
Model Question Paper-2

Mobile Application Development

2Marks

1) Define Dalvik Virtual machine?

A) The Dalvik Virtual Machine (DVM) is a process virtual machine in the Android

operating system that executes applications written for Android. It is specifically

designed for mobile devices and optimized to ensure that Android applications run

efficiently in environments with limited memory and processing power.

2) What is menu?

A) In Android, a menu is a user interface component that provides a list of options or actions

for users to interact with. Menus help organize and present functionality in a structured

manner within an Android application.

There are several types of menus in Android:

Options Menu: The primary menu for an activity, displayed when the user presses the

Menu button (for older devices) or taps the overflow button (three vertical dots) in the

action bar.

Context Menu: A floating menu that appears when the user performs a long-click on an

element.

3) List the type of mobile technology?

1. Cellular Technology

2. Wifi

3. SMS & MMS

4. Bluetooth

5. SMS
6. MMS
7. 4G (fourth Generation)
8. 5G (fifth generation)
9. GSM
10. CDMA
11. Wi-Fi

4) What are the two attributes of Imageview?

A) android:src: This attribute sets the image to be displayed in the ImageView.
android:src="@drawable/example_image"
android:contentDescription: This attribute provides a textual description of the
image, which is useful for accessibility purposes (e.g., for screen readers).
android:contentDescription="@string/image_description"
5) What is GPS?

A) Global Positioning System (GPS) is a satellite-based navigation system that

provides location and time information to a GPS receiver anywhere on or near the

Earth where there is an unobstructed line of sight to four or more GPS satellites. The

role of GPS in various applications, including Android devices, is crucial for

providing accurate and reliable location-based services.

6) List the steps to create database cursors.

A) 1. Initialize Database Helper Class

2. Get a Reference to the Database

3. Execute Query Using query () Method

4. Iterate Through the Cursor

5. Close the Cursor

6. Close the Database Connection

4Marks

7) What are the types of basic views?

Some of the basic views that can be used to design the UI components of the
android applications.
1. TextView
2. EditText
3. Button
4. ImageButton
5. CheckBox
6. ToggleButton
7. RadioButton
8. RadioGroup

TextView:

This is a view that displays text. It can be used to show a single line or multi-line

text. It's one of the most basic and frequently used views in Android. Android

TextView Attributes:

Code:

<TextView

 android:id="@+id/textView"

 android:layout_width="fill_content"

 android:layout_height="wrap_content"

 android: text="hello BCA students"/>

EditText:

An EditText is a subclass of the TextView that is configured to allow the user to edit

the text inside it.

<Edittext

 android:id =”@+id/myEdittext”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 android:hint=”Enter a Number”

 android:singleLine=”true”

 android: inputType=”textPassword”/>

Button:

 In android, Button is a user interface control that is used to perform an action

whenever the user clicks or tap on it.

 Generally, Buttons in android will contain a text or an icon or both and

perform an action when the user touches it.

Code:

<Button

 android:id="@+id/button"

 android:layout_width="fill_content"

 android:layout_height="wrap_content"

 android:text="Click Here!"/>

ImageButton:

 In android, Image Button is a user interface control that is used to display a

button with an image and to perform an action when a user clicks or taps

on it.

 In android, we can add an image to the button by using attribute android: src in

XML layout file or by using the setImageResource () method.

Code:

<ImageButton

android:id="@+id/addBtn"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:src="@drawable/add_icon" />

Check Box:

A CheckBox in Android is a type of button that has two states: checked and

unchecked. By default, the android checkbox will be in the OFF (unchecked)

state.we can change the default state of checkbox by using android: checked

attribute.

Code:

<CheckBox

android:id="@+id/simpleCheckBox"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Simple CheckBox"/>

android: checked=”false”

ToggleButton:

 ToggleButton allow the users to change the setting between two states like

turn on/off your wifi, Bluetooth etc from your phone’s setting menu.

Code:

<ToggleButton

android:id="@+id/toggle1"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:checked="true"

android:textOff="OFF"

android:textOn="ON"/>

Radio Button:

 In android, Radio Button is a two-state button that can be either checked or

unchecked and it’s the same as CheckBox control, except that it will allow

only one option to select from the group of options.

Code:

<RadioButton

android:text="Java"

android:checked="true"/>

Radio Group:

In android, we use radio buttons with in a RadioGroup to combine multiple radio

buttons into one group and it will make sure that users can select only one option

from the group of multiple options.

<RadioGroup

 android:id="@+id/radioGroup"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="vertical">

 <RadioButton

 android:id="@+id/radioButton1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Option 1" />

 <RadioButton

 android:id="@+id/radioButton2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Option 2" />

</RadioGroup>

8) Explain content provider?

A content provider component supplies data from one application to others

on request. Such requests are handled by the methods of the

ContentReslover class. It's a way to share data between different

applications securely. A content provider can use different ways to store its

data and data can be stored in a database, in files, or even over a network.

Here's a breakdown of the storage options:

Database: The content provider can store its data in a database, typically a SQLite

database. This is a common method because databases are efficient for handling

structured data and complex queries.

Files: Data can also be stored in files. This method might be used for handling

unstructured data, such as media files (images, videos) or large datasets.

Network: A content provider can also store data over a network. This could mean

the data is fetched from a remote server or cloud storage.

Android ships with many useful content providers, including the following:

➤ Browser—Stores data such as browser bookmarks, browser history, and so on

 ➤ CallLog—Stores data such as missed calls, call details, and so on

➤ Contacts—Stores contact details

Content URI is the key concept of Content Providers. To access the data from a

content provider, Content URI is used as a query string.

Structure of a Content URI is Content: //authority /optionalPath /optionalID

Content: It represents that the given URI is content URI.

Authority: Name of the Content provider like contacts, browser, and etc.It must

be unique for every content provider.

OptionalPath: Specifies the type of data provided by the Content provider. For

example, if you are getting all the contacts from the Contacts content provider,

then the data path would be people and URI would look like this

content://contacts/people

OptionalID: It is a numeric Value it specifies the specific record requested. For

example, example, if you are looking for a contact number 5 in the Contacts

content provider then URI would look like this content: //contacts/people/5.

Operations in Content provider: The fundamental operations are possible in

content Provider namely Create, Read, update, get type, and delete. These

operations are often termed as CRUD operations.

1. OnCreate (): This method is called when the provider is started.

2. Query (): This method receives a request from a client. The result is returned

as a Cursor object.

3. insert(): This method inserts a new record into the content provider.

4. delete(): This method deletes an existing record from the content provider.

5. update(): This method updates an existing record from the content provider.

6. getType(): This method returns the MIME type of the data at the given URI.

9. Explain fragments and intents?

 A) In Android, you navigate between activities through what is known as intent.

 Intent is a messaging object used to request any action from another app
component. Intent’s most common use is to launch a new activity from the
current activity.

 Intent facilitates communication between different components. Intent object
is used to call other activities.

The intent is used to launch an activity, start the services, broadcast receivers, display

a web page, dial a phone call, send messages from one activity to another activity, and

so on.

 TYPES OF INTENTS:

EXPLICIT INTENT:

 Explicit Intent is used to invoke a specific target component. It is used to switch from

one activity to another activity in the same application. It is also used to pass data by

invoking the external class. Explicit Intents specify the target component by providing

the exact class name of the component to be invoked.

IMPLICIT INTENT:

 An implicit intent is used when you want to perform an action, but you don’t care

which component performs it. The system will determine the appropriate component to

handle the intent based on the available components that can respond to it.

Android Fragments:

Android Fragment is a Graphical User Interface component of Android. It resides

within the Activities of an Android application. It represents a portion of UI that

the user sees on the screen.

 Android Fragments cannot exist outside an activity. Another name for

Fragment can be Sub-Activity as they are part of Activities.

How Fragment Interacts with Activity in Different Devices:

 If you observe above example for Tablet we defined an Activity A with two
fragments such as one is to show the list of items and second one is to show the
details of item which we selected in first fragment.

 For Handset device, there is no enough space to show both the fragments in single
activity, so the Activity A includes first fragment to show the list of items and

https://data-flair.training/blogs/android-activity/

the Activity B which includes another fragment to display the details of an item
which is selected in Activity A.

 For example, GMAIL app is designed with multiple fragments, so the design of
GMAIL app will be varied based on the size of device such as tablet or mobile device.

 Tablet View Mobile View

10. Explain the life cycle of an android activity?

Every activity has different functions throughout its life, onCreate (), onStart (),
onResume (), onPause (), onStop (), onRestart (), onDestroy ().

 The Activity class defines the following Methods:

 OnCreate() — Called when the activity is first created

 OnStart() — Called when the activity becomes visible to the user

 OnResume() — Called when the activity starts interacting with the user or
activity is becoming visible to the user and is ready to start receiving user
interactions.

 OnPause() — Called when the current activity is being paused and the
previous activity is being resumed. This is where you typically pause ongoing
processes or save transient data.

 OnStop() — Called when the activity is no longer visible to the user.

 OnDestroy() — Called before the activity is destroyed by the system (either
manually or by the system to conserve memory)

 OnRestart() — Called when the activity has been stopped and is restarting
again.

 By default, the activity created for you contains the onCreate() event. Within
this event handler is the code that helps to display the UI elements of your
screen.
Figure 3-2 shows the life cycle of an activity and the various stages it goes
through—from when the activity is started until it ends.

11. Explain to apply a style as theme?

Apply the Style as a Theme

Applying as Application Theme

To apply AppTheme as the theme for your entire application, modify the

AndroidManifest.xml

<application

 android:theme="@style/AppTheme"

 ... >

 ...

</application>

Applying as Activity Theme

To apply AppTheme as the theme for a specific activity, modify the <activity> tag

in AndroidManifest.xml:

<activity

 android:name=".MainActivity"

 android:theme="@style/AppTheme"

 ... >

 ...

</activity>

Application Theme: Set in the <application> tag of AndroidManifest.xml, applies

@style/AppTheme to the entire application.

Activity Theme: Set in the <activity> tag of AndroidManifest.xml, applies

@style/AppTheme specifically to the named activity (MainActivity in this case).

12. Explain menus and additional view.

 Menus in Android refer to user interface components that provide options

for users to interact with the app's functionalities. There are primarily two

types of menus:

 Menus in Android provide options for user interaction through options

menus and contextual action modes.

a. Options Menu

 Options Menu: This is a standard menu that appears when the user presses

the menu button on their device or when they touch the menu icon in the app

bar (if using a toolbar). It typically contains actions related to the current

context or screen.

b. Contextual Action Mode

 Contextual Action Mode: This is used to provide actions for selected items

in a list or grid. It appears when the user performs a long-click on a

selectable item (e.g., long-pressing an item in a RecyclerView).

Additional Views

 Additional Views refer to UI components beyond basic widgets like buttons

and text fields. These views provide specialized functionalities and often

enhance user interaction and experience. Additional Views such as

RecyclerView and ViewPager enhance user interfaces by efficiently

displaying large datasets or supporting swipe-based navigation.

a. RecyclerView

 RecyclerView: A flexible view for providing a limited window into a large

dataset of items. It efficiently handles large lists or grids by recycling item

views and supports various layout managers for arranging items.

. ViewPager

 ViewPager: Allows users to swipe between different fragments or pages. It's

commonly used for creating swipeable tabs, image galleries, or onboarding

screens.

8Marks

13. Explain Date picker, Time picker, and List view.

Using picker Views:

 Picker views in Android are specialized UI components that allow users to
select a value from a predefined set of values. Selecting a date and time is
one of the common tasks you need to perform in a mobile application.
Android supports this functionality through the TimePicker and DatePicker
views.
1. Date picker View
2. Time picker View

Time Picker View:
 In Android, TimePicker is a widget used for selecting the time of the day in

either AM/PM mode or 24 hours mode. The displayed time consist of hours,
minutes and clock format.

 Generally in android TimePicker available in two modes
1. Show the time in clock mode
2. Show the time in Spinner mode

 TimePicker with clock mode:

 We can define the Timepicker to show time in clock format by using
 android: timePickerMode attribute.
 android:timePickerMode="clock": This attribute sets the mode of the

TimePicker to display a clock-style time picker.
 android:format24Hour="HH:mm": This sets the format of the time

displayed. In this case, it's in 24-hour format (e.g., 13:45).
<TimePicker
android:id="@+id/simpleTimePicker"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:timePickerMode="Clock"/>

 TimePicker with Spinner mode:

 The TimePicker displays a standard UI to enable users to set a time. By

default, it displays the time in the AM/PM format. If you want to display the

time in the 24-hour format, you can use the setIs24HourView () method.
 We can define the Timepicker to show time in Spinner format by using

android: timePickerMode attribute
Code:

<TimePicker

https://abhiandroid.com/ui/timepicker/

android:id="@+id/simpleTimePicker"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:timePickerMode="spinner"/>

Date picker:

 In android, DatePicker is a control that will allow users to select the date by a
day, month and year in our application user interface.

 If we use DatePicker in our application, it will ensure that the users will select a
valid date. Following is the pictorial representation of using a datepicker control
in android applications.

 Generally, in android DatePicker available in two modes,
1. Show the complete calendar
2. Show the dates in spinner view.

Date Picker in Calendar format:

 We can define the Datepicker to show Date in Calender format by using
android: DatePickerMode attribute.
Code:
<DatePicker
android:id="@+id/simpleDatePicker"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:datePickerMode="Calender"

Date Picker in Spinner format:

 If we want to show the DatePicker in spinner format like showing day, month
and year separately to select the date, then by using DatePicker
android:datePickerMode attribute we can achieve this.

 Following is the example of showing the DatePicker in Spinner mode.
Code:

<DatePicker
android:id="@+id/datePicker1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:datePickerMode="spinner"
android:calendarViewShown="false"/>

 The above code will return the DatePicker like as shown below

ListView :

 Android ListView is a view which Contains several items and display them in
vertical scrollable list. The list items are automatically inserted to the list using
an Adapter that pulls content from a source such as an array or database.
ListView is implemented by importing android.widget.ListView class.

 In Android, there are two types of list views: ListView and SpinnerView.

 A very common example of ListView is your phone contact book, where

you have a list of your contacts displayed in a ListView and if you click on it
then user information is displayed.

Code:
<ListView
android:id="@+id/simpleListView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:divider="#f00"
android:dividerHeight="1dp"
/>

SpinnerView:

In Android development a spinner is a view, A spinner typically appears as a
small rectangular box with an arrow icon at the right side. When the user taps on
the spinner, a dropdown list of items appears below it, allowing the user to select
one.

Code:

<Spinner
android:id="@+id/simpleSpinner "
android:layout_width="fill_parent"
android:layout_height="wrap_content" />

 To fill the data in a spinner we need to implement an adapter class. A spinner
is mainly used to display only text field so we can implement Array Adapter

android:id - It is used to uniquely identify the control .

android:datePickerMode - It is used to specify

datepicker mode either spinner or calendar.

android:background - It is used to set the

background color for the date picker.

android:padding - It is used to set the padding for

left, right, top or bottom of the date picker.

for that. We can also use Base Adapter and other custom adapters to display
a spinner with more customize list.

 Suppose if we need to display a textview and a imageview in spinner item list
then array adapter is not enough for that. Here we have to implement custom
adapter in our class. Below image of Spinner and Custom Spinner will make
it more clear.

14. What are Android application components?

Android - Application Components

Application components are the essential building blocks of an Android application.

These components are loosely coupled by the application manifest file

AndroidManifest.xml that describes each component of the application and how they

interact.

There are following four main components that can be used within an Android

application –

Sl.No Components & Description

1 Activities

They dictate the UI and handle the user interaction to the smart phone screen.

2 Services

They handle background processing associated with an application.

3 Broadcast Receivers

They handle communication between Android OS and applications.

4 Content Providers

They handle data and database management issues.

1. Activities

An activity represents a single screen with a user interface, in-short Activity performs

actions on the screen. For example, an email application might have one activity that

shows a list of new emails, another activity to compose an email, and another activity for

reading emails. If an application has more than one activity, then one of them should be

marked as the activity that is presented when the application is launched.

An activity is implemented as a subclass of Activity class as follows –

public class MainActivity extends Activity {

}

2. Services

A service is a component that runs in the background to perform long-running operations.

For example, a service might play music in the background while the user is in a different

application, or it might fetch data over the network without blocking user interaction with

an activity.

A service is implemented as a subclass of Service class as follows –

public class MyService extends Service {

}

3. Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other applications or

from the system. For example, applications can also initiate broadcasts to let other

applications know that some data has been downloaded to the device and is available for

them to use, so this is broadcast receiver who will intercept this communication and will

initiate appropriate action.

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and each

message is broadcaster as an Intent object.

public class MyReceiver extends BroadcastReceiver {

 public void onReceive (context, intent){}

}

4. Content Providers

A content provider component supplies data from one application to others on request.

Such requests are handled by the methods of the ContentResolver class. The data may be

stored in the file system, the database or somewhere else entirely.

A content provider is implemented as a subclass of ContentProvider class and must

implement a standard set of APIs that enable other applications to perform transactions.

public class MyContentProvider extends ContentProvider {

 public void onCreate(){}

}

5. Additional Components

There are additional components which will be used in the construction of above

mentioned entities, their logic, and wiring between them. These components are –

 15) Explain the creation of Login window.

Create an application to develop Login window using UI controls.

activity_main.xml code:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:orientation="vertical">

 <TextView

 android:id="@+id/textView6"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Login"

 android:gravity="center"/>

 <EditText

 android:id="@+id/editTextText8"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="text"

 android:text="Name" />

 <EditText

 android:id="@+id/editTextText9"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="text"

 android:text="password" />

 <Button

 android:id="@+id/button3"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="login" />

</LinearLayout>

MainActivity.Java code:

package com.example.jithin33lab;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

import androidx.activity.EdgeToEdge;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 private EditText a,b;

 private Button c;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 EdgeToEdge.enable(this);

 setContentView(R.layout.activity_main);

 a= findViewById(R.id.editTextText8);

 b= findViewById(R.id.editTextText9);

 c = findViewById(R.id.button3);

 c.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 String username = a.getText().toString().trim();

 String password = b.getText().toString().trim();

 if(username.equals("admin") && password.equals("pass")){

 Toast.makeText(MainActivity.this, "Login successful",

Toast.LENGTH_SHORT).show();

 } else {

 Toast.makeText(MainActivity.this, "Invalid username or password",

Toast.LENGTH_SHORT).show();

 }

 }

 });

 }

}

16. Explain Android studio components?

Project Window:

 Displays your project structure, files, and resources.

 Allows navigation and management of project files.

Editor Window:

 Where you write and edit code, XML layouts, and resources.

 Provides features like syntax highlighting and code completion.

Toolbar:

 Contains buttons for common tasks like running your app, debugging, and accessing

SDK tools.

Navigation Bar:

 Helps navigate between files and within files (methods, classes) in the editor.

Component Tree:

 Shows the hierarchy of UI components for editing layouts.

 Helps visualize and navigate the structure of your app's UI.

Build Variants:

 Manages different versions of your app (e.g., debug, release) and flavors (e.g., free, paid).

Gradle Console:

 Displays messages related to the build process handled by Gradle.

Logcat:

 Shows log messages generated by your app during runtime.

 Helps debug and monitor your app's behavior.

Device File Explorer:

 Allows viewing and managing files on your connected Android device or emulator.

AVD Manager:

 Creates and manages Android Virtual Devices (AVDs) for testing your app on different

configurations.

Profiler:

 Provides real-time insights into your app's CPU, memory, and network usage.

 Helps optimize app performance and diagnose issues.

Layout Editor:

 Visual editor for designing XML layouts.

 Allows drag-and-drop of UI components and previewing layouts.

Data Binding Viewer:

 Helps visualize and debug data binding layouts in Android projects.

Firebase Integration:

 Integrates Firebase services (analytics, authentication, etc.) directly into your app

development process.

17) What is the use of APK file?

An APK (Android Package Kit) file is the package file format used by the Android operating

system for distributing and installing mobile apps. It contains all the necessary files for an

Android application to be installed on an Android device. Here are some key uses of APK files:

1. Installation: APK files are used to install applications on Android devices. Users can

download APK files from various sources, including app stores like Google Play or

directly from developers' websites.

2. Distribution: Developers use APK files to distribute their Android apps. They compile

their application code, resources, and manifest file into an APK, which users can then

download and install on their devices.

3. Testing: During the development process, developers often share APK files with testers

or stakeholders for testing purposes. This allows them to get feedback and identify issues

before releasing the app to a wider audience.

4. Offline Installation: APK files enable users to install apps without needing an internet

connection. This is particularly useful in regions with limited internet access or for

devices that do not have access to the Google Play Store.

5. Backup: Users can save APK files as backups of their installed apps. This can be useful

if they need to reinstall an app without downloading it again from the internet.

Overall, APK files are essential for the distribution, installation, and maintenance of Android

applications across various devices.

18. Create an application to send SMS and receive SMS.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

 android:orientation="vertical"
 tools:context=".MainActivity">

 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Enter number"
 android:inputType="textPersonName" />

 <EditText
 android:id="@+id/editText2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Enter message"
 android:inputType="textPersonName" />
 <Button
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content”
 android:text="SEND" />
</LinearLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools

MainActivity.java:
public class MainActivity extends AppCompatActivity {
 EditText phonenumber,message;
 Button send;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 send=findViewById(R.id.button);
 phonenumber=findViewById(R.id.editText);
 message=findViewById(R.id.editText2);
 send.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 String number=phonenumber.getText().toString();
 String msg=message.getText().toString();
 try {
 SmsManager smsManager=SmsManager.getDefault();
 smsManager.sendTextMessage (number,null,msg,null,null);
 Toast.makeText(getApplicationContext(),"Message

Sent",Toast.LENGTH_LONG).show();
 }catch (Exception e)
 {
 Toast.makeText(getApplicationContext(),"Some fields is

Empty",Toast.LENGTH_LONG).show();
 }
 }
 });
 }
}

	Android Fragments:
	Android Fragment is a Graphical User Interface component of Android. It resides within the Activities of an Android application. It represents a portion of UI that the user sees on the screen.
	 Android Fragments cannot exist outside an activity. Another name for Fragment can be Sub-Activity as they are part of Activities.
	How Fragment Interacts with Activity in Different Devices:

	 The Activity class defines the following Methods:
	 OnCreate() — Called when the activity is first created
	 OnStart() — Called when the activity becomes visible to the user
	 OnResume() — Called when the activity starts interacting with the user or activity is becoming visible to the user and is ready to start receiving user interactions.
	 OnPause() — Called when the current activity is being paused and the previous activity is being resumed. This is where you typically pause ongoing processes or save transient data.
	 OnStop() — Called when the activity is no longer visible to the user.
	 OnDestroy() — Called before the activity is destroyed by the system (either manually or by the system to conserve memory)
	 OnRestart() — Called when the activity has been stopped and is restarting again.
	 By default, the activity created for you contains the onCreate() event. Within this event handler is the code that helps to display the UI elements of your screen.
	Apply the Style as a Theme
	Applying as Application Theme
	Applying as Activity Theme

	a. Options Menu
	b. Contextual Action Mode
	Additional Views
	a. RecyclerView
	. ViewPager

