavior by
systematically exploring all possible paths and scenarios defined in the model.

2. Edge Case Identification: Helps identify edge cases and unusual scenarios that mighfbe missed in
traditional testing methods.

3. Automated Test Case Generation: Models can be used to automatically generate test cases, reducing,
the time and effort required for test design.

4. Consistent Test Execution: Automation ensures that tests are executed consistently across different
test runs, reducing human error.

5. Early Modeling: Defects can be identified early in the development lifecycle by creating and validating
models before the system is fully implemented.

6. Shift-Left Testing: Encourages early testing, which helps catch defects sooner and reduces the cost
and effort of fixing them later.

7. Clear Documentation: Models provide clear and visual documentation of system behavior, improving
communication among stakeholders, including developers, testers, and business analysts.
8. Shared Understanding: Models serve as a single source of truth, ensuring that all team members have
* a shared understanding of the system’s requirements and expected behavior. _
9. Reusable Models: Models can be reused across different projects or different versions of the same
project, providing consistency and saving time in the longrun.) : .')
10. Scalability: MBT supports scalability, allowing models to be expanded or modified as the system
evolves. ' ' ' ' i
11. Reduced Maintenance: Automated test case generation and execution reduce the maintenance effort
compared to mariual test scripts, which can become outdated quickly.
12. Efficiency Gains: By automating many aspects of the testing process, MBT can lower the overall cost

1. Complexity: Theinitia

techniques and tools.

Learning Curve: Teams may face a steep learning curve in adopting MBT, especially if they are new to

model-based approaches.

3. Tool Availability: The availability of comprehensive MBT tools that can generate both test inputs and
expected outputs is still limited.

4. Intégration Challenges: Integrating MBT tools with existing development and testing environments
can be challenging. .

5. Model Accuracy: The effectiveness of MBT heavily relies on the accuracy of the models. Inaccurate or
ixicomplete models can lea‘d to ineffective testing. '

6. Maintenance Effort: Keeping models up to date with evolving system requirements and designs can
be labor-intensive.

7. Cost of Tools: MBT tools can be expensive, and organizations may need to invest in purchasing and

N

maintaining these tools.
8. Training Costs: Additional training may be required for team members to effectively use MBT tools
and techniques. i

-]

. Single Source of Truth: While models provide a clear documentation of the system, over-reliance on
them ¢an be problematic if they are not properly maintained or validated.
10. Modeling Skill Requirement: Effective MBT requires skilled modelers who can create accurate and
comprehensive models of the system.
11. Expected Output Generation: Full model-based test generators require an oracle to Identify expected
outputs, which can be a significant challenge. Without an oracle, automated validation of test results is
difficult.

10.3 Use Case Based Testing

Use Case-Based Testing is a testing approach that focuses on deriving test cases from use cases, which
are descriptions of how users interact with a system to achieve specific goals or tasks. By aligning test
cases with the intended user interactions outlined in use cases, this method ensures that the software
meets the functional requirements and user expectations.

T g ST ST

WL 171 S50 -

Exploratory Testing & Model Based Testing | 10.21

Use Case Based Testing is a software testing approach that derives test cases from use cases. Use cases are
detailed descriptions of how users interact with a system to achieve specific goals. This testing methodology

ensures that the system meets the user's functional requirements by validating that each use case is handled
correctly. '

10.3.1 Key Concepts of Use Case Based Testing
1. Use Case Definition: S

« Use Case: A use case is a description of a system'’s behavior as it responds to a request
from one of the stakeholders (usually an actor). It defines the interactions between the
user (actor) and the system to achieve a goal.

o Actors: Entities that interact with the system (e.g,, users, other systems).

« Scenarios: Different paths through the use case, including main success scenarios and
alternate scenarios for error conditions or exceptions. ’

2. Components of a Use Case:
« Title: A descriptive name for the use case.
« Primary Actor: The main user initiating the interaction.
« Preconditions: Conditions that must be true before the use case can start.
« Postconditions: Conditions that must be true after the use case completes.
« Main Success Scenario: The standard sequence of steps to achieve the goal.

Alternate Scenarios: Variations of the main scenario to handle different conditions,
errors, or exceptions. -

—_——————a——— ____—————

10.3.2 Steps in Use Case Based Testing
The process of Use Case-Based Testing involves the following steps:

1. Identify Use Cases: Gather and document use cases that describe the functional requirements
of the system. Each use case should outline the interactions between the actor and the system.

2. Analyze Use Cases: Break down each use case into individual steps and scenarios. Identify
the main success scenario as well as alternate scenarios that represent different paths the
interaction could take. -

3. Create Test Cases: Derive test cases from each scenario described in the use case. Ensure that
test cases cover the main success scenario and all alternate scenarios, including error handling
and exceptions.

4. Prioritize Test Cases: Prioritize the test cases based on factors such as criticality to business,
frequency of use, and potential impact of failure.

5. Execute Test Cases: Execute the derived test cases on the system under test to verify that each
use case is handled correctly. Record the results of each test execution.

6. Validate Results: Compare the actual results with the expected outcomes defined in the
use case to determine if the system behaves as intended. Investigate and document any
discrepancies.

| 10.22 | Software Testing

Use Case Based Testing

Let's consider an e-commerce platform and a use case for the checkout process.
Use Case: Checkout Process
Title: Checkout Process
Primary Actor: Customer
Preconditions: Customer is logged in and has items in the shopping cart.
Postconditions: Order is placed, and confirmation is sent to the customer.
1. Main Success Scenario:
Customer views the shopping cart.
Customer proceeds to checkout.
Customer enters shipping information.
Customer selects a payment method and enters payment details.
Customer reviews the order and confirms the purchase.
System processes the payment and places the order.
System sends order confifimation to the customer.
2. Alternate Scenarios:
o Invalid Payment Information: Customer enters invalid payment details.
* Out of Stock Item: An item in the cart becomes out of stock before the order is placed.
* Address Validation Failure: Customer enters an invalid shipping address.
Derived Test Cases:
1. Main Success Scenario:
¢ Test Case 1: Verify that a customer can successfully complete the checkout process with valid
information.
2. Alternate Scenarios:)
o Test Case 2: Verify that the system displays an er;or message when the customer enters invalid
payment information.

« Test Case 3: Verify that the syf_s;e\r'ﬁ-llnforms the customer and removes the out-of-stock item if an
item becomes unavailable dur'i:]g,checkout
¢ Test Case 4: Verify that the system prompts the customer to correct the address if the shipping
address validation fails.
Execution and Validation:
« Execution: Execute each test case on the e-commerce platform to simulate the customer's actions and
the system's responses.
» Validation: Check if the actual outcomes match the expected results. Ensure the system handles each

scenario as described in the use case.

PGl itiD e

Exploratory Testing & Model Based Tesfing I 10.23 |

— — — —

—— ———————=
10.3.3 Advantages and Disadvantages of Use Case Based Testing

Use Case-Based Testing offers several benefits in terms of user-centric testing and comprehensive
coverage, but it is also essential to consider its limitations and potentlal challenges to effectively
leverage this approach in software testing,

1. Ahgnment with User Requirements: Use Case-Based Testing ensures that the testing process is
closely aligned with user requirements and expectations, as test cases are derived directly from user
interactions described in use cases.

2. Comprehensive Test Coverage: By deriving test cases from use cases that cover various user scenarios,
this approach helps achieve comprehensxve test covemge, ensuring that the software functions as
intended under different conditions. :

3. Early Defect Detection: Testing based on use cases allows for early detection of defects or deviations
from expected behavior, as test cases are designed to validate the system's response to userinteractions.

4. Improved Communication: Use cases serve as a common language betweeri stakeholders, facilitating
better communication and understanding of system functionality, which can lead to more effective
testing.

5. Reusability: Test cases derived from use cases can be reused across different testing phases or

promotmg efﬁdenc_v and reducmg duplication of teSl:mg effurtx

1terat10ns,

1. lelted Scope Use Case- Based Testing may focus prlmarlly on functional aspects driven by user
interactions, potentially overlooking non-functional requirements such as performance, security, or
usability testing.

2. Dependency on Use Case Quality: The effectiveness of Use Case-Based Testing is highly dependent
on the quality and completeness of the use cases. [naccurate or incomplete use cases can lead to
inadequate test coverage and potenﬁally issed defects.

3. Complexity in Large Systems: In large and complex systems with numerous use cases, managing and
deriving test cases from all use cases can become challenging and time-consuming.

4. Maintenance Overhead: As the system evolves and use cases are updated or modified, test cases
derived from tliese use cases may require frequent updates and maintenance to remain relevant and
effective. - =

5. Risk of Overlooking Edge Cases: Use Case-Based Testing may not always capture ail edge cases
or exceptional scenarios that could lead to critical defects, especially if these cases are not explicitly

covered in the use cases.

10:24 | Software Testing

10.4 Review Questions

1
2.
3.
4.
5.

Give an example for Exploratory Testing.
What is Lewis and Clark’s Expedition ?
What is Model Based Testitig (MBT) ?
What is Use Case Based Testiiig?

Section - B

§ AT LT A et e M B st S Tl L1
Tt e b iy

pasd

O 00 N O U oW N

o e
N o= O

. Explain the Context-Driven School and Its Principles.

. Explain the Chardcteristics of Exploratory Testing.

. Compare Exploratory Testing and the Lewis and Clark Expedition.

. What are the Advantages and Disadvantages of Exploratory Testing?

. Explain Exploratory and Context-Driven Testing Observations.

. What is Model Based Testing (MBT) ? Explain the Key Components of Model Based Testing.
. Explain the Features or Characteristics of Model-Based Testing (MBT).

. Explain the Process of Testing based on Models.

. Explain Peterson's Lattice.

. Write a note on Commercial Tool Support for Model-Based Testing.

. Write the Advantages and Disadvantages of Model Based Testing.

. What is Use Case Based Testing ? Explain the Step§ in Use Case Based Testing.
13.

Explain the Advantages and Disadvantages of Use Case Based Testing

. Explain and Elaborate on Exploratory Testing with Detailed Examples.

. Explain How Exploratory Testing is done for the Commission Problem.

. Explain and Elaborate on Model Based Testing with Detailed Examples.

. Explain How to Chose Appropriate Models in Model Based Testing.

. Explain and Elaborate on Use Case Based Testing with Detailed Examples.

TEST-DRIVEN DEVELOPMENT &
SOFTWARE TESTING EXCELLENCE

Contents

Introduction to Test Driven Development (TDD)
Features or Characteristics of TDD
Test-Then-Code Cycles
Automated Test Execution
<= Goals and Purpose of Automated Test Execution
< Common Features of Testing Frameworks
< Importance of Testing Frameworks in TDD
= Examples of Testing Frameworks
<= Advantages and Disadvantages of Autornated Test Execution
Java and JUnit Example
Remaining Questions (TDD Considerations and Challenges)
= Is TDD Code Based or Specification Based?
< s Configuration Management Challenging in TDD?
= How Does Granularity Affect the TDD Process?
Advantages, Disadvantages and Open Questions of TDD
Retrospective on MDD versus TDD
Software Testing Excellence
= (raftsmanship
< Best Practices of Software Testing
= Top 10 Best Practices for Software Testing Excellence

Review Quéstions

l I Software Testing

11.1 Introduction to Test Driven Developmenf (T DD)

Test-Driven Development (TDD) isa software development methodology that has gained significant
popularity in the software engineering community, particularly within agile development practices.

The core principle of TDD is to transform testing from a downstream activity to an integral part of
the software development process, ensuring that testing drives the des:gn and implementation of the
code. |

Before the advent of TDD, traditional software development often followed 2 linear or waterfall
approach, where coding was done first, and testing was an afterthought. This often led toa disconnect
between what the software was supposed to do and what it actually did, resultmg inlate discovery of
defects, higher costs of bug fixes, and sometimes, subpar software quality. :.; ;] :

Agile methodologies including Extreme Programming (XP) emphamze iterative development,
customer collaboration, and adaptability to change. TDD originated from XP and popularized by Kent
Beck in the early 2000s. TDD aligns well with agile principles by promoting a test-first approach and
close integration of testing and development activities.

The adoption of TDD represents a shift in development practices towards a miore proactive: and
iterative approach to software development. It emphasizes the importance of continuous testing,
refactormg, and ensunng that code meets the expected behavior as defined by the tests.

Test-Driven Development (TDD) is a software development methodology that emphasmes wnung tests before
writing the actual code. This approach is characterized by short, iterative cy(;les where a test case is written
first, followed by the minimum amount of code required to pass the test. TDD promotes the development of
robust, high-quality software through continuous testing and refactoring.

———————e———————n
11.2 Features or Characteristics of TDD

Test-Driven Development (TDD) is characterized by several key features and principles that
distinguish it from traditional software development approaches Some of the prominent features of
TDD are:

1...Testf-First Approach: In TDD, developers write automated tests before writing the actual
_code. This test-first approach ensures that the code is designed to meet specific requirements
“and that the tests act as a specification for the code's behavior.

2. Incremental Development: TDD promotes incremental development by breaking down
the implementation into small, manageable steps. Developers write tests and code in short
iterations, allowing for continuous integration and feedback.

3. Red-Green-Refactor Cycle: TDD follows a cycle known as Red-Green-Refactor. Developers
start with a failing test (Red), write the minimum code to make the test pass (Green), and then
refactor the code to improve its design without changing its behavior.

4. Automated Testing: TDD relies on automated testing frameworks to run tests quickly and
frequently. Automated tests ensure that the code behaves as expected and can be easily

executed to validate changes.

i_

Test-Driven Development & Software Tesling Excellence- 11.3

5. Code Quality: TDD emphasizes writing clean, maintainable code. By focusing on passing
tests, developers are encouraged to write code that is modular, well-structured, and easy to
understand.

6. Regression Testing: TDD helps in creating a comprehensive suite of tests that can be run
automatically to detect regressions. Any changes made to the codebase are validated against
existing tests to ensure that new features do not break existing functionality.

7. Early Bug Detection: TDD facilitates early bug detection by identifying issues at the unit level
before they propagate to higher levels of the apphcahon This leads to faster bug resolution
and reduces the cost of fixing defects.

8. Improved Design: TDD often results in better software design as developers need to consider
the interface and behavior of :the code:upfront. Refactoring durmg the process helps in
continuously improving the design without compromising functionality.

9. Collaboration: TDD: encourages collaboration between developers and testers as they work
together to define test cases and ensure that the code meets the specified requirements. This
collaborative approach fosters a shared understanding of the system's behavior.

10. Increased Test Coverage: TDD promotes thorough test coverage by requiring tests for every
piece of functionality before it is implemented.

11. Continuous Refactoring : After making a test pass, the code is refactored to improve its
structure and maintainability without changmg its behavwr Continuous refactoring ensures
that the codebase remains clean, efficient, and easy to maintain over time.

12. Immediate Feedback TDD provides immediate feedback on the correctness of the code

through automated tests. This rapld feedback loop helps developers quickly ldentlfy and fix
issties, ensuring that the code remains functional and bug-free.

—
11.3 Test-Then-Code Cycles

In TDD, the development process is broken down into short, iterative cycles known as "Test-Then-
Code" Cycles. Test-Then-Code Cycles are iterative development cycles where tests are written before
the actual code implementation. It is also known as Test-Driven Devélopment (TDD) cycles. The
process typically involves the following steps: A

Test-Driven Development (TDD) is a software development approach where tests are \grltten before
the actual code implementation. This process involves the following steps:

1. Write a Test:
* Begin by defining a test case that outlines the expected behavior of a specific functionality.

* The test is designed to fail initially as the corresponding functionality has not been
implemented yet.

2. Run the Test:
» Execute the test to confirm that it fails as expected.

o This step validates the test's correctness and ensures that the feature is genuinely
missing.

l 114 | Software Testing

3. Write Code:
« Implement the simplest code necessary to make the failing test pass.
« The focus is on writing code that fulfills the requirements of the test case.
4. Run All Tests:
« After implementing the new functionality, run all existing tests, including the newly

added one.
o This step verifies that the new code integrates smoothly with the existing system and
does not break any existing functionality. If the test fails, it indicates that the code

implementation is incorrect or incomplete.

5. Refactor: :
« Refactor the code to enhance its structure, readability, and performance without altering
its external behavior.
o Refactoring ensures that the code remains cléan and maintainable.
« Itis essential to ensiire that all tests continue to-pass after refactoring.
6. Repeat:)
« Iterate through this cycle for each new piece of functionality or improvement.
« By continuously following this process, developers build a robust codebase with
comprehensive test coverage.

Test-Then-Code Cycles

Let's illustrate TDD with a simple example of creating a Java function to determine ifa given year is a leap year.

Step 1: Write a Test
The first step in TDD is to write a test that defines the desired behavior of the function. In this case,
we want to detsrmine if a given year is a leap year. Create a test class (LeapYearTest) and write test
methods using assertions to specify the expected outcomes. '

import org.junit.Test; '

import static org.junit.Assert.*;

public class LeapYearTest {
@Test
public void testIsLeapYear() {
assertTrue(LeapYear.isLeapYear(2024));]/ 2024 is a leap year
assertFalse(LeapYear.isLeapYear(2023)); // 2023 is not a leap year
assertFalse(LeapYear.isLeapYear(1908)); // century year not divisible by 408
assertTrue(LeapYear.islLeapYear(2000)); // 2century year divisible by 4e@

7
}

In this test, we have four assertions to check different cases:
2024 is aleap year.
2023 is not a leap year.
1900 is not a leap year.

2000 is aleap year.

e e P ————

) i 50 < |

e

Test-Driven Development & Software Testing Excellence 11.5

Step 2: Run the Test
At this point, running the test will fail because the isLeapYear method is not yet implemented. Run the
test using Java IDE or build tool. Expect to see failures or errors indicating missing implementations.
Step 3: Write the Code i
Now we implement the isLeapYear method with just enough code to make the test pass. Create the
LeapYear class and implement the isLeapYear method with basic logic to check ifayearisa leap year.

public class teapYear {
public static boolean isLeapYear(int year) {
if (year ¥4 ==90) { . =
if (year % 100 == 0) {
if (year % 400 == @) {
return true;
} else {
return false;
}
} else {
return true;
}
} else {
return false;

}
Step 4: Run All Tests
Run the LeapYearTest again. This time, the test should pass because we have implemented the
isLeapYear method. If it passes, it means the implementation is correct for the tested scenarios.
Step 5: Refactor
Refactoring is an essential part.of TDD. We improve the code structure without changing its behavior.
In this case, we can simplify the isLeapYear method.
public class LeapYear {
public static boolean isleapYear(int year) {
return (year % 4 == @) 8 (year % 100 != @ || year ¥ 400 == 0); .o

} '

}

Step 6: Repeat .
Add more test cases and repeat the cycle for further validation and enhanceéments. Add new test cases
for additional scenaries and repeat the TDD cycle.)

This example demonstrates the TDD process using Java. We started with a test, implemented just enough
code to pass the test, ran the tests, refactored the code, and repeated the cycle for further validation. By
following these steps, developers can ensure that their code meets specified requirements and is well-tested,
maintainable, and reliable.

|_ 1156 | Software Testing
=

11.4 Automated Test Execution

Automated Test Execution refers to the process of running tests automatically using specialized
software tools known as Testing Frameworks. Testing Frameworks are software tools that provide
a structured environment for writing, organizing, and executing automated tests. These frameworks
typicallyincludelibraries and tools that help define test cases, manage test data, and report test results.
Testing frameworks are available for most programming languages and development environments.

These frameworks help developers and testers write, organize, and execute tests efficiently to ensure
that software behaves as expected and meets the specified requirements.

— _————————————r

11.4.1 Goals and Purpose of Automated Test Execution

Automated test execution is a crucial aspect of modern software development, especially within the
context of Test-Driven Development (TDD) and other agile methodologies. The primary goals and
benefits of automated test execution include:

1. Efficiency: Automated tests can be run quickly and repeatedly with minimal human
intervention, saving time and reducing the manual effort required for testing.

2, Consistency: Automated tests ensure that tests are executed in a consistent manner, reducing
the risk of human error and variability in test execution.

3. Immediate Feedback: Automated tests provide immediate feedback on the quality and
correctness of the code to enable developers to detect and fix issues early in the development
process. o

4. Regression Testing: Automated tests make it easy to run regression tests to ensure that new
code changes do not introduce new bugs or break existing functionality.

S. Continuous Integration: Automated tests allow for continuous testing as part of-the
development workflow. :

——
11.4.2 Common Features of Testing Frameworks

1. Test Case Management: Frameworks provide structures and conventwns for defining and
organizing test cases.

2. Assertions: Frameworks include assertion methods to comparé expected outcomes with
actual results.

3. Test Runners: Frameworks provide test runners to execute test cases and collect results.

4. Reporting: Frameworks generate detailed reports on test resuits, including pass/fail status
and error messages.

5. Integration: Frameworks often integrate with development environments and CI/CD tools to
support automated and continuous testing.

11.4.3 Importance of Testing Frameworks in TDD
1. Ease of Test Creation and Execution: Testing frameworks provide a structured environment
for writing and executing test cases. This makes it straightforward to define test inputs,
expected outputs, and to run these tests automatically.

Test-Driven Development & Software Testing Excellence nz

2. Automated Test Execution: Frameworks automate the process of running tests and checking
results, reducing the manual effort involved and increasing the efficiency and reliability of the
testing process.

Consistent Test Results: By using a standardized framework, tests are executed consistently
across different environments to ensure that results are reproducible and reliable.

)

=

Integration with Development Tools: Most frameworks integrate seamlessly with
development environments (IDEs) and continuous integration (CI) tools, allowing for

| e~

s

automated test runs as part of the build process.

Facilitation of Test-Driven Development: Frameworks make it easy to follow the TDD cycle
(write a test, write code to pass the test, run the test, refactor, repeat) by providing tools and
features specifically designed for this purpose.

11.4.4 Examples of Testing Frameworks
Some examples of popular testing frameworks for various programming languages are listed below

Java JUnit

Python: unittest (PyUnit), pytest
C#/.NET NUnit, MSTest

JavaScript: Jest, Mocha

Ruby: Test::Unit, RSpec

PHP: PHPUnit

C++: CppUnit, Google Test
Objective-C: .0CUnit

Swift: XCTest

Go: testing package

11.4.5 Advantages and Disadvantages of Automated Test Execution

Automated test execution is a critical component of modern software development by offering
numerous benefits but also presenting some challenges. Below are the key advantages and

dlsadvantages of automated test execution.

.—c—’ T A

s Efﬁaency and Speed

+ Rapid Execution: Automated tests run much faster than manual tests, enablmg quick feedback
and faster deveIopment cycles.

» Repeatability: Tests can be executed repeatedly with the same mputs and expected outcomes,

ensuring consistent results.

I 11.8 I Software Tesfing

2. Cost-Effectiveness
« Reduced Manual Effort: Automating repetitive test cases reduces the time and labor costs
associated with manual testing.
« Long-Term Savings: Although the initial setup may be costly, automation can lead to significant
cost savings over time by reducing the need for extensive manual testing.
3. Accuracy and Reliability
« Minimized Human Error: Automated tests ehmmate the possibility of human errors during
test execution.
« Consistent Results: Automated tests provide consistent and reliable results, ensuring that tests
are executed in the same manner every time. '
4. Increased Test Coverage
 Comprehensive Testing: Automation allows for a broader scope of tests, mcludmg complex
scenarios that might be impractical to test manualiy. :
» Regression Testing: Automated tests make it easy to run extensive regression tests to ensure
that new changes do not break existing functionality.
5. Continuous Integration and Deployment
» CI/CD Integration: Automated tests can be mtegrated into continuous integration and
continuous deployment pipelines, allowing for continuous testing and faster release cycles.
« Immediate Feedback: Developers receive immediate feedback on the impact of their changes,
enabling faster identification and resolution of issues.
6. Reusability
« Reusable Test Scripts: Automated test scripts can be reused across different projects or
different versions of the same project, providing consistent test coverage and reducing the effort
required to create new tests.
7. Documentation and Reporting
« Detailed Reports: Automated testing tools often generate detailed reports and logs, providing
insights into test execution and helping diagnose issues quickly.
o Traceability: Automated tests provide a traceable record of what was tested, which can be
valuable for compliance and audit purposes.

1. Imtlal Setup Cost and Effort
« High Initial Investment: The initial setup of automated testing frameworks and the creation of
test scripts can be time-consuming and expensive.
« Learning Curve: Teams may need to invest i training to acquire the skills necessary to develop
and maintain automated tests. |\ 1

2. Maintenance Overhead
« Test Script Maintenance: Automated test scripts require regular maintenance to keep up with
changes in the application. If the application changes frequently, maintaining test scripts can
become burdensome.
« False Positives/Negatives: Automated tests can sometimes produce false positives or negatives
due to issues with the test scripts themselves, requiring additional effort to debug and resolve.

ﬂ"r.w.... PPN}

Test-Driven Development & Software Testing Excellence 11.9

3. Limited Scope
* Not All Tests Can Be Automated: Some tests, particularly those requiring human judgment,
such as usability and exploratory testing, cannot be effectively automated.
¢ Complex Setup for Certain Tests: Automating tests for certain scenarios, such as those

involving hardware interactions or complex user interfaces, can be challenging and may require
sophisticated tools and setups.

4. Upfront Time and Resources
* Significant Initial Time Investment: Sefting up an automated testing environment and
writing initial test scripts can take considerable time and resources, delaying immediate project
timelines.
* Resource-Intensive: Automated tests can require significant computational resources, |
especially for large test suites, potentially impacting other development activities.
5. Over-Reliance on Automation
« Neglecting Manual Testing: Over-reliance on automated tests can lead to the neglect of manual
testing, which is still essential for identifying issues that automated tests might miss.
¢ Complacency: Teams might become complacent, assuming that automated tests will catch all
issues, which can lead to gaps in test coverage.

11.5 Java and JUnit Example

In modern software development, writing robust, reliable, and maintainable code is crucial. Test-
Driven Development (TDD) and automated testing are practices that help achieve these goals by
integrating testing into the development process. Java programming language along with JUnit
provides a strong foundation for implementing TDD and automated testing in Java based applications.
+ Java is a object-oriented programming language that is used for building enterprise-scale
applications due to its platform independence, robustness, and extensive libraries.
« JUnit is a widely-used testing framework for Java that supports test-driven development and
automated testing. JUnit helps developers write and run repeatable tests, ensuring that the
code behaves as expected.

Key Featul es ofJUmt

1. Annotations: JUnit uses annotations to define test methods and setup/teardown methods.
Common annotations include: :
o @Test: Marks a method as a test method.
» @Before: Specifies a method that runs before each test.
« @After: Specifies a method that runs after each test.
. @BeforeClass and @AfterClass: Define methods that run once before and after all tests
in a class, respectively.
2. Assertions: JUnit provides a set of assertion methods to verify expected outcomes. Common
assertions include:
- assertEquals(expected, actual): Checks that two values are equal.
. assertTrue(condition): Checks thata condition is true.

| 11.10 | Software Testing

« assertFalse(condition): Checks that a condition is false.
« assertNotNull(object): Checks that an object is not null.
3. Test Runners: JUnit test runners execute tests and provide feedback on test results. The
default test runner runs all test methods in a class and reports the results.

4. Integration: JUnit integrates seamlessly with Java IDEs (like Eclipse and Intelli] IDEA) and
build tools (like Maven and Gradle). This integration facilitates continuous testing by allowing
tests to be run automatically as part of the build process.

. ‘. Java and JUnit Example

To illustrate hoto use JUnit for TDD in Java, let's walk through an example. We'll create a simple calculator
function to add, subtract, multiply, and divide two numbers.

Step 1: Write a Test

Purpose: Define the expected behavior of the calculator functions. Writing the test first ensures that
you clearly understand the requifement. .

Action: Createatestclass (Calculator Test) and write testmethods usingassertions tospecify the expected
outcomes. The CalculatorTest class contains test methods for addition, subtraction, multiplication, and
division, including a test for division by zero which should thl_"ow an Arithmeu'cExcepﬁ_on.

import org.junit.Test;
import static org.junit.Assert.*;

public class CalculatorTest {

@Test

public void testAddition() {
assertEquals(5, Calculator.add(2, 3));
assertEquals(@, Calculator.add(-1, 1));
assertEquals(-5, Calculator.add(-3, -2));

}

@Test
public void testSubtraction() {
assertEquals(1, Calculator.subtract(3, 2));
assertEquals(-2, Calculator.subtract(-1, 1));
assertEquals(-1, Calculator.subtract(-3, -2));
3
@Test
public void testMultiplication() {
assertEquals(6, Calculator.multiply(2, 3));
assertEquals(-1, Calculator.multiply(-1, 1));
assertEquals(6, Calculator.multiply(-3, -2));

et

Test-Driven Development & Software Testing Excellence | 11.11 l

@Test

public void testDivision() {
assertEquals(2, Calculator.divide(6, 3));
assertEquals(-1, Calculator.divide(-1, 1));
assertEquals(1, Calculator.divide(-3, -3));

@Test(expected = ArithmeticException.class)

public void testDivisionByZero() {
Calculator.divide(1, @);

¥

Step 2: Run the Test

Initially, the test will fail because the Calculator methods are not yet implemented. Running the test
in an IDE Eclipse will show that the tests fail, indicating that we need to implement the Calculator
methods.

Step 3: Write the Code
Purpose: Implement the minimum amount of code required to pass the test.

Action: Create the Calculator class and implement the methods with basic logic for addition,
subtraction, multiplication, and division.

public class Calculator {
public static int add(int a, int b) {
return a + b;

}

public static int subtract(int a, int b) {
return a - b;

public static int multiply(int a, int b) {
return a * b;

public static int divide(int a, int b) {
if (b ==0) {
throw new ArithmeticException("Division by zero");

}

return a / b;

| 11.12 i Software Testing

Step 4: Run All Tests
Run the CalculatorTest again. This time, the tests should pass because the Calculator methods are
correctly implemented. Running the test now will show that all assertions pass, confirming that the
Calculator methods work as expected for the given test cases.

Step 5: Refactor
Purpose: Improve the code's structure, readability, and maintainability without changing its behavior.
Action: Since the implementation is straightforward, no immediate refactoring is necessary. However,
if we identified any improvements, such as optimizing calculations or iniproving readability, we would
do so while ensuring that all tests still pass.

Step 6: Repeat
Purpose: Iteratively enhance the functionality and ensure comprehensive test coverage.

Action: Add new test cases for additional scenarios and repeat the TDD cycle.

= e ————]

11.6 Remaining Questions (TDD Considerations and Challenges)

—
11.6.1 Is TDD Code Based or Specification Based?

Test-Driven Development (TDD) has characteristics that make it appear to be both specification-
based and code-based. The natute of TDD involves writing test cases before the actual code, which
can be seen as a form of low-level specification. However, since these test cases are closely tied to the
implementation of code, it also has elements of being code-based testing.

1. Specification-Based Aspects:

« Low-Level Specifications: Test cases in TDD serve as low-level specifications that define
what the code should do. They specify the expected behavior of the code for given ifiputs.

« User Stories: In the context of agile methodologies, each test case can be considered as a
part of a user story, which is a higher-level specification accepted by customers.

2. Code-Based Aspects:)

+ Close Association with Code: Test cases are written in conjunction with the code and
are executed to validate the code’s correctness. This creates a tight integration between
testing and coding.

« Code Coverage: Achieving high code coverage is a natural outcome of TDD, as tests are
written to cover various paths through the code, ensuring thorough validation.

3. Balancing Specification and Code:
« Incremental Steps vs. Larger Chunks: Some practitioners argue that instead of tiny,

incremental steps, larger test cases followed by larger chunks of code might be preferable..

This approach introduces an element of code design and reduces the frequency of
refactoring, combining bottom-up development with top-down thinking.

v ﬁbuuya:. (L

Test-Driven Development & Software Testifig Excellencé | 11.13 |

——— = ———1

11.6.2 Is Configuration Management Challenging in TDD?

TDD may seem challenging for configuration management due to the numerous versions a program
may go through from inception to completion. However, the refactoring process inherent in TDD
helps manage this complexity.

(.Uﬂil"'lllﬂllﬂl! \hndaempnt -\t uum m ll_'ll]

In Test-Driven Development (TDD), effectlve configuration management is essefitial to handle the
multiple versions and iterations of the code. Here’s how configuration’ management actions can be
applied during the TDD process:

1. Promoting to Configuration Hem:

» Refactoring Paints: When refactoring is successfully completed (meaning all tests pass
after the refactoring), the code at this point is stable and reliable. This stable version of
the code can be promoted to a configuration item. A configuration item'is 4 managed
component that is tracked and versioned in the configuration management system. This
means it is now officially tracked and versioned as a reliable compenent in your project.

o Example: After refactoring and ensirring all tests pass, the current version of the
Calculator program is considered stable and is promoted to a configuration item. This
means it is now a tracked version in thie configuration management system.

2. Demoting to Design Object: -

« Failed Tests on New Code: If new ¢ode changes cause previously passing tests to fail,
this indicates a.problem. The configuration item (stable version of the code) should
be re-evaluated. In this case, the configuration item can be demoted back to a design
object. A design object is a less stable version that is subject to further development and
changes. It means that further development and adjustments are required before it cari
be considered stable again. '

o Example: After adding new functionality to the Calculator program, if some of the
existing tests fail; the previously stable version (configuration item) is demoted to a
design object. This indicates it is still inder development and needs further work to meet
the stability criteria.

By following these practices, we can maintain control over the different versions of code and ensure
that only stable, reliable versions are pronioted and tracked as configuration items.

11.6.3 How Does Granularity Affect the TDD Process?
Granularlty refers tothelevél of detail in user stories and the corresponding tests and code increments
in TDD. The graritilarity of ilser stories can significantly impact the development process.

1. Fine-Grained User Stories:

o Detailed Steps: Using fine-grained user stoties involves breaking down functionality
into very detailed steps. Each small increment is developed and tested individually.

11.14 § Software Testing

« Example: In the sequence of user stories for a simple calculator program, each
functionality (e.g, addition, subtraction, multiplication, division) is treated as a separate,
detailed task.

2. Larger Granularity (Story-Driven Development):

o Larger User Stories: Larger user stories include broader functionality, Wthh is then
broken down into finer tasks for development and testing. §

« Advantages: This approach preserves fault isolation while also allowing for some code
design considerations, potentially reducing the frequency of refactoring.

+ Example: Instead of testing the operations of addition, subtraction, multiplication, and
division separately, a larger user story might involve implementing and validating all
basic calculator functions together. This larger user story is then broken down into tasks
like implementing and testing the add, subtract, multiply, and divide methods collectively.

3. Comparison:

« Fine-Grained: Offers detailed control and immediate feedback but may require frequent
refactoring and can be more cumbersome for complex functionalities.

e Larger Granularity: Balances detailed testing with higher-level design, potentially
reducing the need for constant refactoring and allowing for more holistic code
improvements.

11.7 Advantages, Disadvantages and Open Questions of TDD

Test-Driven Development (TDD} has both advantages and disadvantages along with some open
questlons that are still bemg explored in the software development community.

1. Working Code: TDD ensures that something always works due to the tight test/code cycles, leading to
a more reliable codebase.

2. FaultIsolation: TDD excels in fault isolation as any failing test indicates that the issue lies in the most
recently added code.

3. Supportive Test Frameworks: TDD is supported by a variety of test frameworks such as JUnit for
Java, making it easier to implement and maintain tests.

4. Early Detection of Issues: TDD encourages developers to write tests before writing the actual code,
leading to early detection of potential issues and bugs.

5. Improved Code Quality: By continuously running tests and refactoring code, TDD can result in higher
code quality and maintainability over time.

p..n e sl

Test-Driven Development & Software Testing Excellerice | 11.15 |

1. Dependency on Test Frameworks: TDD heavily relies on test frameworks, and without them, it
becomes challenging ‘o practice TDD effectively.

2. Limited Design Opportunities: The bottom-up nature of TDD may limit opportunities for elegant
design as it focuses on incremental improvements through refactorings.

3. Inadequate forDeep Faults: TDD may not effectively reveal deeper faults that require a comprehensive
understanding of the code such as those uncovered by data flow testing.

4. Learning Curve: TDD may have a steep learning curve for developers who are new to the practice, as
it requires a shift in mindset and workflow.

5. Time-Consuming: Initially, TDD may seem time-consuming zs developers need to write tests alongside
the code, which can slow down the development process compared to traditional methods.

Open Questions ahout TDD:

1. Can TDD scale effectively to large applications?

There are concerns about the scalability of TDD to large applications and whether individuals
can effectively manage the complexity of extensive codebases. The heavy load on developers
-increases with the size of the application, making it difficult to manage and maintain.

2. Can TDD handle the complexity and reliability required for large, complex systems?

Complex systems often require sophisticated models and comprehensive testing beyond the
scope of TDD’s incremental approach.

3. How well does TDD support long-term maintenance?
TDD advocates often argue against extensive documentation, relying on test cases as
specifications and well-written code for self-documentation. The effectiveness of this approach
over long-term projects remains uncertain.
These open questions highlight areas where further research and exploration are needed to fully
understand the implications and limitations of Test-Driven Development in real-world software
development scenarios. c

11.8 Retrospective on MDD versus TDD

In software development, understanding different methodolog1es and their impacts on the
development process is crucial. Model-Driven Development (MDD) and Test-Drlven Development
(TDD) are two such methodologies, each offering unique perspectives and approaches.

e
pad

Both MDD and TDD offer valuable perspectives for software development. MDD provides a high-level,
structured approach that ensures completeness and consistency, while TDD focuses on incremental
development and strong fault isolation. Combining the strengths of both methodologies can lead to
a more robust and maintainable software development process, catering to both big-picture design
and detailed, test-driven implementation.

11.16 | Software Testing

T T I T e e o o e Ty, e Sy | i e s e s
S Aspect) || ModelDriven Development (MDD): ¢ ¢ Test-Driven Development (TDD) i
Approach High-level modeling to guide development | Writing tests before implementing the code
Pérspecﬁve Eagle’s view (big picture, Dletrievel Mouse’s view (detailed, incremental steps)
structure)
Starts with a comprehensive model | Starts with writing test cases for specific
Process {Example, decision tables) functionality
Using a decision table to derive the Incrementally developing the “isLeapYear’
Bxamlg ‘isLeapYear' function function based on test cases
Complexity Structured approach with potentially | Simpler initial approach, but may require
Management | higher initial complexity multiple condition coverage
Cyclomatic Higher cyclomatic complexity (Example, 4) | Lower cyclomatic complexity (Example, 2)
Complexity i
. Ensures completeness and consistency Excellent fault isolation; failing tests
Fapile Lsolation through comprehensive models indicate issues in the most recent changes
Development | Initial longer development time due to | Potentially shorter initial development
Effort detailed modeling time but may require more iterations
. Comprehensive models may aid in long- | Test cases provide detailed fault isolation,
HiEAtETAnCE term maintenance (Eagle’s view) helping in fault recreation (Mouse’s view)
Skill Dependency | Relies on the developer’s modeling skills | Relies on the developer’s testing skills
Ensures complete and consistent logical | Continuous yalidation and immediate
Advantages
structure feedback
May require more initial effort and higher | May miss deeper faults without thorough
Challenges)]
complexity testing
Sl Can manage large applications through | May struggle with scalability and
for Large structured modeling complexity in very large applications
Applications
Support from . Extensive test frameworks available
tool.
Tools Tools for modeling (Example, UML tools) (Example, JUnit for Java)
Example Tool | /1) decision tables JUnit, NUnit, pytest
Support
Documentation | Models serve as documentation Test cases act as live documentation

11.9 Software Testing Excellence

Software Testing Excellence refers to the highest standards and practices in the field of software
testing to ensure that software is reliable, efficient, and meets both functional and non-functional
requirements. Achievingexcellence in software testing involves a combination of skills,methodologies,
and attitudes that collectively enhance the quality of the software development process.

Fﬂ"‘*“"‘ el

Test-Driven Development & Software Testing Excellence | 11.17 |

¢ Testing and Their Contribution to Excellenee

Completing a project can be as challenging as starting one. In both writing and software development,
there is a constant temptation to revisit and refine "finished” work. This temptation arises from
the anxieties that surface as deadlines approach. In software testing, this tendency is prevalent,
emphasizing the importance of continuous improvement to achieve excellence.

Over time, software testing tools and techniques have evolved significantly. To understand the current
landscape of software testing, imagine a line that begins with Art, progresses through Craft, moves to
Science, and ends in Engineering. Where does software testing fit on this line?

1. Software Testing as an Engineering: Tool vendors often view software testing as an
engineering discipline. They argue that their tools automate and streamline the testing
process, reducing the need for manual intervention and creativity.

Contribution to Excellence: This perspective emphasizes precision, efficiency, and scalability
through the use of advanced tools and methodologies. Automation and systematic approaches

ensure that testing is thorough and repeatable, contributing to the overall quality of the
software.

2. Software Testing as a Science: The process community considers software testing to be a
science. They believe that following a well-defined process is essential for effective testing.

Contribution to Excellence: This approach involves structured methods, repeatable
procedures, and systematic experimentation and analysis. Scientific methods ensure that
_ testing is reliable and comprehensive, leading to a higher standard of quality assurance.

3. Software Testing as an Art: The context-driven school regards software testing as an art.
They emphasize the importance of creativity and individual skill in identifying defects.
Contribution to Excellence: This perspective values innovative thinking, unique approaches,
and the personal insights that experienced testers bring to the process. Creative testers uncover
hidden issues and exploring edge cases that might be missed by more systematic approaches.

4. Software Testing as a Craft: Viewing software testing as a craft highlights the importance
of skill and practice. Testers continuously develop their abilities and apply various tools and
techniques to improve the quality of their work. 72

Contribution to Excellence: This perspective values experience and the continuous
improvement of testing skills through ongoing practice and learning. Skilled testers bring a
depth of knowledge and a refined approach to testing, ensuring meticulous and high-quality
results.

Understanding software testing through these different lenses helps in appreciating its complexity
and importance. Whether viewed as an art, a craft, a science, or an engineering discipline, achieving
excellence in software testing involves integrating the best aspects of each approach.

| 1.18 | Software Testing

Achieving Software Testing Excellenee

To achieve excellence in software testing, it is crucial to integrate the best aspects of various
perspectives:
1. Precision and Efficiency (Engineering): Leverage advanced tools and methodologies to
streamline the testing process, ensuring thorough and efficient testing.
2. Structured and Reliable Methods (Science): Adhere to well-defined processes and
methodologies to maintain consistency and reliability throughout the testing phases.
3. Creativity and Insight (Art): Apply creative thinking and innovative approaches to uncover
defects that might be missed by conventional testing methods.
4. Skill and Continuous Improvement (Craft): Continuously develop and refine testing skills
through practice and experience, always striving for improvement and excellence.

11.9.1 Craftsmanship

Craft involves creating unique handmade objects using skill and expertise in a specific trade like
pottery, knitting, woodworking, or jewelry making. Craftsmanship, on the other hand, refers to the
quality and skill demonstrated in crafting these items, showcasing mastery, attention to detail, and
dedication to producing high-quality and aesthetically pleasing products. For instance, a skilled
potter showcases craft by shaping clay into functional pottery with precision and artistry, highlighting
craftsmanshlp through smooth finishes, intricate designs, and overall quahty in the fina] pieces.

Crs 1fr~m.m~.lnp in -mft“ are I‘(sting

Craftsmanship in software testing refers to the dedication to mastering the art and science of testing,
with a focus on delivering high-quality software through skill, practice, and continuous improvement.
A true craftsman in software testing is characterized by their commitment to excellence, attention
to detail, and pride in their work. This approach emphasizes the human aspect of testing, where the
tester's experience, intuition, and expertise play a crucial role.
Craftsmanship in software testing is about more than just following procedures; it's about bringing
a high level of skill, dedication, and pride to the testing f)rocess. It involves mastering the tools and
techniques, continuously improving practices, and delivering high-quality work consistently.
Key Attributes of Craftsmanship in Software Testing:
1. Mastery of the Subject Matter:
A deep and comprehensive understanding of software testmg principles, methodologies,
and best practices.
Continuous learning to stay updated with the latest trends, tools, and techniques in
software testing.
2. Mastery of Tools and Techniques:
Proficiency with a wide range of testing tools, both manual and automated.
Expertise in various testing techniques such as black-box testing, white-box testing,
exploratory testing, performance testing, and security testing.

Importan

Test-Driven De.velopmenl & Software Testing Excellence I 11.19 |

3. Ability to Make Appropriate Choices: -
Skill in selecting the right tools and techniques for the specific context of the project.

Understanding the trade-offs and implications of different testing strategies and making
informed decisions.

4. Extensive Experience:

A wealth of hands-on experience in testing various types of software, from simple
applications to complex systems.

Experience in different 1ndustr1es and domains, brmgmg a broad perspecuve to testing
challenges.

5. History of High-Quality Work:
A proven track record of delivering high-quality work consistently.
Recognition from peers and stakeholders for the ability to find critical defects and
improve software quality.
6. Commitment to Continuous Improvement:
Regularly revi ewingandrefining testingprocessesto enhance efﬁciency and effectiveness.

Seeking feedback and learning from past projects to contmually improve testing skills
and practices.

7. Pride in Work:
Taking pride in delivering thorough, meticulous, and reliable testing.

Striving for excellence in every aspect of the work, from planning and execution to
reporting and communication. : 5

.ilt'-nml!-«hlp in ‘:mft“ .1|(T'e-«tma

1. Quality Assurance: High craftsmanship ensures that software is tested thoroughly, identifying
and addressing defects before they reach the end users.

2. Reliability: Experienced testers can anticipate potential issues and design tests that ensure
the software performs reliably under various conditions.

3. User Satisfaction: Well-tested software leads to higher user satisfaction, as it is less likely to
have defects that disrupt the user experience.

4. Cost Efficiency: Identifying and fixing defects early in the development process saves time
and resources, reducing the overall cost of software development.

—_———
11.9.2 Best Practices of Software Testing

Software testing is a important part of the software development lifecycle to ensure the quality,
reliability, and performance of software products. Over the years, the software development field
has seen numerous proposed solutions to its challenges. From high-level programming languages
like FORTRAN and COBOL to modern methodologies such as Agile programming and test-driven
development, the industry has explored various approaches to enhance software development

11.20 | Software Testing

processes. Defining best practices in software testing can be subjective, but certain characteristics
are commonly accepted: they are usually defined by practitioners, proven to be effective ("tried and
true"), dependent on the subject matter, and have a significant history of success. Below is a list of
notable best practices in software testing.

1. High-Level Programming Languages: The languages like FORTRAN and COBOL abstracted
machine-level details, making it easier for developers to write and maintain co de. They allowed
for more efficient coding practices and reduced the likelihood of errors associated with low-
level programming.

2. Structured Programming; This methodology improved code readability and maintainability
by using clear control structures like loops and conditionals. It emphasized the use of blocks,
functions, and subroutines to create well-organized code.

3. Third-Generation Programming Languages: The languages like C and Pascal further
enhanced programming efficiency and capability by providing more sophisticated abstractions
and control structures.

4. Software Reviews and Inspections: Peer reviews and formal inspections helped detect
defects early in the development process. This practice ensured that many errors were caught
before the software moved into later stages, reducing the cost and effort of fixing bugs.

5. The Waterfall Model: This linear and sequential approach to software development divided
the process into distinct phases, such as requirements, design, implementation, testing, and
maintenance. Each phase needed to be completed before moving on to the next.

6. The Object-Oriented Paradigm: This paradigm promoted the use of objects and classes to
encapsulate data and behavior. It supported code reuse, modularity, and abstraction, leading
to more maintainable and scalable software systems.

7. Various Replacements for the Waterfall Model: The models like Spiral model and V-Model
introduced iterative and incremental approaches, allowing for more flexibility and the ability
to refine requirements and designs through multiple iterations.

8. Rapid Prototyping: This approach involved quickly creating a working model of the software
to validate requirements and design choices. It enabled early user feedback and facilitated
better understanding of user needs.

9, Software Metrics: Metrics provided quantitative measures to assess software quality and
progress. Common metrics included code coverage, defect density, and test case effectiveness.

10. CASE (Computer-Aided Software Engineering) Tools: These tools automated parts of the
software development process, including design, coding, testing, and maintenance, thereby
improving productivity and reducing human error.

11. Commercial Tools for Project, Change, and Configuration Management: These toolshelped
manage and track various aspects of software projects, such as changes in requirements, code
versions, and project timelines, ensuring better control and organization.

12. Integrated Development Environments (IDEs): IDEs provided a unified environment that
integrated various development tools, such as code editors, compilers, debuggers, and version
control systems, streamlining the development process.

Test-Driven Development & Software Testing Excellence I 11.21 |

13. SnMe Process Maturity and Assessment: Models like CMMI (Capability Maturity Model
[“teB_mﬂﬂﬂ] evaluated and improved software development processes, leading to more
predictable and high-quality outcomes.

14. Software Process Improyement: Continuous enhancement of development processes aimed
to improve efficiency, reduce defects, and increase overall quality.

15. Execytable Specifications: These specifications could be directly executed to verify that
the software met the defined requirements, bridging the gap between specification and
implementation.

16. Auto"matic Code Generation: Tools that automatically generated code from higher-level
specifications increased productivity and reduced manual coding errors.

17. UML (Unified Modeling Language): UML provided standardized visual modeling of software
systems, facilitating better design and communication among developers.

18. Model-Driven Development (MDD): MDD emphasized creating and utilizing domain models
to drive the development process, improving consistency and reducing errors.

19. Extreme Programming (XP): XP promoted flexible, iterative development with practices
such as pair programming, continuous integration, and frequent releases, enhancing software
quality and responsiveness to change.

20. Agile Programming: Agile methodologies focused on iterative development, collaboration,
and adaptability, allowing teams to respond quickly to changes and deliver high-quality
software incrementally. ’

21. Test-Driven Development (TDD): TDD involved writing tests before code, ensuring that the
software met its requirements and reducing defects early in the development process.

22. Automated Testing Frameworks: These frameworks improved the efficiency and coverage

of testing by automating repetitive test cases, enabling faster feedback and more reliable
software.

While the list of best practices is extensive, it is not exhaustive. Software development remains a
challenging endeavor, and practitioners continuously seek new or improved methods to enhance
quality and efficiency. Understanding and applying these best practices can help software testers and
developers achieve better outcomes and contribute to the ongoing evolution of the field.

= =
11.9.3 Top 10 Best Practices for Software Testing Excellence
Achieving excellence in software testing requires a deep understanding of the craft, access to theright
tools, and sufficient time to perform tasks carefully. A good tester is creative, curious, disciplined, and
a "can-I-break-it" mentality. Below are top 10 best practices for software testing.

1. Model-Driven Agile Development : Combining traditional model-driven development (MDD)
with agile practices creates a powerful approach. Models help identify details that might be
overlooked arid are useful for mairtenance, while agile practices like test-driven development
(TDD) enhance flexibility arid responsiveness.

Example: Using UML diagrams to model the software architecture while applying TDD to
develop features incrementally.

Software Testing

. Careful Definition and Identification of Levels of Testing : Defining clear levels of testing,

such as unit, integration, and system testing ensures that each level focuses on specific
objectives and avoids redundancy.

Example: Implementing unit tests to check individual functions, integration tests to verify the
interaction between modules, and system tests to validate the entire application.

. System-Level Model-Based Testing : Using executable specifications allows automatic

generation of system-level test cases to ensure comprehensive testing aligned with
requirements.
Example: Generating test cases from a model specified in a tool directly links to the
requirements.

. System Testing Extensions : For complex systems, beyond basic thread testing, include

thread interaction testing, stress testing, and risk-based testing to uncover deeper issues.

Example: Applying stress testing to a banking application to reveal thread interaction faults
under heavy load, and prioritizing tests based on the risk of failure.

. Incidence Matrices to Guide Regression Testing : An incidence matrix records the

relationships between features and procedures (or use cases and classes), guiding the order of
builds, fault isolation, and regression testing.

Example: Creating an incidence matrix for an e-commerce platform to track dependencies
between user features and backend services, facilitating efficient regression testing.

. Use of MM-Paths for Integration Testing : MM-paths, which track multiple modules'

interaction paths, are effective for integration testing and can be used alongside incidence
matrices for better test coverage.

Example: Using MM-paths to test the integration of different services in a banking applicatien
ensures all interaction paths are validated.

. Intelligent Combination of Specification-Based and Code-Based Unit-Level Testing:

Combining specification-based testing (focusing on what the software should do) with code-
based testing (focusing on how the software works) provides comprehensive coverage.
Example: Writing unit tests for a payment processing module using both the specifications
provided (to verify functionality) and examining the code to ensure all paths are tested.

. Code Coverage Metrics Based on the Nature of Individual Units : Selecting appropriate

code coverage metrics based on the specific characteristics of the code ensures relevant and
effective testing.

Example: For a critical security module, aiming for 100% branch coverage to ensure all
possible execution paths are tested.

. Exploratory Testing during Maintenance : Exploratory testing, where testers actively

explore the software without predefined test cases, is especially useful for understanding and
testing legacy code.

Test-Driven Development & Software Testing Excellence , 11.23]

Example: Conducting exploratory testing on an old inventory management system to identify
hidden issues before implementing new features.

. Test-Driven Development (TDD) : TDD involves writing tests before coding, ensuring '

excellent fault isolation and continuous integration of small, tested increments.

Example: Developing a new feature for a mobile app by first writing unit tests that define the
desired functionality, then writing the code to pass those tests, and iterating this process.

These best practices represent a combination of tried-and-true methods and innovative approaches
that can significantly enhance the quality and effectiveness of software testing. By integrating these
practices, testers can achieve a high level of software testing excellence to ensure that software is
reliable, efficient, and meets user expectations.

i ————. . — ———1
11.10 Review Questions

T]
_ Each Question Carries Two Marks

1
2
3
4.
5
6
7

. What is Test Driven Development (TDD) ?
. What is Test-Then-Code Cycle?
. What do you mean by Automated Test Execution?

What are Testing Frameworks? Give an example,

. What is JUnit?
. Define Software Testing Excellence.

. How to achieve Software Testing Excellence?

Seclion - B

1
2
3
4.
5
6
7
8

. What is Test Driven Development (TDD) ? Explain the Features or Characteristié?:s of TDD.
. Mention the Goals and Purpose of Automated Test Execution.

. Explain the Common Features of Testing Frameworks.

Explain the Importance of Testing Frameworks in TDD.

. Write the Advantages and Disadvantages of Automated Test Execution.

. Explain TDD with Java and JUnit Example.
. What is JUnit? Explain Key Features of JUnit.

. Is TDD Code Based or Specification Based? Discuss.

| 11.24 l Software Testing

9.
10.
11.
12.
13.
14.

[=2}

Is Configuration Management Challenging in TDD? Discuss.

How Does Granularity Affect the TDD Process?

Write a note on Advantages, Disadvantages and Open Questions of TDD.

Explain the different views on Software Testing and Their Contribution to Excellence.
Write the Importance of Craftsmanship in Software Testing.

What are the Key Attributes of Craftsmanship in Software Testing?

e

ey B T £rde T g e i
*Carries-Eight=Mc

. Whatis Test Driven Development (TDD) ? Explain the Features, Advantages and Disadvantages

of TDD.

. Explain Test-Then-Code Cycles With Detailed Example.

. Explain TDD w1th Java and JUnit Example.

_ Differentiate Between Model Driven Development versus Test Driven Development.

. Explain Craftsmanship in Software Testing. Write the lmportahce of Craftsmanship in Software

Testing.

. Explain the Best Practices of Software Testing.

7. Write Top 10 Best Practices for Software Testing Excellence.

R K K R)
XXX EX T

S

MobEeL QUuEsTION PAPERS

Time : 2.5-Hours . ax. Marks: 60

Instructions : Answer All Sections

SECTION -A

I. Answer any Foutr questions. Each question carries Two marks

1. Define Software Testing.

2. What is Equivalence Class Testing (ECT)? Give an example.
3. Whatis Define-Use Testing?

4. What is Top- Down Integration Testing?

5. What s Client Server Testing ?

6. What is Object Oriented Testing ?

li. Answer any Four question. Each question carries Five marks (4 x35=20)

7. What is Boundary Value Testing ? Explain the Impertance. of Boundary Value Testing?
8. Differentiate Between Weak Normal Vs Strong Normal Equivalence Class Testing.

O

. Write the Advantages and Disadvantages of Equivalence Class Testing.
10. How Pair wise Integration Testing Works?

11. What is GUI Testing? Explain GUI Testing Strategies.

12. Write the Importance of Craftsmanship in Software Testing.

SECTION - C

. Answer any Four questions. Each question carries Eight marks

13. Explain the Testing Life Cycle. s
14. (a) Explain Robust Worst-Case Boundary Value Testing (RWCBVT) with an example.
(b) What is Special Value Testing? Explain Characteristics of Special Value Testing.
15. (a) Explain Equivalence Class Test Cases for the NextDate Function
(b) Write the Advantages and Disadvantages of Def-Use Testing.
16. (a) How Bottom-Up Integration Testing Works? Explain with an example.

4
3

(b) Discuss the Basic Concepts for Requirements Specification in System Testing.
17. (a) Explain Static Interactions in a Single Processor with detailed example..
(b) Explain Exploratory and Context-Driven Testing Observations
18. What is Test Driven Development (TDD) ? Explain the Features, Advantages and
Disadvantages.

00 o
R EX T XX T XY

o

Max. Marks: 60

Time : 2.5 Hours
Instructions : Answer All Sections
1. Answer any Four questions. Each question catries Two marks (4X2=38)

1. Define Test and Testcase.

2. What is Decision Table Based Testing?
3. What s Slice Based Testing?

4. What s Call Graph-Based Integration?
5. What is Exploratory Testing ?

6. What is Test-Then-Code Cycle?

SEcTION -B
(4 x5=20)

. Answer any Four question. Each question carries Five marks

7. Explain the Importance of Software Testing.
8. Differentiate Between Weak Robust Vs Strong Robust Equivalence Class Testing.
9. How Def-Use Testing Works? Explain with an example.
10. What is Atomic System Function (ASF)? Explain the Importance of-ASFs.
11. Explain Object-Oriented Integration Testing.
12. Whatis Test Driven Development (TDD) ? Explain the Features or Characteristics of TDD.

SecTIOoN - C

INl. Answer any Four questions. Each question carries Eight marks (4X8=32
13. Explain Fundamental Approaches to Apply Test Cases with examples.
14. (a) Explain Worst-Case Boundary Value Testing (WCBVT) with an example.

(b) Explain Equivalence Class Test Cases for the Commission Problem.
15. (a) Explain the Guidelines and Observations of Decision Table Testing.

(b) What is Data Flow Testing? Explain the Characteristics of Data Flow Testing.
16. (a) How Path-Based Integration Testing Works?

(b) Explain the Characteristics and Importance of a Thread in System Testing.
17. (a) Explain Static Interactions in Multiple Processors with detailed example.

(b) Whatis Use Case Based Testing ? Explain the Steps in Use Case Based Testing.
18. (a) Explain TDD with Java and JUnit Example.

(b) Explain Exploratory and Context-Driven Testing Observations

2o % o0 % o2
EXEX I XL L XY

Appendix A : Model Question Papers | A3 I

Time : 2.5 Hours : ax. Marks: 6

Instructions : Answer All Sections
SECTION -A
I. Answer any Four questions. Each question carries Two marks (4X2=18)

1. What is Specification-Based Testing? Give an example

2. What is Weak Robust Equivalence Class Testing (WRECT) ?
3. Define du-path and dc-path.

4. What is Path-Based Integration Testing?

5. What is Use Case Based Testing ?

6. What is Test Driven Development IlilDD! ?

Il. Answer any Four question. Each question carries Five marks

7. Explain Normal Boundary Value Testing (NBVT) with an example.

8. Explain the Generation of Test Cases for the NextDate Function in Boundary Value Testing.
9. Discuss the Guidelines and Observations for Data Flow Testing.

10. What is System Testing? What are the Key Objectives of System Tésting.

11. Explain the [ssues in Object Oriented Testing.

12. Explain the Process of Testing based on Models

. SEcTION - C °

lil. Answer any Four questions. Each question carries Eight marks (4 X8=232)
13. (a) Explain the Components of a Test Case.
(b) Explain the Limitations of Boundary Value Analysis.
14. (a) Explain Random Testing. Mention its advantages and disadvantages.
(b) Explain the Guidelines and Observations About Equivalence Class Testing.
15. (a) Explain Decistion Table Design Format with an example. ’ 2

(b) Explain the Importance or Benefits of Slice-Based Testing,

16. (a) How Neighborhood Integration Testing Works?
(b) Explain the General Procedure for Finding Threads in System Testing.

17. (a) Explain Dynamic Interactions in a Single Processor with detailed example.
(b) Explain the Features or Characteristics of Model-Based Testing (MBT).

18. Write Top 10 Best Practices for Software Testing Excellence.

00 % % o% %
EXRXEXE X Z X

——

T 'stéte

ime : 2.5 Hours Max. Marks: 60
Instructions : Answer All Sections

SECTION -A

1. Answer any Four questions. Each question carries Two marks

(4X2=28)

1. What is Code Based Testing? Give an example.
2. What is Data Flow Testing ?

3. Whiat is Pair wise Integration Testing?

4. What is a Thread in System Testing ?

5. What are Taxonomy of interactions?

6. What is Model Based Testing (MBT) ?

SECTION -B

1. Answer any Four question. Each question carries Five marks

7. Explain the Levels of Testing in V-Model.

8. What is Decision Table? Explain the Characteristics of Decision Tables.

9. Discuss the Commission Problem using Define-Use Testing.
10. Explain the Features or Characterisers of System Testing.
11. Explain the Context of Interaction in Interaction Testing.

12. Differentiate Between Model Driven Development versus Test Driven Development

11l. Answer any Four questions. Each question carries Eight marks (4X8=32

13. (a) Explain Generalizing Boundary Value Analysis (BVA).
(b) Explain Robust Boundary Value Testing (RBVT) with an example.

14. Explain the Forms or Variations of Equivalence Class Testing with examples.

15. (a) Explain the Test Cases for the Triangle Problem in Decision Table Based Testing.
(b) How Sandwich Integration Testing Works? Explain with an example.

16. (a) Explain Dynamic Interactions in Multiple Processors with detailed example.
(b) What is Client Server Testing ? Explain the Testing Startegy.

17. (a) Explain the process of Finding Threads in the SATM System.

(b) What is Lewis and Clark's Expedition ? Compare Exploratory Testing and the Lewis and
Clark Expedition.

18. Explain Test-Then-Code Cycles With Detailed Example

20 oo % o o%
EXEX XXX

>—
o
OuJ
o4
=<
4
=0
Enf_
TR
==
10
oz
=
O
&)

