

BOUNDARY VALUE TESTING

Boundary Value Analysis is a popular technique for black box testing.
It is used to identify defects and errors in software by testing input
values on the boundaries of the allowable ranges.

The goal of boundary value analysis is to find any issues which may
arise due to incorrect assumptions about the system behavior. Testing
these boundary values ensures that the software functions correctly.

EXAMPLE:

There is 18 and 30 are the boundary values that's why tester pays more attention to

these values, but this doesn't mean that the middle values like 19, 20, 21, 27, 29 are

ignored. Test cases are developed for each and every value of the range.

Testing of boundary values is done by making valid and invalid partitions. Invalid

partitions are tested because testing of output in adverse condition is also essential.

Tester develops test cases for both valid and invalid partitions to capture the behaviour

of the system on different input conditions.

Every partition for boundary analysis has its minimum and maximum
values. Let’s look at the following points to understand BVA in
software testing in brief. For every variable, testers check the
following.

• Nominal value
• Minimum value
• Above minimum value
• Below the minimum value
• Maximum value
• Boundary value for an invalid partition is called invalid boundary

value
• Boundary value for valid partition is called boundary value

Single Fault Assumption: When more than one variable for the same

application is checked then one can use a single fault assumption. Holding

all but one variable to the extreme value and allowing the remaining variable

to take the extreme value.

Example

Input: Day, Month, Year with valid ranges as-
1 ≤ Month≤12
1 ≤ Day ≤31
1900 ≤ Year ≤ 2000

Solution: Taking the year as a Single Fault Assumption i.e. year will be
having values varying from 1900 to 2000 and others will have nominal values
like Day (1 to 31) and Month (1 to 12)

Test Cases Month Day Year Output

1 6 15 1990 14 June 1990

2 6 15 1901 14 June 1901

3 6 15 1960 14 June 1960

4 6 15 1999 14 June 1999

5 6 15 2000 14 June 2000

.

Equivalence partitioning

Equivalence partitioning is a black-box testing technique that allows testers to group input

data into sets or classes, making it possible to reduce the number of test cases while still

achieving comprehensive coverage. This technique is particularly useful when dealing with a

large range of input values

Advantages of Boundary Value
Analysis

1. It is easier and faster to find defects using this technique. This is
because the density of defects at boundaries is more.

2. Instead of testing will all sets of test data, we only pick the one at the
boundaries. So, the overall test execution time reduces.

Disadvantages of boundary value
analysis

1. The success of the testing using this technique depends on the
equivalence classes identified, which further depends on the
expertise of the tester and his knowledge of the application. Hence,
incorrect identification of equivalence classes leads to incorrect
boundary value testing.

2. Applications with open boundaries or applications not having one-
dimensional boundaries are not suitable for this technique. In those
cases, other black-box techniques like “Domain Analysis” are used.

Generalizing boundary value analysis

Generalizing Boundary Value Analysis BVA can be generalized in 2 ways:

• By the number of variables (easy)

 • By the kind of ranges (quite difficult)

Generalizing by the number of variables:

o If there are functions with n variables, hold all but one at the nominal value

and let the remaining variables assume min, min+, nom, max-, max values,

repeating this for each variable.

o Thus, for a function of n variables, BVA yields 4n + 1 unique test cases.

Generalizing by the kinds of range:

➢ Depends on the nature/ type of variables themselves.

➢ When no explicit bounds are specified, as in Triangle problems, we usually have to

create artificial bounds.

➢ The lower bound of side of lengths is 1, but what might be the upper bound?

➢ One possibility is, largest representable integer (MAXINT)

➢ Or impose an arbitrary upper limit such as 200 or 2000.

➢ BVA does not make much sense for Boolean variables: because the extreme values

are TRUE or FALSE, and there is no clear choice for the remaining values.

 Limitations of Boundary Value Analysis :

• It works well when the product is under test.
• It cannot consider the nature of the functional dependencies of variables.
• BVA is quite fundamental testing(incomplete).

Robustness Testing

➢ Robustness is a measure of how well a software system can cope with

invalid inputs or unexpected user interactions.

➢ A robust system is one that continues to function correctly even in the

face of unexpected or invalid inputs.

➢ A software system that is robust is able to handle errors and

unexpected inputs gracefully, without crashing or producing incorrect

results.

➢ It is black-box testing, where QA professionals have no knowledge about
the system’s internal working and implementation details.

➢ It involves validating the system with a wide range of invalid,
unexpected, or out-of-range inputs.

➢ QA professionals validate the system’s ability to handle unexpected
errors and exceptions without crashing or failing.

➢ Robustness testing is usually done at the later stages of the software

development life cycle (SDLC), after verifying that the software works
well under normal conditions.

➢ It also verifies the system’s behaviour under stress, such as high traffic
volume and sudden increase in user requests. The system should be
stable and perform consistently in such scenarios.

➢ simple example: Consider you develop a small program that takes input

ranging from only 1 to 10. When you test the program for robustness,

you provide inputs out of range, such as 0, -2, 11, etc. Even if you

provide an invalid input, your program must respond as ‘Invalid Input’

rather than behaving unexpectedly.

Why is Robustness Testing Important?

• Identify Unexpected Errors: It will help you to identify the potential
issues that can lead the system to fail or crash unexpectedly.

• Stability: It ensures that the system can withstand invalid and
unexpected inputs.

• Customer Satisfaction: Customers are more likely to satisfy with
their experience using your system if they see that your product can
handle extreme cases. This can lead to increased customer loyalty
and trustworthy relationship.

https://artoftesting.com/software-development-life-cycle-sdlc#more-1202
https://artoftesting.com/software-development-life-cycle-sdlc#more-1202

• Reduced Cost: Robustness testing uncovers potential bugs before
releasing the software to real users. The cost of fixing bugs after
production is high. This also comes with reduced customer
satisfaction and trust.

Worst Case Testing

➢ In Worst Case Boundary Value testing more than one variable has an

extreme value. Furthermore, it follows a generalisation pattern and is

more thorough than boundary value analysis

➢ Worst-Case boundary value analysis is a Black Box software
testing technique.

➢ Here, single value fault of Boundary value analysis is rejected.

➢ Worst case testing is interested in “What happens when more

than one variable has an extreme value”.

➢ Start with the five-elements set that contains min, min+, nom,

max-, max. Then take the cartesian product of these sets to

generate test cases.

➢ Boundary value analysis test cases are a proper subset of worst-

case test cases.

➢ Worst-case testing is more thorough form of testing. Also

requires more effort.

➢ Worst-case testing for a function on n variables generates 5n test

cases. [Min, Min+, Nominal, Max-, Max]

In Worst case boundary value testing, we make all combinations of each
value of one variable with each value of another variable.

Worst Boundary value testing on 2 variables

https://t4tutorials.com/wp-content/uploads/2020/04/Worst-Case-Boundary-values-analysis-Black-Box-testing.webp

Special Value Testing

• Special Value testing occurs when a tester uses domain knowledge,

experience with similar programs and information about “soft spots” to

device test cases.

• No guidelines are used other than to use “best engineering judgement”.

• Special value testing is very dependent on the abilities of the tester.

Special Value testing has several reasons which makes it the best option for
testing programs, like:

• The testing executed by Special Value Testing technique is based on past

experiences, which validates that no bugs or defects are left undetected.

• Moreover, the testers are extremely knowledgeable about the industry

and use this information while performing Special Value testing.

• Another benefit of opting Special Value Testing technique is that it is Ad-

hoc in nature. There are no guidelines used by the testers other than

their “best engineering judgment”.

• The most important aspect of this testing is that, it has had some very

valuable inputs and success in finding bugs and errors while testing a

software.

Random Testing

Random testing is a type of functional black box testing technique in

which test inputs are generated randomly without following any specific

test design or test case specification. It is also known as monkey testing.

Here, random inputs are used to test the program. The test results are

then compared to the expected outcomes to determine if the test passes

or fails.

➢ Random testing is implemented when the bug in an application is
not recognized.

➢ It is used to check the system’s execution and dependability.
➢ It saves our time and does not need any extra effort.
➢ Random testing is less costly, it doesn’t need extra knowledge for

testing the program.

Tools used for Random Testing QuickCheck, Randoop, Gram Test

https://testsigma.com/blog/monkey-testing/

How Random Testing Works?

Step 1: Determine the input domain

Step 2: Select the inputs randomly/independently from the input domain

Step 3: Use these inputs to test the system and create a random test set

Step 4: Analyze and compare the test result with the software specification

Step 5: If the test report fails, then take the required action.

The image below depicts how this testing works,

Test Case for the Triangle problem ,NextDate

function,Commission Problem

Test Case for the Triangle problem

➢ The triangle problem is a classic example of using boundary

value analysis to test a software program.

➢ Test Case Design for BVA: While designing the test cases for

BVA first we determine the number of input variables in the

problem. For each input variable, we then determine the range of

values it can take. Then we determine the extreme values and

nominal value for each input variable.

➢ Before we generate the test cases, firstly we need to define the

problem domain as described below.

➢ Problem Domain: “The triangle program accepts three integers, a,

b and c as input. These are taken to be the sides of a triangle. The

integers a, b and c must satisfy the following conditions

➢ The output of the program may be either of: Equilateral Triangle

(all the sides are equal), Isosceles Triangle (one pair of sides is

equal), Scalene (all the sides are different) or “Not a Traingle”.

1. Verify that the figure is closed (polygon).

2. Verify that the figure is two-dimensional and formed with straight lines
only.

3. Verify that the figure has exactly three sides.

4. Verify that the figure has exactly three vertices.

5. Verify that the figure has exactly three angles.

6. Verify that the sum of the angles of the figure is 180 degrees.

7. Verify that no two sides are parallel to each other.

8. Verify that the sum of the length of two sides of the triangle should be
greater than the length of the third side.

9. Verify that no two angles of a triangle have 90 degrees and above
value.

10. Verify the type of triangle is as per the specification, based on
its sides – scalene, isosceles or equilateral.

11. Verify the type of triangle is as per the specification, based on
its angles – acute angle, obtuse angle, or right-angled triangle.

12. Verify that the area of a triangle is equal to half of the product
of its base and height.

Test Case ID a b c Expected Output

T1 1 50 50 Isosceles

T2 2 50 50 Isosceles

T3 99 50 50 Isosceles

T4 100 50 50 Not a Triangle

T5 50 50 50 Equilateral

T6 50 1 50 Isosceles

T7 50 2 50 Isosceles

T8 50 99 50 Isosceles

T9 50 100 50 Not a Triangle

T10 50 50 1 Isosceles

T11 50 50 2 Isosceles

T12 50 50 99 Isosceles

T13 50 50 100 Not a Triangle

For a, b, c to form a triangle the following conditions should be satisfied –

a < b+c

b < a+c

c < a+b

If any of these conditions is violated output is Not a Triangle.

Test Case for the NextDate function

To Generate BVA Test Cases-For the Next Date Function

Problem Domain: “Next Date” is a function consisting of three variables like: month,

date and year. It returns the date of next day as output. It reads current date as input

date.

The conditions are

 C1: 1<Day<31
 C2: 1<Month<12

 C3: 1800 <Year <2048

If any one condition out of C1, C2 or C3 fails, then this function produces an

output “value of month not in the range 1…12”.

Since many combinations of dates can exist, hence we can simply display

one message for this function: “Invalid Input Date”.

Boundary Value Analysis:
No. of test Cases (n = no. of variables) = 4n+1 = 4*3 +1 =13

Equivalence Class Testing: Input classes:
Day:

D1: day between 1 to 28

D2: 29

D3: 30

D4: 31

Month:

M1: Month has 30 days

M2: Month has 31 days

M3: Month is February

Year:

Y1: Year is a leap year

Y2: Year is a normal year

Output Classes:
Increment Day

Reset Day and Increment Month

Increment Year

Invalid Date

Test Cases:

Test Case ID Day Month Year Expected Output

E1 15 4 2004 16-4-2004

E2 15 4 2003 16-4-2003

E3 15 1 2004 16-1-2004

E4 15 1 2003 16-1-2003

E5 15 2 2004 16-2-2004

E6 15 2 2003 16-2-2003

E7 29 4 2004 30-4-2004

E8 29 4 2003 30-4-2003

E9 29 1 2004 30-1-2004

E10 29 1 2003 30-1-2003

E11 29 2 2004 1-3-2004

E12 29 2 2003 Invalid Date

E13 30 4 2004 1-5-2004

E14 30 4 2003 1-5-2003

E15 30 1 2004 31-1-2004

E16 30 1 2003 31-1-2003

E17 30 2 2004 Invalid Date

E18 30 2 2003 Invalid Date

E19 31 4 2004 Invalid Date

E20 31 4 2003 Invalid Date

E21 31 1 2004 1-2-2004

E22 31 1 2003 1-5-2003

E23 31 2 2004 Invalid Date

E24 31 2 2003 Invalid Date

TEST CASES FOR COMMISSION PROBLEM IN BVA TESTING

 To Generate Equivalence Class Test Cases-For the Salesman Commission

Calculation Program

“A desert cooler sales person sold cooler fans, pumps and bodies that were

made by a cooler maker. Fans cost $45, pumps cost $30 and bodies cost

$25.

The salesperson had to sell at least one complete cooler per month, and

the production limits were such that the most the sales person could sell in

a month was 70 fans, 80 pumps and 90 bodies. The sales person used to

send the details of sold items to the cooler maker. The cooler maker then

computed the sales person’s commission as follows:

1) 10% on sales upto and including $1000.

2) 15% of the next $800.

3) And 20% on any sales in excess of $1800.

The commission program produced a monthly sales report that gave the

total number of fans, pumps and bodies sold, the sales person’s total dollar

sales and finally, the commission.”

Here we have three inputs for the program, hence n = 3.

Since BVA yields (4n + 1) test cases according to single fault assumption

theory, hence we can say that the total number of test cases will be

(4*3+1)=12+1=13.

The boundary value test cases are

We can see that the monthly sales are limited by the following

consideration:

1 ≤ fans ≤ 70

1 ≤ pumps ≤ 80

1 ≤ bodies ≤ 90

Test Case ID Fans Pumps Bodies

Expected Output of
Sales

1 35 40 1 2800

2 35 40 2 2825

3 35 40 45 3900

4 35 40 89 5000

5 35 40 90 5025

6 35 1 45 2730

7 35 2 45 2760

8 35 40 45 3900

9 35 79 45 5070

10 35 80 45 5100

11 1 40 45 2370

12 2 40 45 2415

13 35 40 45 3900

14 69 40 45 5430

15 70 40 45 5475

Here we can see that out of 15 test cases, two are redundent. Hence 13

test cases are sufficient to test this program.

Guidelines for Boundary Value Testing (check)

Guidelines for Boundary Value analysis

• If an input condition is restricted between values x and y, then the test
cases should be designed with values x and y as well as values which are

above and below x and y.
• If an input condition is a large number of values, the test case should be

developed which need to exercise the minimum and maximum numbers.
Here, values above and below the minimum and maximum values are also
tested.

• Apply guidelines 1 and 2 to output conditions. It gives an output which
reflects the minimum and the maximum values expected. It also tests the

below or above values.

Example:

Input condition is valid between 1 to 10

Boundary values 0,1,2 and 9,10,11

• Guidelines for BVA are similar in many respects to those provided for equivalence
partitioning:

o If an input condition specifies a range bounded by values a and b, test cases
should be designed with values a and b and just above and just below a and b.

o If an input condition specifies a number of values, test cases should be
developed that exercise the minimum and maximum numbers. Values just above
and below minimum and maximum are also tested.

o Apply guidelines 1 and 2 to output conditions. For example, assume that a
temperature vs. pressure table is required as output from an engineering analysis
program. Test cases should be designed to create an output report that produces
the maximum (and minimum) allowable number of table entries.

o If internal program data structures have prescribed boundaries (e.g., an array has
a defined limit of 100 entries), be certain to design a test case to exercise the
data structure at its boundary

