| Chapter Outline |

-—i) Array - Meaning and Definition
% Single-Dimensional Arrays (1D Arrays)
9 Declaration of an Arrays
< Array Initialization
9 Accessing the Elements of an Array
S Memory Representation of Single Dimensional Array
9 Boundary Checking
’(Two Dimensional Arrays
o Declaration of Two Dimensional Array
2 lInitializing Two Dimensional Array
9 Accessing the Elements of Two Dimensional Arrays
S Memory Representation of Two Dimensional Array
% Advantages and Disadvantages of Arrays
% Applications of Arrays
% Sample Program

% Review Questions

(% Scanned with OKEN Scanner

nf’roblem So!_ving To:hniqun . MMMMWQ\

8.1 Array - Meaning and Definition

ar, int, float, and

So far we have seen a variable of fundamental data types "ai':ec'l]y ticr:e. "rherefore they i::::le, T,
variables of these data types can store only one value at any B Lt handle large volime ofd? Usey
only to handle limited amount of data. In many scenarios, We :zrived fata fypa kioWrize, ity
the purpose of reading, processing and printing. C Supports ‘1 s efficiently. Tray,. ;
it handles storing, accessing and manipulation of large data ite —
at requires us to read, prf)cess and prir?t 100‘r01] numg,

define 100 variables, each with a differep, e,

Why do we need Arrays?
Imagine we have a problem th
of students. To begin, we can declare and
as shown below;

intrl, r2,r3,r4,r5,r6,r7,18,19, r10
This creates 100 variables . To read 100 integers from the
statements. To print them we need 100 print statements. N |
Although this approach may be acceptable for less variables it is definitely not acceptzy,
for 100 or 1000 or 10000 variables.

Hence, we need more powerful data structure to process large amounts of data. ke,
the array is used for processing large amounts of data of same type.

Arrays gives the capability to store the 100 roll numbers in the contiguous memory
locations which can be accessed by single variable name.

Definitions : Array

A An array in C can be defined as “a collection of data items of the same data type which are stored
consecutive memory locations and referred by the common name”,

keyboard, we need 10y,

—

—

A an array is a collection of homogeneous data elements. Homogeneous means all the individual daz
elements are of same data type.

An array is a collection of similar data items stored at contiguous memory locations and element
can be accessed randomly using index of an array. They can be used to store collection of primiti
data types such as int, float, double, char, etc of any particular type. The rules for assigning names®
arrays are the same as for variable names. An array name must be unique. It can’t be used for anothe
array or for any other identifier (variable, constant, and so on). All the similar data items can
placed in an array and can be accessed by the same name. The array is the simplest data structt®
where each data element can be randomly accessed by using its index number:
An array can be of any variable type.

int regno[20];

float salary[1600];

char name[40];

The above examples are the arrays of integer ty

0
pe, character typ store
100 and 40 data elements respectively. These 4 ype and float type that can

ata elements are known as members of the arra*

y
G Scanned with OKEN Scanner

/"‘__‘,.._--——-w“—-u—u‘-_._,. T ————
Arrays
s oY -

.'r"‘mu‘ﬁl‘ii‘l if we have to store similay plvln('nxl A
‘»;'.x\"'"‘ ¢ subjects, then we don't need Lo define]l(}. Fo
\.‘.tl"k“h:\'(omi of that, we can deline ap array wh‘l(lh‘
“\w‘ \:],wl\\l‘l’.\' locations. So, it is clear that .
. n_»:"]‘“:“ officient programs,

\

rexample, if we want to store the marks of
rent variables for the marks in the different
an store the marks in each subject at the

\

arrays reduc
ays reduce the program complexity and helps us

0
it

' ,(,\\‘\ I
/ What is Contiguous Memory?

Consecutive blocks of memory ;
mory allocated to user processes are called contiguous memory.

For example, if a user proce
boreswill "d ‘ process needs some x bytes of contiguous memory, then all the x
oytes will reside in one place in the memory ; - , the

Example:

If we create an array of 10 i .
is allocated. ¥ Integers, 40 bytes of contiguous memory (for 64 bit machine)

int n[10] ;
':_‘he Wai' the integer array 'n' is stored in memory can be understood from the following
igure. Lets say system allocates memory from 4000 to 4040 to store the integer elements

of an array. The base address is 4000. The first element n[0] stores in the memory location
4000 to 4003.

n[0] n[1] n[2] n[3] n[4 n[5] n[6] n[7] n[8] n[9]

4000 4004 4008 4012 4016 4020 4024 4028 4032 4036

i 1t .

\mays are categorized as Single or One Dimensional and Multi Dimensional arrays. The Multi
Dimensional arrays include Two Dimensional, Three Dimensional, and so on.

(Types of Arraysj

. . Multi Dimensional Array
One Dimensional Array (Two Dimensional, Three Dimensional and so on)

Dimensional Arrays (1D Arrays)
m of an array that requires only one subscript to access

Asingla_y:
gle-dlmensional array is the simplest for :
ust have been declared before it is used in the

ng:y element, Like an ordinary variable, an array m
m,

G Scanned with OKEN Scanner

Definitions Single Dimensional Array e sl

’ o R -

ray can he defined as an array
store n elements togeth,

ar ar
cation.To

wn}

r]Il”
ach other. 1-D-array contains one cq),

nts are stored in sequentia| f,, shioy

ine
; Single-dimensional array or One- (Iimcnslon.ll array or |

lo
l elements where each element is stored in consecutive memory .
contiguous to €

r],‘
ans all the eleme

' memory locations have the same array name and are
| of n-elements. The consecutive memory locations me

‘ memory (that is one-after-the other).
W

—

al array with 10 elements that require \]r
ensional array has a single Suhﬁcr,pt 1
n C, arrays elements begin with Subse, '
ot position or it refers to the first elﬁme:“

Thus for example regno[10] represent one dimension
consecutive memory locations in memory. The one-dim
subscript must be specified in pair of square brackets. |
number 0. Therefore regno[0] refers to the element of the
of the array.

MDeclaration of an Arrays

We know that all the variables are declared before they are used in the program. Similarly, an army
must be declared before it is used. During declaration, the size of the array has to be specifieq. The
size used during declaration of the array informs the compiler to allocate and reserve the specif;
memory locations.

Each element of the array is accessed via an index or subscript. An index is the integer value specifigg
within the square brackets. One dimensional array will always have only one subscript/index.

Syntax

The syntax for one-dimensional array declaration is

datatype arrayname[size];

Where datatype can be a basic datatype such as int, float, char etc. or any derived datatype.

The arrayname is the name of an array and size indicates the number of elements that array can hold

int regno[20];

where int — datatype

regno — arrayname

20 — size of the array
_/
/
Note
_-—-/

It is very important to note that all the elements/members of the array must be of same data type. In the above
example, the array ‘regno’ has to contain only the integer numbers, /

(% Scanned with OKEN Scanner

: 0];
int regno(20]; /] Avra
foat average[10]; 1 A Y ofInteger data type that can store 20 integer elements
har name([40]; /] A PG ety type that can store 10 float elements
:ouble alary[10]; p Al ray of characters data type that can store 40 characters
: rray of
/'li advisable t Y O double data type that can store 10 double elements.
. vays able to SPECify th
tisalso at e number oY ot 1 .
[S‘mbolic constant created with the #defi : an_d elements (size) with a literal constant or with a

int month[COUNT];
is equivalent to the statement:

int month[12];
Here, count value is 12 and hence 12 locations will be res

integer array, let us consider that integer takes 2 bytes if
memory space for an array. if integer takes 4 bytes of m
memory.

erved for the variable month. Since it is an
memory the it reserves 12 x 2 = 24 bytes of
emory, then it reserves 12 x 4 = 48 bytes of

However, we can’t declare an array’s elements with a symbolic constant created with the const
keyword.

i.e., const int COUNT = 12;

int month[COUNT]; /*WRONG*/

Array Initialization

Providing a value for each element of the array is called as initialization. The list of values must be
enclosed in curly braces. There are different ways of initializing arrays. Lets look at each one.

L. Initializing an array with size and initial values:

Arrays can be initialized at the time of declaration when their initial values are known in
advance. Array elements can be initialized with data items of type int, char etc.

m Initializing an array with size and initial values

Consider an array int regno[5] is declared.

This array can be initialized at the declaration time itself followed by an ‘=" sign and then followed by
the pair of braces. These braces contain the values, separated by commas.

i.e. int regno[5] = {10, 11, 12, 13, 14};

During compilation, 5 contiguous memory locations are reserved by the compiler for the array vari-
able regno and all these locations are initialized as shown in figure.

regnof0] regno[1] __ regnol2] _regnol3] regnol]
i5 1 12 13 14
4000 4004 4008 4012 4016

G Scanned with OKEN Scanner

o s shown
of array regnod

. n Problem Solving Techniques ,_«//"’—__\
— . *’“‘”Mow \

" : v s
This declaration statement initializes o element

: ber*/
/st student reglster num

So regno(0] = 10 ' v
regno(1] = 11 /*second student register)
regnof2] = 12 J*Third student register number y
regno[3] = 13 /*Fourth student register numbe:
regno(4] = 14 /*Fifth student register number /

et compiler error.
are more than the size of array, then we & P

or: no. of initial vales are
— —
and with initial values:

Note: If no of initial values

more than the size of array 3)
Example : int a[3]={9,2,4,5,6}; //err

2. Initialize an array without specifying size
—

- e . size and with initial values
IR (Ol Initialize an array without specifying S1Z —

int regno[]={10,20,30,40,50}

e not specified exact number of elements to be used in array,

In this declaration, even though we hav . .
the array size will be sety,

the array size will be set of the total number of initial values specified. So,
S automatically.
During array initialization, if all the elements of the array are going to be initialized, then itis not ne.

essary to specify the array size. Because array size will be taken as the total number of initial values

included within a pair of braces.

Similarly we can initialize the character array without size as shown below.

char name [] = {'S', 'R', 'I', 'K', 'A", 'N', 'T', 'H', "\0'};

This declaration statement initializes 9 elements of array name as shown below.

'K' name[4] = 'A’
"\0'

'R' name[2] = 'I' name[3]

'H name[8]

name[0] 'S' name[1]

name[5] = 'N name[6] = 'T name[7]
The co’mpiler terminates with the string with a ‘\0’ or NULL character.

The compiler automatically inserts the null character at the end if we initialize the character array
with string in double quotes as shown below.

char name[]="SRIKANTH";

3. Partial array initialization:

: -
Martial Array Initialization

"]

Partial array initialization is possible in c language. If the number of values to be initialized is less tha?

the size of the array, then the elements will be initialized to zero automatically.
int regno[5] = {10, 11};

Even though compiler allocates 5 memory locations, using this declaration statement:

the compiler initializes first two locations with 10 and 15, the next set of memory locations
automatically initialized to 0's by compiler as shown in figure. !

____—/

)

G Scanned with OKEN Scanner

regnol1)

/ regno[0]
regno(3) regno[4]

. 0 0
4000 4004

- 4008 4012 4016
quntime Initialization using input functiong

m Runtime Initializution
An array can be explicitly initialized at run time, This approach is

) usua
alize an array,

regho[2)

arrays. The below code uses scanf to injtj A B
int X[B];
scanf(“%d%d%d”,&x[el,&X[ll,&X[Z]);

The above statements will initja]ize arr.

| The 2 ay elements with the values entered through the keyboard.
Muntime Initialization

Lets consider another code below.

int i,

float sum[160];
fop(]_:@} 1<100; 1=1+1)

{
if(i<50)
sum[i]=0.0;
else
sum[i]=1.0;
}

The first 50 elements of the array sum are initialized to 0 while the remaining 50 are initialized to 1.0

atrun time.

vt [

nts are printed
The following code declares and initializes the array of 5 elements. The array eleme p

using printf statement
int a[5]={10, 20, 30, 40, 50};
int i ;
for (i=0 ; i<5 ; i++)
{
printf(“%d”, a[il);

oot nall],
} for the values of ‘i’ ranging from 0 to 4. First it prints a[0], then a[1]
The abgve loop executes 5 times for the Vet ints 10 20 30 40 50.
then a[2] andio on. The above printf SM
M)

@ Scanned with OKEN Scanner

Froblem Solving Technlques : . ’———\\

Accensing the Eloments of an Array
yindex or subscrl
array will always

An indexis the integer valye Spe
have only one subscript/indey,
1) where ‘n' is the size of the i
. S

iy but the exact element pogitmn/

I3

‘ pt. Cifj,
Fach element of the mrray 1s accessed viaa g
within the square brackets, One dimenstonal

y ' to (n -
t\\'l'-\\' (\'1‘!\\[\]“\ are &\l\\"“v'-‘ |\|||\\|"‘|'I‘I| .""HI“H” (rom () (-l
4 position fn the arr

" '
he index of the arvay specities the elements
alwavs one more than the index value,

g e

int regno(5] = {10, 11, 12, 13, 14);

The array elements will be access using the subscript/index as

shown helow.

regno|0] specifies the first position In the array,
printf ("%d",regno[t0]); Itprints 10
regno|1] specilies the second position in the array,
printf("%d",regno[1]); Itprints 11 |
Hence, to access the i student registration no, we should print regno[i-1] value. \.‘
ray starts from the index 0. Using an array we ;,
element. It is better to specify the size of an ar

The lower bound in C is always zero. i.e,, the ar
access any element by specifying the index of the
using a symbolic constant rather than the fixed quantity.

-
. The following code declares on array called A of size 20 and stores the n elements iy
Example
the array.

#define SIZE 20
main()

{

int A[size],n,i;
printf(“Enter the number of elements:”):
scanf(“%d”,&n);
for (i=0;1¢<n;i++)
{
scanf(“%d”, &A[1]);

)

I

Here, first we get the value of ‘n’ through the keyboard and for loop will be executed
‘n’ times for the values of ‘i’ ranging from 0 to n-1. For the first time within the l0oP
the value of 'i" will be zero. So, the first element entered will be stored in A[0]. The T
becomes 1 and second element will be stored in A[1] and. so on, Finally when ‘i’ is (n-1)
A[n-1] contains the n" element. Suppose ‘n’ is 5, the above code accepts 5 elements and stores te
elements in A[0], A[1],, A[2], A[3], and A[4] respectively. ‘

G Scanned with OKEN Scanner

| Arqusm
Program to reaq 8ize -

d elom
: \ ents for i
it back as output, T one-dimensgional array from user, and print

stdio.h> e

jncludes

4

Output

Void main() ‘ I —

Enter Array Size: s

{ jnt arr[5@], size, i;

printf("Enter‘ Array Size: "),
scanf("%d", &size);

Enter 5 Elements: 10 20 30 40 50

Array Elements are :

printf("\nEnter Xd Elements: *, sisq); 10 20 30 40 50

for(i=0; i<size; i++)
scanf("%d", &arr[i]);

printf(n\nAr‘r‘ay Elements are :\nu);
for(i=0; i<size; i++)
printf("%d ", arr[i]);

}

Explanation

Inthe above program, user enters 5 as the size for array, then 5 gets initialized to size variable.
Initially the value of i is 0 and 0 is less than the value of size variable. So program flow goes inside
the for loop, scans a value and stores at arr[0].

Program flow increments the value of i using the third statement of for loop, and its value becomes
1. Now 1 again gets checked whether it is less than the value of size or not. Because 1 is again less
than the value of size variable (that holds 5 as its value). Then program flow again goes inside the
loop, and scans another value and stores this value at arr[i] or arr[1].

This process continues until the condition of the for loop evaluates to be false, that is when the
value of i becomes 5, then it means, 5 is not less than 5 (value of size). So program flow exits from
the first for loop.

There is another for loop, to print the array elements as shown in the output.

e ——

Me following code is used to print ‘n’ elements of an array.

for (i-p 3 i<n; i++)

{

printf(“%d \n”, a[il);
}

value. Then ‘i’ value is incremented by 1 and ‘i’ becomes 1.

First] . P . 0
Y, the val q i and it prints a[]
@ue of ' Is zero 5, then it prints the values of a[0], a[1], a[2], a[3] and a[4]

recondly' it prints a[1] value and so on. If n =
e

s .

L o st e A N T L N P b T el

@ Scanned with OKEN Scanner

S——Y

~mb|em Solving Techniques “// ‘\

. : . ay
mMemory Representation of Single Dimer imilar data items. [
ting of related and sl SR
A single dimensional array is a linear list consisting

ter the other. Let us copgiy
- 1eations one af ide
all the data items are stored in contiguous memory locatio My

Array as shown below:

g, 79, 88, 90}

int value[5]={ 85, 9 _
and indexes 1S shown below,

n address
Memory Representation of an array with elements, add

value[2) Value[3] Value[4]

Value[1]
79 88 90*—1

Array name —» Value[0]
Data —>| 85 98

. 1216-121 |
Address ——> l1200-1203‘ |1204-1207‘ 1208-1211 '1212 1215| l 9_

4bytes 4bytes ~ 4bytes 4bytes 4 bytes
In the above example, the range refers to 0-4,i.e., 5 numbers. Itis to be noted that ‘C’ arrays starts fron
0% location. So the range starts from 0 and end with 4 for 5 numbers. Hence, an array of n elemep;

has a range from zero to (n-1). So the index/subscript always holds the integer values starting froy
Zero.

The memory requirement for the array depends on the type of data items stored and number
items. Let us assume data items are of type int and assume that int takes 4 bytes (in majority of P(s
size of integer will be 4 bytes). Since 5 elements are stored and the size of int is 4 bytes, the memoy

required for the array is 40 bytes. If the size of integer is 2 bytes, the array uses 20 bytes of memay
and so on in general.

The type of Value is int, so each elements of the Value array will take 2 or 4 bytes of memory. fu
example, consider the starting address of first memory block is 1200. So the next elements of th
array will get next contiguous 4 bytes memory block and the memory address will be 1004 (as 1000
+ 4 bytes) and so on for other elements. In the above figure, the addresses are displayed here, are the
starting address of each memory block assigned to individual element of the array.

Memory for array = n * size of data type
Where

* nis the number of data items

e data type is the type of data items

The address of the first array element is called base address,
1200. The base address of an array A is denoted by Base(A).

Using the base address, we can calculate the address of any e
Address(A[i]):Base(A) +1i*Siz
Address(A[3]) = Base(A) + 3 * Size of element = 1200 + 3%

In the above figure, the base addres b
i.e, Base(A)= 1200

lement using the below formula
e of element
4,=1212

@ Scanned with OKEN Scanner

; Arruysm__

alculateq y
Addrcss(A[O]) =1200+0*4 = 1200 Xl (A?s shown below:
= ess(A[1]) =1200+1* 4 =1204
Ny dreSS(A[ZD =1200+2* 4 = 1905)] +

. A(l(lress(A[ﬂ) =1200+4*4=1216
To Demonstrate Contiguous Memm‘y Locations
—————— 710y Location

of Single Dimensional Arrays

nclude ¢stdio.h>
#

\'Oid main()

{ int Value[S]={ 85, 98, 79, gg 90} ;
printf("Address of First Element = ¥q \n", &value[e]);
printf("Address of Second Element = %4 \n", &value[1]);
printf("Address of Third Element - %d \n", 8&value[2]);
printf("Address of Fourth Element = %d \n", &alue[3]);
printf("Address of Fifth Element = %d \n", &alue[4]);

}

r’?);tput

Address of First Element = 6487552

Address of Second Element = 6487556

Address of Third Element = 6487560

Address of Fourth Element = 6487564

Address of Fifth Element = 6487568

MBouﬁdary Checkilig i

InC, there is no check to see if the subscript/index used for an array exceeds the size of the array. Data
éntered with subscript exceeding the array size will simply be placed in memory outside array. This
Will never give an error message but will lead to unpredictable results which is more dangerous than
the errors, Sometimes the computer may also hang. So it is the programmer’s job to check that the

SWbscript doesn’t reach beyond array size.
int regno[5] = {10, 11, 12, 13, 14};
printf(“%d”, regno[15]);

The aboye printf statement may lead to junk output or abnormal termination.

. e . i lue.
. ord it is a better practice to initialize the array without any index va
®r to avoid this boundary problem, 1t1S :

~——_ l.e., int regno[] = {10, 11, 12, 13, 14};

h

e 0 S At e

@ Scanned with OKEN Scanner

'”‘“"“"”-m Froblem Selving Technlgues i . sam———— _‘ ‘ :” . \

“uuh\Prnpvrunnufnuehwmy

-.‘M
e e ahould be of the same data Iypx
|

+ The data items (called eloments) stoved In the array
(',“""“q1p|(dllu‘nrulIhulnuhmnyxn(,"

+ WMvdManvmsmvsmnwhnnumumﬂyhnnmmwywul

F(J)'
;wnhtnﬂkunruﬂnnwun.

4

Bach data item ix accessed using the same name along

+The subseript ov index of the arvay Is always an Integer.

5 rny. \
RN 10 tind sum and averago of b olomoents Inan arriy

includecstdio. hy CAHE o
main()

n(Enter the element 1; 14
\

Enter the element 2: gg
Enter the element 3: g1
Enter the element 4: g
Enter the element 5: gg
The sum = 30

int 1, a[S), sum=0;

float ave

for (1=0; 1<5; i++)

{ The average = 6.0
printf(“\n Enter the element %d:”, 1+1);
scanf(“Xd”, &a[i];
sum=sum+a(i];

}

avg=sum/S;

printf(“The sum=Xd\n”, sum);
printf(“The average=%f\n”, avg);

}

MTO store student's marks of a subject
#include<stdio.h> —

0
main() l“utpLI

Enter the marks of student 1 : 33
. Enter the marks of student 2 : 2
Enter the marks of student 3 : 9!
Enter the marks of student 4 : %
Enter the marks of student 5 : %

int i, marks[6];

for(i=0; i < 6; i++)

{ Enter the marks of student 6 : 4
printf(“Enter the marks of student %d : “,i+1); The marks of student 1 is 33
scanf (“%d’’, 8marks[i]); The marks of student 2 is 22

} The marks of student 3 is 91

The marks of student 4 is 29

for (i = 0; 1<6;i++) The marks of student 5 is 39

48
printf(“\nThe marks of student %d is %d”, 1+1, marks[1]); The marks of student 6 5 =2~

; | //

-
G Scanned with OKEN Scanner

5

M“"—WW‘MM, S e e B—
nd the ever ™ :
ﬁﬁ 1, ()dd- })()Slllv(\. h(‘l!nhvv "‘"“h"I'R out "r 20 numhr‘r‘.‘l (.n((\rpfl rr(”“
keyboard.

I —

tdio' h)
,niludf’"‘
yi
r’im)

{ int a[20], i, neg=0, pos=0, odd-p, even=g;
priﬂtf(“Enter 20 elements of the array\n”);

for(i=0; 1 ¢ 205 134)

scanf(“%d”, &a[i]);

a[i] < @ ? (neg++) : (pos++); /*conditional operators*/
a[i]l % 2 ? (odd++) : (even++);

}

printf(”\n The number of positive elements=%d”, pos);
printf(“\n The number of negative elements=%d”, neg);
printf(“\n The number of even numbers=%d”, even);
printf("\" The number of odd numbers=%d”, odd);

/

To display the elements of two arrays two separate columns and add their corresponding
elements. Display result of addition in the 3rd column.

pain()

int i, numi[]={10, 20, 3@, 40, 50, 60} ;
int num2[]={11, 22 , 33, 44, 55, 66} ;

printf("Element of 1st Array \t\t Element of 2nd Array \t\t Addition\n") ;

for(i=0;i<=5;i++)
printf("\n\t%d \t\t + %d\t\t=kd", numi[i], num2[i], numi[i]+num2[i]);

}
Output
D
Element of 1st Array Element of 2nd Array Addition

10 + 11 = 21
20 + 22 = 42
30 + 33 = 66
40 + 44 = 84
50 + 55 = 105

\ 60 + 66 = 126

G Scanned with OKEN Scanner

m Problem Solving T"h“'q"'_‘*.___‘,,...-«ﬂ-"‘/{’

8.3 Two Dimensional Arrays

ray. These are oftep, kng

vn-dlmcnsimml ar

- . iote fg mas tv
An array consisting of two subscripts is known W“a;

[

Definitions : Two Dimensional Array

array of arrays.

atype, row and column-based ¢

neous dat
ased structure.

| column-b
atrix has two subscripts, one denoteg,
al array is an array ofa one-dime

atasty
. 3 u |
Two Dimensional (2D) arrayisa fixed-length, homoge Chyy,|

it imi in arow anc
which is used to store similar data type olement in a FOW
atrixora table.Am
a two-dimension

her,

A two-dimensional array is referred toasam Ty
nSI()na]

and another denotes the column. In other words,
arrays.

. s. These are well suit
In two dimensional arrays the array is divided into rows an.d Co.lun::ree-dimensional arr:d ;0 hang,
a table of data. A two-dimensional array has two subscr.lptS, a. i Caieay can have Y has thr,
subscripts; and so on. Three is no limit to the number of dimenslo .

Declaration of Two Dimensional Array

Two dimensional arrays are declared same as one dimensional arrays except that a separate Pair
square brackets [] are required for each subscript. A 2-dimensional array can thus be Tepresenty
with two pairs of square brackets, a 3D array with three pairs and so on.

Syntax

In general, the syntax for a two dimensional array is:

datatype arrayname[expl][exp2];

Where datatype is any basic data type such as int, float, char, etc., and exp1, exp2 are positi
integer expressions that indicate the number of array elements associated with each subscript,

A 2-D array called name of type char, 2 rows and 3 columns can be declared as:

char name[2][3];

This array will contain 2 x 3 (6) elements.

int x[3][4];

Here, x is a two-dimensional (2d) array. This array will contain 3x 4 (12)‘elements. We can think the arrays?
table with 3 rows and each row has 4 columns. The first index value shows the number of the rows and second
index value shows the number of the columns in the array.

‘_-—/

Column 1 Column 2

Column 3

Column#__

Row 1

x [0] [0]

x[0] 1]

x[0] [2]

X

Row 2

x [1][0]

x[1[1]

x[1] [2]

HuBl

Row 3

x [2] [0]

x[2](1]

x[2] [2]

G Scanned with OKEN Scanner

-

] Arrﬁy

ﬂlnitializing Two Dil‘nen;ioha — Armwm_——

e one-dimensional gy

l'ikclq,-ati‘)“ with a list of injy
d q‘dimensional arrays,

it 21031 =, 3, 0},

int c[103] = {{1, 3, 0},

int c[21[3] = {3, 3, o,

ays, two-(

imeng
slonal apr
al valyes ¢ | ary

. Ays may be initialized by following their
Nclosed fy, brace y wlized By 5

5. The below are the examples of initializing
01,5, gy,

{-1, 5, 9)};

"L 5, 9y

int checker[4][3) = {1, 2, 3, 4, 5,6,7,8, 9
esults in the following assignments: Y
checker[@][@] is equal to 1 '
: checker[2][0] is equal to 7
checker[@][1] ?s equal to 2 checker[2][1] is equal to 8
checter‘[i][;] 1s equal to 3 checker[2][2] is equal to 9
checker[ll[] 1s equal to 4 checker[3][0] is equal to 1
checker[1][1] is equal to 5 checker[3][1] is equal to 11
checker[1][2] is equal to 6

checker[3][2] is equal to 12
The above array has 4 rovs-/s and 3 columns. The elements in the braces from left to right are stored in the
memory also from left to right. The elements will be filled in the array in order; the first 3 elements from the
leftin the first row, the next 3 elements in the second ro

w, and so on.
WOte:

Note that the first subscript ranges from 0 to 3 and the seconds subscript ranges from 0 to 2. A point to
remember here also is that array elements will be stored in contiguous locations in memory.

It

The above array checker can be thought of as an array of 4 elements, each of which is an array of 3 integers,
and will appear as

Row 0 Row1l - Row 2 ' Row 3
2 3 4 5 6 7 8 9 10 | 11 | 12

Two dimensional arrays can also be initialized by forming groups of initial values
enclosed within braces. Consider the following initialization.

rows columns
Rt §
int checker [4] [3] = {

{1;2,!3}) // Row 1
{4,5,6}, // Row 2
{7,8,9}, // Row 3

(10,11,12} // Row 4

¥ :
% tl as int checker[4][3] = {1,2,3,4,5,6,7,8,9,10,11,12};
\ exactly same

& Scanned with OKEN Scanner

m’blem Solving Techniques 4———-_//;

embers of the two- dlmensmnal arr
ue) then the remainin Ws,)
lue) 8 elemq nts

alize allm

to initi
y subscript va

Like one-dimensional arrays, it is not compulsor e
e.
there are less row or column values than the actual size

initialized to zero. 4_//,{’—*—
— ﬁ

int checker [4][3] = {

{19,5,2},
{2,9,9},
{132,10,5},
{e,1,2}

}s

Would only initialize the first 3 elements of each row of t
will be set to zero.

he matrix to the given values. The remaining y,

Note that the inner pairs of braces are responsible for the correct initialization. Also note that the i lnlt]allZap

hem.
values must be separated by a comma-even when there are braces {} betweent

—

It is very important to remember that while initializing an array it is necessary to

mention the second (column) dimension, where as first dimension (row) is optiona],
—

int arr[2][3] = {10, 20,30,40,50,60};

is same as

int arr[][3] = {10, 20,30,40,50,60};

whereas

int arr[2][] = {10, 20,30,40,50,60};
illegal

int arr[][] = {10, 20,30,40,50,60};

Two dimensional array of characters.
—

char name[2][10]={"Skyward","Publishers"};

It means that name is two dimensional character array. It can store two strings. Each string can contal
maximum of 10 characters. So, first string is "Skyward" and second string is "Publishers".

printf("%s",name[@]); prints "Skyward"
printf("%s",name[1]); prints "Publishers"

printf("%c”,name[@][@]); prints 'S’ -> First Character of the First String

|
printf("%c",name[1][@]); prints 'P' -> First Character of the Second Sti_n__g./

@ Scanned with OKEN Scanner

Arrays .il'

atis, row index and column

et us consider the below two dimensiong] array, The
b a
ot X[3104] = {1,2,3,43, {5,6,7,8),

Q] represents the element presen; iy, the th

rray contains 3 rows and 4 columns.
{9,10,11,12);
ird row anq second column,

use x[0] [0]
To access the first row and third colymp we can use x[0][2]

o access the first row and first colymp We can

To access the second row and seconq column we can yse x[1][1] and so on

. rays, if the siz . .
Note: In &7 y e of an array is N, |ts index will be from 0 to N-1. Therefore, for row index 2 means
row number is 2+1 = 3. g

—

char name[2]f3]={"MAN",“RAT“};

This array will contain 2 x 3 (6) characters and can be represented as:

— Columns
0 1

lOMAN
RowsY1| R | A | T

The two subscripts 2 and 3 are numbered starting from 0. The first subscript ranges from 0 to 1 and second

subscript ranges from 0 to 2 respectively.

The character ‘N’ is stored at row 0 and column 2. To access this element, the representation will be name[0]
[2;

Similarly to access the element ‘T’, the representation will be name[1][2];

Toaccess the element ‘R, the representation will be name[1][0];

To print first string, we can just mention name[0]
print("%s",name[0]);
To print second string, we can mention name|[1]

printf("%s,name[1]);

S

e e e A A O R TR T B M RIS i

@ Scanned with OKEN Scanner

J

8.18 Problem Solving TechniqL//'How p—
-] P { Int
2 : . —onsi onal Array p elenlellts :

. ‘WO Dil
How to store user jnput data into Tw
Two Dimensional M

: it aration.
Lets consider the below two dimensional array decl
int marks[3][2];

To store the elements entered by user?
runs from 0 to 2(first subscript -1) and t

t

/

one of them is @ nested loop. The ot

S
) o 1 (second subscript -1), erlgop

{ two for looj
ve should ¢ from 0t

he inner for 100PS run
for(i=0;i<3;i++)
for (j=0;3j<2;3++)
scanf(“%d“,&marks[i][j]);
When i=0 in outer for loop; The inner loo
marks[0][1];
; ds the value for ma
When i=1 in outer for loop; The inner loop executes two times and rea rks[1][q) ang

p executes tWO times and reads the value for marks[O][o] ang

marks[1][1];

When i=2 in outer for loop; The inner loop executes two times 'fmd reads the value for marks[Z][o] ang
marks[2][1];

This way the the order in which user enters the eleme
marks[1][0].marks[1][1], marks[2][0] and marks[2][1]-
elements of two

nts would be stored in marks[0][0], marks[(]][ll

Similarly, we should use two for loops to print the dimensional array as shown below,

for(i=0;i<3;i++)
for (j=0;3j<2;j++)

print("%d",marks[i][j]);
Program to read the size of two dimensional array and elements from user and print
Program 6
the elements.
#include<stdio.h>

void main()

{
int marks[10][10], m, n,i,];

printf("\nEnter Number of Students: ");
scanf("%d", &m);
printf("\nEnter Number of Subjects : ");
scanf("%d", &n);
for(i=0; i<m; i++)
for(j=0;j<n;j++)
{

printf("\nEnter Marks %d of Student %d : " j+1,i+1);
°))
scanf("%d", &marks[i][j]); ,

} -

4

@ Scanned with OKEN Scanner

}

- Dutput

gnt

3
gnter Marks

Enter Marks
gater Marks
gnter Marks
gnter Marks
Enter Marks
enter Marks
enter Marks
Marks Detai
KRRERKK KK KKK
Marks 1 of
Marks 2 of
of
of
of

Marks 3
4
1
Marks 2 of
3
4

Marks
Marks
Marks 3 of

Marks 4 of

r‘- "
PrINTF("\n Marks %d of Student %y 4 %d
S "

er Number of Students:

of Student
of Student
of Student

of Student
of Student
of Student
4 of Student

1s :

% %k %k %k

Student
Student
Student
Student
Student
Student
Student
Student

1
2
3
4 of Student
1
2
3

NN NN R R B R

is
is
is
is
is
is
is
is

nte,~Number* of Subjects :

W NN NR R B

99
87
82
54
76
83
69
59

rks Detai]g
printf(ll\n****************“

for(i=0; i<m; i+4)
for(3=0;3<n; j++)

¢ 99
© 87
¢ 82
: 54
176
¢ 83
: 69
¢ 59

)
);

/printf("\n Ma _

,j+1,i+1,marks[i][j]);

10 (B8

.

o

T !

TLT IR

B 1t Tt

emory Representatxon of Two Dlmenswnal Array :

A two dimensional array of m rows and n column is represented in memory by a block of m*n
Sequential memory locations. The elements of two dimensional arrays are stored in the memory in
terms of the row design, i.e. the first row of the array is stored in the memory then second and so on.

int marks [3][2] = {991 80, 60, 50, 40, 76}3

Inthis case, the memory map will look like

——» Columns

0 1

o| 90 | 80

1| 60 |50

Rows 2| 40|70

@ Scanned with OKEN Scanner

Problem Selv ; e . N
. m rob Mj Solv l'nn Technlquet is hecauseé, in memory there dre no

e This - "
Ay true. TH ed b 1
ptually Array plements aré stored in one cnnt:m,rJ

TIHS(hnprnnnnnlu'nrrnnuvnnvﬂ1(«!""“ |

y . . i P q'()l\‘;”"'
& columns, In memory, irrespective of dimens!

vhnnLSnlhvnrhuﬂlnvnunannp\vmlnnk'”“

Memory
)2 90 marks [0] [0]
1(
104 80 marks [0] [1]
’_-____——"‘
106 60 lnnrks[I][O]
___’-‘
108 50 lnarks[l][ll
110 40 marks [2] [0]
112 70 marks [2] [1]

of two dimensional array is Storag

It is clear from the output of the'below rogram that elements
p P e difference of 4 bytes between t,

in contiguous memory locations in row wise. We can observe th

addresses.
di ional array, |
Program to demonstrate the memory representation of two dimensiona arrL

#include <stdio.h>

void main()

{
int marks[3][2]={ 85, 98, 79, 88, 90,65};
printf(“Address of First Row First Column Element = %d \n", &marks[@][0]);
printf("Address of First Row Second Column Element = %d \n", &marks[@][1]);
printf("Address of Second Row First Column Element = %d \n", &marks[1][@]);
printf("Address of Second Row Second Column Element = %d \n", &marks[1][1]);
printf("Address of Third Row First Column Element = %d \n", &marks[2][@]);
printf(“Address of Third Row Second Column Element = %d \n", &marks[2][1]);

y .

Output:

Address of First Row First Column Element = 6487552

Address of First Row Second Column Element = 6487556

Address of Second Row First Column Element = 6487560

Address of Second Row Second Column Element = 6487564

Address of Third Row First Column Element = 6487568

Address of Third Row Second Column Element

6487572 4______,J

-
G Scanned with OKEN Scanner

/ N A"av‘m___

@ Understanding Memory Representatl f
iion o

us consider below two dimensjop

Let _
The tWO dimensional conceptua]

al array, int abc([4] [51;

ajor repreg .
presentation of abe[4](5] is as shown below.

2D ar c
2D array concep -
ceptual memory representation

Second subscript
\ e '
abe [0][0) abe [0](1]
— "

abc [0][2 b
abce [1][0) W¢ il
—— | 8o

b abe [1][2] | abe (]3]
| F0C[20] | abe [2p1)

- abc [2)[2] abc [2)(3]
abe [3][0] abe [3][1]

abe [3][2] abc [3](3]
abc[4)0] | abcfIM) | abe [4]12) | abc[4][3)

first subscript

Here array is abc

[4][5] which can be conce i
i ptually viewed as
:tg:fstr\ll)v(it%f z4errgws ;nd 5 columns. Point to note here is that subscript
» Which means abc[0][0] would be the first value of the array.

However the actual representation of this array in memory would be something like -

abc[0][1] | abc[0][2] | abc[0][3] | abe[1](0] | abe[1][1] | abc[4][2] | abc[4][3]

82206 82210 82214 82218 82222 82274 82278

—
>

Memory locations for the array elements

Array is of integer type so each element would use 4 bytes that's the reason
there is a difference of 4 in element's addresses.

Actual memory representation of a 2D array

8.4 Advantages and Disadvantages of Arrays

Advantages of Arrays

A" Arrays represent multiple data items of the same type using a single name. .

mly by using the index number or subscript.

memory locations for all its elements. Hence there is no chance pf
f arrays. This avoids memory overflow or shortage of memory in

The elements can be accessed rando

Arrays allocate memory in contiguous
extra memory being allocated in case 0
arrays,

A The other data structures like linked lists,
arrays,

A -di i are used to represé
2 _Two-dimensional arrays

stacks, queues, trees, graphs etc can be implemented using

nt matrices.

(} Scanned with OKEN Scanner

muem Solving Techniques 4/"\\
Disadvantages of Arrays __’_’/’/_'_—’1—:;9 g
ould be known I duvetite:

PPy G ‘
d in an array §! size). Once declared the size Of the
nnot be increased or decreageq

4 The number of elements to be store e

hich means the array is 0 .
[

which is allocated to

as the elementsar

4+ An array is a static structure (W
array cannot be modified. The memory e stored in consecutive memory

4+ Insertion and deletion are quite difficult in an array

locations and the shifting operation is costly.

4 Allocating more memory than the requiremen
of memory also leads to a problem. - — ——

t leads to wastage of memory space and less allocati,,

Arrays are used to Store List of values.

Arrays are used to Perform Matrix Operations

Arrays are used to implement Searching and Sorting Algorithms.

Arrays are used to implement other Data Structures like Stacks and Queues.

Arrays are used to implement CPU Scheduling Algorithms
e variable name. This avoid the confusion of using

> > > > > »

Arrays help to maintain large data under a singl
multiple variables. -

What is static and dynamic arrays?

An array created at compile time by specifying size in the source code has a fixed size
and cannot be modified at run time. The process of allocating memory at compile timeis
known as static memory allocation and the arrays that receives static memory allocation
are called static arrays.

This method works fine as long as we know the array's exact size. If we don't know the
exact size, we can use dynamic arrays instead.

In C, it is possible to allocate memory to arrays at run time. This feature is known as
dynamic memory allocation and the arrays created at run time are called dynamic

arrays. Dynamic arrays are created using pointer variables and memory management

functions malloc(), calloc() and realloc().

—
e

What is a derived data type? Give an example.

Fundamental data types are basic built-in data types of C programming language. There

are three fundamental data types in C i
: programming. Th ' data type
floating data type and character data type. . S AIRsaD=UIARSY

g:? t};pgs t;hat are der'ived from fundamental data types are called derived data tyP®*
" tL‘;ebas?c d‘;ytzes don't create anew data type but,instead they add some functionay
multiple values A?,lgj'ss. ::; ::.rl\t/ed 4ata type can be used to represent a single valu¢”
: Inters are examples of derived d
ata type.

Example: An array is derived data : of
fundamental data types and acts asanetv}:lpgatl;et;a;ues;ao :tc contains the similar types
. /

A
@ Scanned with OKEN Scanner

—i
2.6 gample Program — _

Write a C Program to fing 8

N econd lar e i e di nsional array.
c1u ¢ tdlo-h> gest element in a on dime
in

#

it second_largest_element(int arr[],
i

{

int size)

int first_large, second_large, i;

if (size < 2)

printf("

S tha t (o] ");

}

for (i = @; 1 < size; i++)
{
if (first_large < arr[i])
{
second_large = first_large;
first_large = arr[i];

}

else if (arr[i] != first_large && second_large < arr[i] & second_large < first_large)
second_large = arr[i];

}

return second_large;

}

void main()

{

int size, index;

printf("Enter the size of array: ");
scanf("%d", &size);

int arr[size];

printf("\nEnter the array elements: ");
for (index = @; index < size; index++)
scanf("%d", &arr[index]);

printf("Second largest element: %d ", second_largest_element(arr, size));

}

Fiiron
Output:

Enter the size of array: 10
Enter‘ the array elements: 80 40 45 78 54 36 29 99 28 12

EESTE_}ESgest element: 80 :

@ Scanned with OKEN Scanner

_‘—’___/’"’““- "\\
—.___m Problem Solving Techniques - e \

8.7 Review Questions

1. Define an array. .
. ap an array:
Write the general syntax of declaring an

gL eral s a\ o -ray.
. cla i 18 ﬂ"(l il]iliﬂllSI"g an arre y
n'“' (h PHNCT l < ynl‘ X 0' d(,‘(,L 1 I ! t

rJ

I

Declare one integer and one floatart

How arrays are classified? 7
e stored in memory’

o o o

How an elements of an array ar
What is two dimensional array?

8. Declare one two-dimensional and

~]

one three-dimensional array.

g two dimensional array-

9. Write the general syntax of declarin
10. Give an example for derived data type-
11. What is an array? How it is declared and in
12. Explain how to access single dimensional array

13. Explain different ways of initializing one dimensional a
entation of one-dimensional-array.

d register number of a 10 students using arrays.

itialized?
elements?
rrays?

14. Explain the memory repres
15. Write a program to store marks an
16. Explain two dimensional arrays.
17. Explain declaration and initialization of two dimensional arrays.
18. Explain memory representation of 2-D arrays.

19. Write a program to add and subtract two matrices.

20. Write a program to multiply two matrices.

21. Explain the need of arrays?

22. What are the advantages and disadvantages of arrays?

23. Write the applications of arrays.

24. What is static and dynamic arrays?

SHeSHeSreéd

G Scanned with OKEN Scanner

