
UNIT – 2

Working with the User Interface using views:

Understanding the Components of a Screen-Adapting to Display Orientation-

Managing Changes to Screen Orientation- Utilizing the Action Bar-Creating the

User Interface Programmatically Listening for UI Notification.

Understanding the Components of a Screen:

 The basic unit of an Android application is an activity, which displays the UI of your

application.

 you define your UI using an XML file (for example, the activity_main.xml file

located in the res/layout folder of your project)

 During runtime, you load the XML UI in the onCreate() method handler in your

Activity class, using the setContentView() method of the Activity class:

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView (R.layout.main);

}

Views and View groups:

 An activity contains views and ViewGroups. A View usually draws something the

user can see and interact with. A view is a widget that has an appearance on

screen. Examples of views are buttons, labels, and text boxes.

 A view derives from the base class android.view.View.

 In ViewGroup, one or more Views can be grouped together. A ViewGroup

provides the layout, in which you can set the order of the appearance and

sequence of the Views. Some examples of ViewGroups are LinearLayout and

FrameLayout.

 It is derived from the base class android.view.ViewGroup.

Following are common attributes and will be applied to all the layouts:

Sr.No Attribute & Description

1
android:id
This is the ID which uniquely identifies the view.

2
android:layout_width
This is the width of the layout.

3
android:layout_height
This is the height of the layout

4
android:layout_marginTop
This is the extra space on the top side of the layout.

5
android:layout_marginBottom
This is the extra space on the bottom side of the layout.

6
android:layout_marginLeft
This is the extra space on the left side of the layout.

7
android:layout_marginRight
This is the extra space on the right side of the layout.

8
android:layout_gravity
This specifies how child Views are positioned from top bottom left
and write from the window

9

android:layout_weight
This specifies how much of the extra space in the layout should be
allocated to the View.It distributes the available space among the child
views

10
android:layout_x
This specifies the x-coordinate of the layout.

11
android:layout_y
This specifies the y-coordinate of the layout.

12
android:layout_width
This is the width of the layout.

13
android:paddingLeft
This is the left padding filled for the layout.

14
android:paddingRight
This is the right padding filled for the layout.

15
android:paddingTop
This is the top padding filled for the layout.

16
android:paddingBottom
This is the bottom padding filled for the layout.

Android supports the following ViewGroups.

 Layout is used to arrange view and group of views visually on the screen.

1. ConstriantLayout
2. LinearLayout

3. AbsoluteLayout
4. TableLayout
5. RelativeLayout
6. FrameLayout
7. Scroll View
8. GridView
9. ListView

ConstriantLayout:

 ConstraintLayout is a ViewGroup subclass; whenever you open the
android studio framework the application will be present in the constraint
layout. In this we have to set the constraint in all four sides.

 This is the default layout. It’s typically used to manage the positioning of
individual views rather than entire groups of views.

 Ex: Designing a login screen for a mobile app using constraint layout in
Android.

LinearLayout:

 The LinearLayout arranges views in a single column or a single row. Child

views can be arranged either horizontally or vertically in a single direction,

For example, you can specify that
the logo is centered horizontally in
the parent, the username input field
is centered below the logo, the
password input field is centered
below the username field, and so
on.

This way, no matter what device
the app is running on, whether it's a
small phone or a large tablet, the
login screen will adjust dynamically
to fit the screen size while
maintaining the specified layout
constraints.

which explains the need for two different layouts—one for horizontal

rows of views and one for vertical columns of views. You can specify the

layout direction with the android:orientation attribute.

 The root layout is a LinearLayout with android:orientation="horizontal",

which means child views, will be placed side by side. Suitable for toolbars, menus,

and other horizontally aligned components.

 The root layout is a Linear Layout with android:orientation="vertical",

which means child views will be placed one below the other. Suitable for forms,

lists, and other vertically aligned components.

https://developer.android.com/reference/android/widget/LinearLayout#attr_android:orientation

AbsoluteLayout:

 An Absolute layout allows you to specify the exact location. i.e., X and Y

coordinate of its children with respect to the origin at the top left corner

of the layout.

 android:layout_x

o This specifies the x-coordinate of the view.

 android:layout_y

o This specifies the y-coordinate of the view.

android:layout_x="50px"
android:layout_y="361px"

TableLayout :

 TableLayout is a view that groups views into rows and columns. You use the
<TableRow> element to designate a row in the table. Each row can contain
one or more views.

 In android, TableLayout will position its children elements into rows and
columns and it won’t display any border lines for rows, columns or cell.

RelativeLayout:

 RelativeLayout is a view group that displays child views in relative

positions. The position of each view can be specified as relative to

sibling elements or relative to the parent.

 Each view embedded within the RelativeLayout has attributes that
enable it to align with another view.

 These attributes are as follows:
o layout_alignParentTop: Aligns the top edge of the view with

the top edge of the parent.

o layout_alignParentStart: Aligns the start edge of the view

with the start edge of the parent.

o layout_alignStart: Aligns the start edge of the view with the

start edge of another specified view.

o layout_alignEnd: Aligns the end edge of the view with the end

edge of another specified view.

o layout_below: Positions the view directly below another

specified view.

o layout_centerHorizontal: Centers the view horizontally

within the parent.

FrameLayout:

 The FrameLayout is a placeholder on screen that you can use to display a

single view. Views that you add to a FrameLayout are always anchored to

the top left of the layout.

 FrameLayout is a ViewGroup subclass, The FrameLayout is the most basic

of the Android layouts. FrameLayouts are built to hold one view.

 You can add multiple views to a FrameLayout, but each is stacked on top

of the previous one. This is when you want to animate a series of images,

with only one visible at a time.

 You can, however, add multiple children to a FrameLayout and control
their position within the FrameLayout by assigning gravity to each child,
using the android:layout_gravity attribute. android:gravity="center".

</ RelativeLayout>

ScrollView

 A ScrollView is a special type of FrameLayout in that it enables users to
scroll through a list of views that occupy more space than the physical
display.

 The ScrollView can contain only one child view or ViewGroup, which
normally is a LinearLayout. Android supports vertical scroll view as
default scroll view. Vertical scrollview scrolls element s vertically.
Android uses Horizontal ScrollView for scrolls element horizontally.

GridView

 GridView is a ViewGroup that displays items in a two-dimensional,
scrollable grid.

ListView

 ListView is a view group that displays a list of scrollable items.
wrap_content: Tells the view to size itself to the dimensions required
by its content.

 Example: If you have a TextView with
android:layout_width="wrap_content", the TextView will

expand just enough to fit the text it contains.

Example: Image Carousel
with FrameLayout
Imagine you want to create
an image carousel where
multiple images are
displayed one after another

with a fade-in animation,
while a caption is shown on
top of each image.
FrameLayout is perfect for
this because it allows
stacking views and handling
animations easily.

match_parent (previously fill_parent):

 Definition: Tells the view to become as big as its parent view, filling the
entire available space.

 Example: If you have a Button with
android:layout_width="match_parent", the Button will stretch to fill the

width of its parent layout.

These attributes are important for controlling the layout and appearance of views
within your Android app's user interface.

Common Attributes Used in Views and ViewGroups

attribute Description

layout_width Specifies the width of the view or ViewGroup

layout_height Specifies the height of the view or ViewGroup

layout_marginTop
Specifies extra space on the top side of the view
or ViewGroup

layout_marginBottom
Specifies extra space on the bottom side of the
view or ViewGroup

layout_marginLeft
Specifies extra space on the left side of the view
or ViewGroup

layout_marginRight
Specifies extra space on the right side of the
view or ViewGroup

layout_gravity Specifies how child views are positioned

layout_weight
Specifies how much of the extra space in the
layout should be allocated to the view

layout_x
Specifies the x-coordinate of the view or
ViewGroup

layout_y
Specifies the y-coordinate of the view or
ViewGroup

Adapting to Display Orientation :

 As with almost all smartphones, Android supports two screen

orientations: portrait and landscape.

 When the screen orientation of an Android device is changed, the

current activity being displayed is destroyed and re-created

automatically to redraw its content in the new orientation.

 In other words, the onCreate() method of the activity is fired

whenever there is a change in screen orientation.

 Portrait mode is longer in height and smaller in width, whereas

landscape mode is wider but smaller in height.

 Being wider, landscape mode has more empty space on the right side

of the screen.

 At the same time, some of the controls don’t appear because of the

smaller height.

 Thus, controls need to be laid out differently in the two screen

orientations because of the difference in the height and width of the

two orientations.

There are two ways to handle changes in screen orientation:
Anchoring Views/Controls—

1. Anchoring involves setting the position of views (or controls) relative to the four

edges of the screen. When the screen orientation changes, the controls/views do

not disappear but are rearranged (the views adjust their positions accordingly,

maintaining a consistent layout and avoiding disappearing off-screen) relative to the

four edges.

2. For anchoring controls relative to the four edges of the screen, we use a

RelativeLayout container. The controls are aligned relative to the edges of the

container.

Defining layout for each mode—

 This approach involves creating separate XML layout files for different

screen orientations (portrait and landscape). Each layout file is tailored to

suit the specific orientation, ensuring the UI is optimized for both modes.

•This vertical arrangement makes a few of the Button controls disappear when
the screen is in landscape mode. To use the blank space on the right side of the
screen in landscape mode, we need to define another layout file.

Resizing and Repositioning Views:

 This approach involves dynamically adjusting the size and position of views within

a single layout file to respond to changes in screen orientation. Instead of

switching layouts, you modify view properties programmatically.

 Anchoring Views Anchoring can be easily achieved by using

RelativeLayout. Consider the following main.xml file, which contains five

Button views embedded within the element:

CODE:

<RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- Button anchored to the top-left corner -->
 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Top Left"
 android:layout_alignParentStart="true"
 android:layout_alignParentTop="true" />

 <!-- Button anchored to the top-right corner -->
 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Top Right"
 android:layout_alignParentTop="true"
 android:layout_alignParentEnd="true" />

 <!-- Button anchored to the bottom-left corner -->
 <Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

 android:text="Bottom Left"
 android:layout_alignParentStart="true"
 android:layout_alignParentBottom="true" />

 <!-- Button anchored to the bottom-right corner -->
 <Button
 android:id="@+id/button4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Bottom Right"
 android:layout_alignParentEnd="true"
 android:layout_alignParentBottom="true" />

 <!-- Button centered in the middle of the parent -->
 <Button
 android:id="@+id/button5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Middle"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

</RelativeLayout>

Button 1 (button1): Anchored to the top-left corner of the parent.
Button 2 (button2): Anchored to the top-right corner of the parent.
Button 3 (button3): Anchored to the bottom-left corner of the parent.
Button 4 (button4): Anchored to the bottom-right corner of the parent.
Button 5 (button5): Centered both vertically and horizontally in the parent.

Note the following attributes found in the various Button views:

➤ layout_alignParentStart—Aligns the view to the left of the parent view

➤ layout_alignParentEnd—Aligns the view to the right of the parent view

➤ layout_alignParentTop—Aligns the view to the top of the parent view

➤ layout_alignParentBottom—Aligns the view to the bottom of the parent view

➤ layout_centerVertical—Centers the view vertically within its parent view

➤ layout_centerHorizontal—Centers the view horizontally within its parent view

Managing Changes to Screen Orientation:

 What happens to an activity’s state (data) when the device changes orientation

Understanding Activity Behavior when Orientation Changes.

 Activity behavior Changes when the screen orientation Changes in Android,so when

the device orientation changes,frist the activity will disappear for a millisecond when

the onPause(),onStop(),onDestroy() methods are called.

 After a few milliseconds, the activity will be restarted when the onCreate(),

onStart(),onResume() methods are called.

1. Using Android Studio, create a new Android project and name it

Orientations.

2. Add the bolded statements in the following code to the activity_main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

<EditText

 android:id="@+id/txtField1"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

<EditText

android:id="@+id/txtField2"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

</LinearLayout>

3. Add the bolded statements in in the following code to the MainActivity.java

file:

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Log.d("StateInfo", "onCreate");

 }

 @Override

 public void onStart() {

 Log.d("StateInfo", "onStart");

 super.onStart();

 }

 @Override

 public void onResume() {

 Log.d("StateInfo", "onResume");

 super.onResume();

 }

 @Override

 public void onPause() {

 Log.d("StateInfo", "onPause");

 super.onPause();

 }

 @Override

 public void onStop() {

 Log.d("StateInfo", "onStop");

 super.onStop();

 }

 @Override

 public void onDestroy() {

 Log.d("StateInfo", "onDestroy");

 super.onDestroy();

 }

@Override

 public void onRestart() {

 Log.d("StateInfo", "onRestart");

 super.onRestart();

 }

}

 Press F11 to debug

 Enter some text into the two EditText views

 Change the orientation of the Android Emulator by pressing Ctrl+F11.

 Note that the text in the first EditText view is still visible, while the second

EditText view is now empty.

How It Works

 From the output shown in the logcat console, it is apparent that when the

device changes orientation.

The activity is destroyed:

 12-15 12:39:37.846: D/StateInfo(557): onPause

 12-15 12:39:37.846: D/StateInfo(557): onStop

 12-15 12:39:37.866: D/StateInfo(557): onDestroy

It is then re-created:

 12-15 12:39:38.206: D/StateInfo(557): onCreate

 12-15 12:39:38.216: D/StateInfo(557): onStart

 12-15 12:39:38.257: D/StateInfo(557): onResume

 For example, the user might change orientation while entering some text into

an EditText view. When this happens, any text inside the EditText view is

persisted and restored automatically when the activity is re-created.

Conversely, if you do not name the EditText view using the android:id

attribute, the activity isn’t able to persist the text currently contained within it.

Utilizing the Action Bar:

 Android ActionBar is a menu bar that runs across the top of the activity screen

in android. Android ActionBar can contain menu items which become visible

when the user clicks the “menu” button.

 Action bar is a combination of on-screen action items and overflow options.

Toolbar/Action Bar: This is a bar at the top of the screen in Android apps,

which contains the application logo, title, and navigation/menu items. It often

hosts contextual actions or options relevant to the current screen.

 In general an ActionBar consists of the following four components:

o App Icon: App branding logo or icon will be displayed here.
o View Control: A dedicated space to display Application title. Also

provides option to switch between views by adding spinner or tabbed
navigation.

o Action Buttons: Some important actions of the app can be added here
o Action Overflow: All unimportant action will be shown as a menu.

 Spinner

Spinner: A spinner typically appears as a small rectangular box with an arrow icon at
the right side. When the user taps on the spinner, a dropdown list of items appears
below it, allowing the user to select one.
Dropdown Menu: A dropdown menu, on the other hand, is a pop-up menu that
appears below the anchor view (such as a button or text field) when the user interacts
with it. It doesn't have a visible box or arrow icon associated with it.

How to set and Changing the Action Bar title:
Setting Toolbar as An ActionBar

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar); // get the reference

of Toolbar

setSupportActionBar(toolbar); // Setting/replace toolbar as the ActionBar

This example demonstrates How to set title for action bar in

android.

if (getSupportActionBar() != null) {

 getSupportActionBar().setTitle("Home");

 getSupportActionBar().setSubtitle("sairam");

 getSupportActionBar().setDisplayShowHomeEnabled(true);

 getSupportActionBar().setIcon(R.drawable.ic_launcher); // Replace with

your icon

 }

 textView.setText("Title is Home");

 }

Changing the Action Bar title:
if (actionBar != null) {

 actionBar.setTitle(newTitle);
}

Add items to the Action bar:
<item
 android:id="@+id/miProfile"
 android:icon="@drawable/ic_profile"
 app:showAsAction="ifRoom|withText"
 android:title="Profile">
 </item>

Creating the user interface programmatically:

1. In Android you can create the user interface programmatically by

instantiating and configuring UI components in your java or kotlin code

rather than using XML layout files.

2. So far, we have seen all the UIs which have created, using XML file but we

can create the user interface programmatically. This is useful; When UI

needs to be dynamically generated during runtime.

Ex: If you are creating an app for the air ticket reservation system and your
app is supposed to display the seats for each way’s travel, using the Buttons. In
this case, you will have to dynamically generate the UI code, which is based on
the air travel selected by the user.

To create a user interface programmatically in Android Studio, you typically follow
these steps:
1. Create a Layout Container: You'll need a layout container to hold your UI
Elements programmatically. This can be a LinearLayout, RelativeLayout,
ConstraintLayout, etc. You can create it directly in your activity's XML layout file or
Programmatically in your Java/Kotlin code.
2. Instantiate UI Elements: Create instances of the UI elements you want to
Include in your layout. For example, TextView, Button, EditText, etc.
3. Set Layout Parameters: For each UI element, create layout parameters
Specifying how it should be positioned and sized within the layout container.
4. Add UI Elements to Layout: Add the UI elements to the layout container
Using the addView() method.
5. Set Content View: If you created the layout container programmatically, set it
as the content view of your activity using the setContentView () method.

Creating the UI via Code:

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.LinearLayoutCompat;

import android.widget.Button;

import android.widget.LinearLayout;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

LinearLayoutCompat.LayoutParams params =

newLinearLayoutCompat.LayoutParams (

LinearLayoutCompat.LayoutParams.WRAP_CONTENT,

LinearLayoutCompat.LayoutParams.WRAP_CONTENT);

LinearLayout layout = new LinearLayout(this);

layout.setOrientation(LinearLayout.VERTICAL);

TextView tv = new TextView(this);

tv.setText("This is a TextView");

tv.setLayoutParams(params);

Button btn = new Button(this);

btn.setText("This is a Button");

btn.setLayoutParams(params);

layout.addView(tv);
layout.addView(btn);

LinearLayoutCompat.LayoutParams layoutParam = new

LinearLayoutCompat.LayoutParams(

LinearLayoutCompat.LayoutParams.WRAP_CONTENT,

LinearLayoutCompat.LayoutParams.WRAP_CONTENT);

this.addContentView(layout, layoutParam);

Listening for UI notifications:

 Users interact with your UI at two levels:

o Activity level

o View level

Activity level :

 At the activity level, the Activity class exposes methods that you can override.

Some common methods that you can override in your activities include the

following:

o On Key Up(): This is called when a key was released. This is not handled by

any of the views inside the activity.

o On Key Down(): This is called when a key was pressed. This is not handled

by any of the views inside the activity.

o On Menu Item Selected(): This is called when any item of the menu panel

is pressed by user.

o On Menu Opened(): This method is called when user opens the panel’s

menu.

View Level:

 When any user interacts with a view, the corresponding view fires event.

When a user touches a button or an image button or any such view we have to

service the related service so that appropriate action can be performed. For

this, events need to be registered.

	Views and View groups:

