® Chapter Outline §

% |ntroduction

% Control Statements
&/I‘)ecision Making Control Statements
S Simple If Statement
< If Else Statement
2 Nesting of If Else Statements
S The else-if Ladder
S Switch Statement
VLoop Control Structures
S while Loop
& do-while Loop
< for Loop
‘)b’}umps in Loops
S The break keyword
< The Continue Keyword
2 Goto Statement and Labels
% Nested Loops

| % Review Questions
A

& Scanned with OKEN Scanner

7.1 Introduction ments and each statement in 5 Pro

: g Bray
ns the order in which they aPpey, 4
er of execution changed ,q Sh

e
: ing some stat
So far we have seen C-programs which contains 50

i ence
Is executed one by one in a sequence. Here, seqt!

program. In this, neither the statement are reped
in below figure.

In,
Oy

The execution of a C program {5 top/down lm
he e

inni ain() funct
’ rts with the beginning of the m : O functiop ang
(Statement 1] sta o Statement by statement until the enq of e

execu
main () is reached.

LStatementZ]! In most of the scenarios, we also need to be apj, g
specify that a statement, or a group of statements i :

i be carried out conditionally, only if some conditioy
L s e) true. Also we need to be able to carry out a statemg,

................................ (or) a group of statements repeatedly based on certy

l conditions. These kind of situations are handled by

Se— using control instructions (or) control statemep
l Statement n j (or) control structures. |
|

7.2 Control Statements

The control statements are used to control the "flow of control” in a program. The control statemes
specifies the order in which the various instructions/statements in a program should be executi

That means it determines the order in which the statements are executed.

Control Statement

[Doy — } et
{ Control Statemgf Eontrol gg)tem J
' ' | ent

——

There are basically two types of contro] statements in C, The
1. Decision Making Control Statements; i)

The decision making control statements il ot
statement is to be executed next based o € com

. hid
certain cop g Puter to take 5 Hecision as to"
2. Loop Control Statements:

ions.

The loop control statements are useq ¢, eXecute 5 Lk
Po Statement
S repeatedly.

CE Scanned with OKEN Scanner

S

Making Control Statements

. situations, it is necessary to ys s
n Y10 use some conditions to make a decision. Based on decision we

I .
nce ly a list of statem
an ecute (l)inC:tions s requien:- The control statements are used to make a decision.
) re
p to select a block of statements out of alternatives for execution

many b decision maki If
: ing. R i
ending 01 8- If the condition is true, then we execute some block of statements;

depe™, can execute som

omeI‘W‘Se We el e other block of statements. The condition is normally a comparison
el expre : control statements available with C are listed below.

1. if statement 2. if else statement 3. nested if statement

4, elseifladder 5. switch statement

the above statements are control statements or decision making statements or selection
control statements. rWe study the above statements in the following sections.

msmlple If Statement
[nsome situations, it may be necessary to carry some operations if the condition is only true. In such

ases the simple if statement can be used. Simple if is a one-way branching statement. When the
ondition of if is true, the statements present within the if block are executed; otherwise the if block

isskipped by transferring the control directly to the first statement after the if block.
The syntax of if statement begins with keyword if followed by the test expression /condition enclosed
ina pair of parenthesis. This is followed by a statement (block) as shown below.

Syntax Flowchart

if (condition)
{
S5

1

Where

4S5, may be simple statement (or) compound
statement,
% Condition may be test expression which evaluates
t either True or False. i ax
I the condition is evaluated to true, then the = ey
Statements in block S, will be executed.
[! Ifthe condition is evaluated to false, then
'S transferred to the succeeding statement after

the if-blo .
ok is simple statement, on the other hand two or more

one statement within a blo fthere is only one statement
st i compound statement.Ifthe
atements placed within a block makea p i e, for a simple statement,

Within ifl1aal. +han nn need of PUtting statement inapraces:

control

Control Sfruc:furesFL==

CX Scanned with OKEN Scanner

R ——

»

J Problem Solving Techniques ,__,.,___-——'-"’“/ —\
i St Wbt Jicsietun st R S o / \

' 1 (a==b)
{

printf ("%d", a+b);
printf ("%d", a*b);
printf ("%d", a/b);

=4

No semicolon here

4 The condition can be

1. Arithmetic Expression Example: ?f (a+5)
2. Relational Expression Example: if (a>5)
3. Logical Expression : Example: if (a>5 && b<5)
Consider an arithmetic expression as a condition as shown below.
int a = 10;
if (a+5)

printf ("\n Inside if");

Here, a+5 is an arithmetic expression and if result of a+5 is non-zero number, then conditions
evaluated to true and hence the statement following if statement will be executed.

In the above case, a+5 = 10+5 = 15 which is non-zero number and all non-zero numbers are tre
Suppose if a = -5, then - 5+5 becomes 0 and condition evaluates to false.

There is no restriction on the type of statements to be used in if-block. Therefore an if statemel
can have another if-statement, loops, etc '

—

Statement
B2 ST ,‘:3:““;‘;-: e

We may need to carry some actions based on true or false result of the condition. In such situat*
if-else statement is used. Since the actions will be ;

performed for b Its oft
condition, it is called two-way branching statement. oth true and false resu

If the condition is true, then the statements present within
the else block are executed. The syntax of if else statement
condition enclosed in a pair of parenthesis and following
separated by the keyword else as shown below. '

the if block are executed; Otherw;
consists of keyword if followed L
Which are two statements (or bl

" (condition) ik ' A S—— —
True-block statement(s); if block
}
else
False-block statement(s); }"- else block
)

..

)

@ Scanned with OKEN Scanner

pdition is true, then the true-block
ont(s) are executed; otherwise, the
k statement(s) are executed, I
case, either True-block or False-
will be executed. True-block is also
beOCk and False-block is also called
ock. In both the cases, the control is
to the first statement after the
ock. The flow chart illustrates the

e
e
lse‘blo
th

al
ansle

elst‘bl

ame-

3

Control Structures n

LT

Tl‘ll(‘-hlm‘k
Statements

False-block
Statements

[—
L

\ £

s
-

LAny other statemerﬁ[

der
if (marks >= 40)
. printf ("You have passed”);

else
printf ("You have failed");

-! oo the following code

|

,esage you have failed” will be displayed.

Em is greater than (or) equal to 40, then message "You have passed” will be displayed; otherwise, the

metent forms of if-else statements

3races are not required if only one statement is present in if or else block.

| |if (condition) if (condition) if (condition) if (condition)
statementl; { statesentl, \ statementl;
i statementl; else statement2;
statement2; { }
statement2; } statement2; else
else statement3; statement3;
statement3; } statement4;
}
e
Write a program to find largest of two numbers using if-else statement.
Hinhde <stdio.h> Qutput:
() e R
{ Enter two numbers : 20 40
int n1 n2: 40 is largest number
I Fl
Printf("\n Enter two numbers :");
SCanf(u%d %d", &nl, &nZ);
1f (nl > n2)
Printf("\n %d is largest number” nl);
else
Printf("\n %d is largest number”, n2);
: - false and therefore it executes the else block. Finally it prints

| th ab
3 40i“la\rove case, the condition (20>40) becomes
i ESt number",

@ Scanned with OKEN Scanner

- T on is even or :
, mber 18 €
wl‘il-o a program to check whether a nu

0 ich iVESthe\
: (or) odd use num /"Z'Wh- . dd rema”‘der
Hint: If a variable isnum, then to find num s e\iil;n num is even; otherwise it is odd.
vidi y he remainder is zero, \
of hum dividing by 2. If the rem S
#include <stdio.h> B
main() Enter a number :
{ s Number is 0dd
int num;
printf ("\n Enter a number:");
Scanf ("Xd", &num) ;
if (num % 2 == 0)
Printf ("\n Number is Even");
else
Printf ("\n Number is 0dd");
& = = = T —
Nesting of If Else Statemex;;t}s*. SR

onstruct (or) if-else constryct Withp
the body of if clause o within the body of else clause
Syntax
T algp (conditionl)
{
if (conditionZ)
{
statement1
Outer if's }
if block else =
{
statement ; :
...... > else block of inner if
}
L N
[else
{
if (conditionB)
statements inner if
Outer if's G SR g .
else block }
else
{
Statementq ' erif
............ else block of inn
) }

7
CX Scanned with OKEN Scanner

‘ v i | (" | 14 f
1] 1), Il the ol 1.
‘ l" 4 /]]
ek of inner i will 1 ‘
bl ‘R A | 1l
/ CLUe(
| Ta' J o, \ EGA
"Q‘[“‘)”'&“"H L, the outer if'e ol It 1, (' / 7 a
‘ W : 11's else block will be execut { j
A 1) 1Ner 0 ¥ by))
other ('l nner i Ji I'the result of § VA oy 7 i Ik of /
‘ ' 1= Pt iy ! Jrinner it is true, then the 1 p.
o 14 ”’!\\'\‘”)"‘(r' ¥ i ¥) m A
L1 / L) O 1 g | 5
‘ 7 L] " WL he Xecute f"';,
N /
< e Tru, (’ ~ N
“Condition . Ldhels i 5.8
Conc uum/u/ | £]w'v”ql/a))‘/
Londal
2 7 J\ ‘ \//,/
N ", ! Ny
| I
|
ol i s
¥ me I
tatemd j
I
| |
|
- 5 / (ested-if stat)
large \ ! A
—— —
]
|
‘i - hree number: [
- Enter nr um
’ o 1¢ the large:
ol
|
|

(¥ scanned with OKEN Scanner

Problem Solving Techniques G SR \\
E b strue 61 e, then chec,
Assume a, b, ¢ are three numbers. First check whethe;y that "a is largest”. If (a>c) is false, they W
SR . can s i
condition (a>c) or not. If (a>c) is true, then we
Can say that "¢ js largest".

on (a>b) is false, then it goes to €

b}

(c>b) is true, then

th tu . .
hat "c i largest". If (c>b) i false, then We can 53y tat b is Jayy, .
we can say that "c :

Different Forms of Nested If Statements

i ls statenieht within another if statement

Syntax =—
i iti if (marks > = 60)
1f (condition 1)
: {

if (condition 2) if (marks < 70)

{ . N wy L
statement 1; printf("First Class");
statement 2; }

}

}

2. Nesting of if-

Syntax |

if (condition 1)

else within an if statement

{ ' if (gender == ')
if (condition_z) {
{ ; if (salary » 5000)
statement 1% {
GEETENS2; Printf("You have to pay tax");
) }
else
else
: {
statement 3 :
statement 4; Printf("No tax");
} }
}
}
3. Nesting of if-else withimimiﬁ\

block of if-else statement i
" Syntax] |

if (condition 1) -
{ if (gemdep == !
{

M)
if (condition 2)
statement 1;

if (Salar\y '> 5000)
else Prints e ");
Yo ay tax
statement 2; else ("You have to pay
) Print
.F 3 n ~
else } ("No tax);
" statement 3; elea

‘___————---~__--~.~_____~EZEEE£:NO taX (HIYS . (e 4

CE Scanned with OKEN Scanner

o]
|
|
n |1\
A\ L “
|
|
|
| ols
|
|
1
| i (
|
1}
J
o) palf]
w:‘J:
ol r r

(¥ scanned with OKEN Scanner

- Qe

. e i
Write a program to calculate the simpl

N ik T B3 I ——
RN N W DA T e

L ———————

Wn the following condition” \
% :
T \

pate of interest
Principle 20%
> = 10000 10%
> = 1000 && < = 5000 15%
> 5000 && < 10000 TN
#include <stdio.hs Output: |
void main() Enter Principle & No. of years . 6680 ;
{ = !
float principle, years, rate, simpleinterest; |Pprinciple 5" §
printf ("\n Enter Principle & No. of years"); Years B3 00
scanf ("%f %f", &principle, &years); Rate = 15,00 |
if (pmpnazplj 2>9;= 10000) o Teintenest = 2700.00
else
{
if (principle > = 1000 && principle < = 5000)
rate = 10;
else
rate = 15;
}
simpleinterest = (principle * years * rate)/100;
printf("\n Principle = %.2f", principle);
printf("\n Years = %.2f", years);
printf("\n Rate = %.2f", rate);
printf(“\n Simple interest = %.2f", simpleinterest);
¥

AP Y

The else-if ladder is a multi-way decision

maker which cop
any one block is executed. The syntay of multiple choice with,
Syntax
First if -» if (condition 1)
{
statement 1;
¥
Second if -> else if (condition 2)
{
statement 2;
}
Third if -> else if (condition 3)
{
statement 3;
}

tains two (or) more else-if, from whi
else if is a5 shown below.

\

(} Scanned with OKEN Scanner

bi A - Conftrol Structures m

|r“\ if -> else if (condition n=1) ST B W
¥ { L P i v od ‘ , ; '

statement n-1;
,_I_'f - }
else > else
L {
2. statement n;
&

“ !‘ 1 }
- | A Ifthe first condition is true, then statement1 will be executed and control will be sent out of the |
= [N structure.

- Wv i !
| A Ifthefirst condition is not true, then the second condition, is tested. If the condition of second if i Is true,
] then statement2 will be executed and control will be sent out of the structure.

3
A Ifthe second condition is not true, then the third condition is tested. If the third condition is true,
r’ then statement3 will be executed and control will be sent out of the structure.

A This process continues as long as the else- 1f’s are present.
| A Ifnone of the conditions are true, then statements in the else block will be executed.
R A The else-block at the end of the structure is optional.
A [Ifelse-block is present, then at least one statement or block will defmltely be executed
t A

If else-block is not present and none of the conditions are true, then none of the statements are
executed.

,» »“5“‘

i ‘,r‘l')f ?’.J/ + 1 sment

1 ujvj, By L

G Scanned with OKEN Scanner

T A \"".A:,: \“"\'Anbﬁchwl e

y

m~ Problem Solving Techniques B itk \\

dent marks.

of a stu
tage he category of class achieveq.

Write a program to nccept percen

1w int t
Depending on the following conditions, prin
or
Condition %
per > = 75 pistinction
per > = 60 FinstRclass
per > = 50 second class
per > = 40 Third class
otherwise Fail
: =]
#include <stdio.h> Outpuf
void main() Enter the percentage : 44
{ Third class -
float percent; -
Enter the percentage : 90
Distinction
printf("\n Enter the percentage :");
scanf("&f", &percent);
if (percent > = 75)
printf("\n Distinction");
else if (percent > = 60)
printf(”\n First class");
else if (percent > = 50)
printf(“\n Second class")
else if (percent > ='4e)
printf("\n Third class");
else
printf(“\n Fail");
}
Explanation |

In the above program, if the first condition (percent > = 75) i true, then it prints "Distinction" and there !

program is terminated. The second condition (percent > = 60) is tested RSN o ndition becol®
false. The condition (percent>= 60) means (percent > = 60 anq Percent < 75). If the second condition istrv
then it prints "First class"; otherwise it test the third condition (per > = 50). If the third condition is " the
it prints ngecond class"; otherwise, it test the fourth condition (per > = 40 ¢

|
g (A is trueyt
it prints “Third class"; otherwise it prints "Fail",). Ifthe fourth condition

When we entered 44, since (44 > = 40) is satisfied ang jt has printeq o’

"Third class", i.e, Third "%

satisfied. 4_—————’///

4

& Scanned with OKEN Scanner

Control Structures nﬂ

We know that every character has an ASCII value and which
ASCII value is an integer type.

Write a program to find whether a character accepted is a numeric, lower case letter,
{PPer case letter or a special character. Print the ASCII value of accepted character.

gets printed by using %d format specifier. Because

main()

{

}

ginclude <stdio.h>

char ch;

printf("\n Enter a character :");

scanf("%c", &ch);

if (ch > = '@"' & ch < = '9")
printf("\n Numeric character");

else if (ch > = 'a' && ch <= 'z").
printf("\n Lower case character");

else if (ch > = 'A' && ch < = 'Z')
printf("\n Upper case character");

else

printf("\n Special character");

printf(“\n ASCII value of %c is %d", ch, ch);

Output:

Enter a character : 4
Numeric character
ASCII value of 4 is 52

Enter a character : A
Upper case character
ASCII value of A is 65

To find whether a character is a number, lowercase letter, upper case letter (or) blank space, we can
also use C - standard library functions. The some of the functions are listed below.

Function Name Meaning
isdigit (char) Is char is a digit?
isalpha (char) Is char an alphabetic character?
islower (char) Is char is a lower case character?
isupper (char) Is char is a upper case character?
isalnum (char) Is char an alphanumeric character?
isspace (char) Is char is a white space character?
isprint (char) Is char is a printable character?

T P :
'<he above character functions are contained in the file ctype.h and therefore the statement #include
“Cype.h> muyst be included in the program.

CE Scanned with OKEN Scanner

B

——
pm———

S~

- \
——— nmuuﬂmdlnllnunﬂuuuloworo

“ Froblam Solving Toehnlgues

/

' 0
Wrlte o progeam to find whethor (\ll:ll“l::::;:‘l‘ 0. gtandard Library l“tln\(zti(),,:f‘lott“n
WPPROT onpo lottor, ov i NI““““l charao M:__N__ ““7—‘”'“““—”—_h"\
Nln\huh\\\\dﬂ;]; T Ouﬁpum ﬁ“\\\\\\
Hinclude cetype,in inter a character i 8
Tn\ng\ Numerdc character
char ¢h; v ! g
Printe("\n Enter a character ")} Enter char‘acter: o
scant ("Xc', Ach); Lowercas@ GRARREEST
i (Lsdigit(en))
prantf("\n Numerlc character");
else {f (islower(ch))
printf("\n Lowarcase character"); .
else 1f (isupper(ch))
printf("\n Upparcase character");
else
printf("\n Special character");
}

mSwltch Statement

The switch statement provides multi-way branching (similar to else-if ladder). The switch is;
extension of if-else structure. Using if-else a maximum of two branches are allowed. If there i
need for multiple branches, nested-if can be used or else-if ladder can be used. Instead, a swit
statement can be used which is

a better choice over nested-if and else-if ladder. The swi
statement is used whenever multiple branches are required.

The switch allows the user to select any one of the alternatives depending on the value of:
expression. The expression present wi

_ thin a parenthesis of switch statement must be of thety
int (or) char. Based on the expression, t

he control is transferred to a i el and!th
the statements associated with that ca particular case lab

se label are executed. The case label must be of the !
int (or) char. The case default is executed only when none of the cases are true to the value of!
expression present in switch construct. ‘

Bgnt(x |
switch (expression)]
{

case label 1: statement 1;

break;

case label 2 : statement 2;
break;

case label 3: statement 3;

break;

;;;e label n : statement n;)
break;

default : default statements;

A IR X 3T) AL e

statement-X;

.

L ——— R —

@ Scanned with OKEN Scanner

28 Ty e
T

/ o rollow: h Control Structures
spression following t . 7 _m_-—-—
) The® P 8 the keyword switch is evaluated and which results in a constant. [fa

.. constant is compar :
)i %3 pared with each case label in sequentially until match occurs.

e expression value is
) t}tliculapr case are eXecu:eadm: as case label, then the statements corresponding to that
:] out of the switch . Subsequently, the execution of break statement sends the
contro ch-construct. Which means control reaches statement-X;

) Incase t.he expression value does not match with any case label, the statements in the default
plock will be executed. The presence of default block is optional

ion i —_—
L Ihe e-xpre551 Sho.uld be of integer type. That is it can contain variables and constants of
type int and char. Since each character has an equivalent integer value.

1l int ch = 2;

—_> -
switch (ch) valid

2. char ch = 'A';
e valid

switch (ch)

3. switch (2+(3*4))] —» is valid
Here, 2+(3*4) is an integer expression.
4. switch (3.5+2.4) is invalid

) Label after each case has to be a constant or constant expression of integer type.

case 4 :
case 'A": |, valid

case 4*2 :

case (2+43)%4 ¢

case 2.5 @
"o invalid

case "str

case 2.5+10
\ /

b
0
two labels can have same values:
not be in order.

not be enclosed in braces.

T
he'labels with several cases need

M
ore than one statement with a casé need

& Scanned with OKEN Scanner

N\
B
" \\ <
| D
|
|
|
i 1
|
‘ >
L
(
11
|
|
|
1
|
|
i e
[(

| \;
|

(¥ scanned with OKEN Scanner

E!ﬁt B (3
- -

Control Structures !
_m——-——-‘, AL

block can b i
) The default 0 ¢ placed any where in the structure, But it is generally placed at the
ond of structure.

ns i 'S
he character constants used in the case label are automatically converted into integers
(e their ASCII value equivalent)
BAL. sam
case 'A’: —=2° case 65

) preak is a keyword and used to terminate the switch construct. The control is transferred
o the first statement after the switch construct.

Elltry

| switch (Expressionjl '

statement 1

I ——_‘

Exit
m Explanation I
i Here, the value of a is 2 and it match
e > with case label 2. Therefore it prints
e "Number is 2". If the value of a is 3, then it |

{ prints "Number is 3". If the value of a is 4, then |

intf ("Number is 1895 none of the case labelsarematchingwith4ar?d
case 1: print therefore it goes to default and prints "Invalid
P "y e number”.
case 2: printf("Number is 2");
break;
case 3: printf(”Number i 3");

break;

default: printf("Invalid number");

}\ —
B e S D

L

& Scanned with OKEN Scanner

——— VARSI A \ M \ _\ ! ‘\'v‘__ ;_:.; ‘\.v\ I

: PR L
g! Problem Solving Techniques mtion \\\
m — [The above example generat%
int a = 25 HumberA 1572
, switch (a) luybere 112
{

Invalid number
case 1: printf("Number is 1");

break;
case 2: printf("Number is 2");
case 3: printf("Number is 3");

default: printf("Invalid number");

The reason is we have not used break
the case label 2. It prints ga] Subse
statements until it encounters break or
is encountered.

amr
quEnt
dehuh

} \

int a = 3; Here, the expression (a+1) ism

switch (a+1) The value 4 match with case 4 ang it pripg

{ "FOUR". The above code shows that case label
case 2: - priptEN(ETIHOZNT:

are not in order. The break at the end of cag

break; 3 is not required, because case 3 is the Jag
case 1: printf ("ONE"); statement in switch construct,
break;
case 4: printf ("FOUR");
break;
case 3: printf ("THREE");
}
m Explanation
z‘ﬂt‘-‘h (ch) ‘ Ifthe value of ¢h js either 'i' or 'I', then it prints
i "INDI.A". If the value of ch is either ‘v’ or
oy then it prints "ygn This code clearly tells th
case 'I': printf ("INDIA"); Statementg are not compulsory for any
break; labe].
case™ut;
case 'U': printf ("USA");
}

void main()

o \ 4’/
Write a program to check whether o \ el
#include <stdio.h> *——__"""‘—--______________—_-;-_-_-___¥ ;

{ ==
char ch; Enter 5 Charactep : 1
printf("\n Enter a character; "y, L is vowep
scanf("%c", &ch); E
switch (ch) fter o Character : g
(B ig

& Scanned with OKEN Scanner

Control SirudurL

case 'A'

case 'a'

case 'E'

case 'e'

case 'I'

case 'i'

case '0'

case 'o'

case 'U'

case 'u': printf("%c is vowel", ch);

break;
default : printf ("%c is not a vowel", ch);
}

}
—Explanation
In the above program, the label (A, 'a, ... 'U") of each case is compared with the variable value ch. If the case
label is equal to the variable ch, then the statements of that case are executed until the break statement is
encountered. If none of the case labels match with ch, then default will be executed and prints the message
as "character is not a vowel".

(4) Division, (5) Largest of two numbers

Write a program to perform the operations (1) Add, (2) Subtract, (3) Multiplication,

#include <stdio.h> Dubaue
void main() ’ .
{ 1. Addition
Ant @Ly by €, Chi 2. Subtraction
printf("\n 1.Addition"); 3. Multiplication
printf("\n 2.Subtraction"); 4. Division
pr%ntiz:in i'g?lFl?i;f?tlon)3 5. Largest of two numbers
prin n 4.Divisi 3
printf("\n 5.Largest of two numbers"); Enter your choice : 5
printf("Enter your choice IR Enter two numbers : 8 9
scanf("%d", &ch); bfisiiareen
if (ch < = 5 && ch > 0)
{ Enter your choice : 4
printf ("Enter two numbers)4 Enter two numbers : 20 10
scanf ("%d %d", &a, &b); el i
}
switch (ch)
{
case 1: ¢ = a+b;
printf ("\n Addition: %d", ¢);
‘ break;
case 2: ¢ = a-b;
printf ('\n subtraction: %d", ¢);
L break;

& Scanned with OKEN Scanner

m Problem Solving Technlqlml _,-,—*”//fv \

case 3: ¢ = at*b; "
prlntf ("\n Multiplication: ’
break; }
case 4: c=a/b; o B |
printf ("\n Division: %d", €);
break;
case 5: if (a»b) e |
printf ("\n a is larger");
else if (b>a) i,
printf ("\n b is larger");
else e
printf ("Both a & b are same");
break;
default: printf ("Invalid choice");

: l

—

2
What are the two different ways to implement a multl-WaY selection in C7
else-if ladder and switch

Can we use string value/variable in switch test condition?

No, switch statement works with only integer type of variables/literals like integer, short
character,

Can we have duplicate case values in switch?
Duplicate case values are not allowed.

mConditional Ope

We have already studied the condition
ternary operator is an alternative for if-

al operator in previous ch

apter. The conditiona] operator (or]
else statement, The ge

neral form of if is

if (condition)

statement1;

else TR

is same ag

condition » statementl

5 Statementz
statement2;

if-else statement

m Usdng ternary Operator
\ /
if (number % 2 == o)

printf(“Even”);
else
printf("odd")
if (a > b)
largest = a;
else is same 3
largest = b;

_

(} Scanned with OKEN Scanner

1' e I ITITRTIINTRANRRESoS==—

Control Shucwtm_'
/’ s e ——) Y A

The following code is to find the largest of three numbers.

if (a>b)
{
if (a>c)
largest = a;
else
largest = c;
}
else
{
it (oob)
largest

I
()

else

[
o

largest
}

The above code can be written using ternary operator in one line as shown below.
dargest = (a > b)-2 (@, > c 2 .a: c) 2 (bl 2c: b);

7.4 Loop Control Structures

So far, we have studied the different decision making control statements such as if, if-else, nested-if,
switch etc. These statements are executed only once during the execution of the program. In some
situations, it may be necessary to execute a list of statements more than once. In such cases, the
looping constructs are used.

Looping costruct is a construct that executes the statements repeatedly for a certain number of
times as long as the condition is true. The following are three looping constructs available with C. The
looping constructs is also called as repetitive structures.

Loops
v v Y
while loop. for loop do-while loop

Let us study all these looping constructs in detail. The following sections covers the entire concepts
of loops.

nwhile Loop

While is 5 looping construct, used to execute the statements repeatedly as long as the condition is
‘ true, The syntax of while statement with the condition enclosed in a pair of parenthesis and which
is followed by the statements as shown below. while loop is also called as "pre-tested” looping
fonstruct (or) "entry controlled loop”.

(} Scanned with OKEN Scanner

Problem Solving Techniques
e

while (condltiorl)
statement 1
nt 2;
BOdy Of Stateme '
the
Logls statement ;
| <

er TRUE or FALSE.

|l the statements in the body of loop aftx
luation of condition again.

S evaluated to eith

) The condition is basically test expression, which 1

on is true, then it executes a

) If the value of conditi
e while statement for eva

which the control is transferred to th
e condition is true.

ted repeatedly as Jong as th
d to FALSE. Then the

D Thus body of the while loop is execu

) The execution of loop is terminated, when the condition is evaluate

control is transferred to the first statement after while loop.

D Whileloopiscalledas entry-controlled loop because the condition is tested inthe beginnin

of while loop.
D The body of loop will not be executed at all, if the condition is FALSE for the first time itself

— while (condition)
{

L :|—— Body of the loop
}

D Use the keyword while in |
ower :
ey Vo case and condition should
e while statement must not end with semjco] be enclosed within parenthesis.
Colon,

while (condition) %

°°°°°°° No semicolon

O 63
.
......
L
.

C} Scanned with OKEN Scanner

|
o TR RRRRRTRRRTRRRERRARERROAIOO==TTTr

/ Control Structures m

The curly braces ar :
' I oneystat € optional when the body of the loop contains only one statement, If more
than ement, enclose the statements in curly braces.

while(i < 5) while(i<5)
14+ {
print("%d", i);
1445
}

a1 I

Consider the following code which prints the numbers 1 to 5.

i=1;

while(i<=5)

{
printf("%d", i);
i++;

}

'Explanation

Initially the variable 'i' is assigned with 1. During the first execution of while loop, the condition
(i <= 5) is tested first. Since (1 <= 5) is true, it prints the value of i (i = 1) on the screen and i value gets
incremented by 1 (i = 2). :

Now again the control is transferred back to the while loop condition. The current value of i is 2 and (2<=5)

becomes true. Since the condition is true, the body of the loop is executed again. This process continues as
when the value off 'i' becomes 6, the loop is terminated because (6 <= 5)

long as the condition is true. Finally,
oop will be executed as long as i is less than or equal to 5.

becomes false. All the statements in the while |

Me following program adds numbers from 1 to 10 using the while loop.

#include <stdio.h> Output:
void main() 12345678910
{ sum of first 10 numbers = 55

int i = 1, sum = @;
while (i <= 10)

{
printf("%d", i);
sum = sum+i;
i+4;
}
printf("\n Sum of first 10 numbers = %d", sum);

& Scanned with OKEN Scanner

e

>

Explnnntlon__]

e —————

R '(5 to 0, The while loop, i jc . *
The variable 'f' g initialized to 1 and varfables '-“”m_ lSrE]' is increased by yjftedeh ey b
variable '{' is added to variable 'sum’ and the value of 1" I

dition in while loop becomes false, The, thr:?seq'
g tio . "
and added to 'sum', When the value of 'I' reaches 11, the (.:Orf]ter while and prints the sum of 10 numbem'%‘l’
Is terminated and control goes to the printf() statement a

i
Steps performed are shown below,

while loop checks the condition e

=1, sum =0
l 1Jum") sum = sum-+i };:‘\\
Step while (i<=10) | printf("%d", 1) v g
1 while (1< = 10) = True Prints 1 SUNIEIie. = W oy
2 while (2 < =10) = True Prints 2 sum=1+2=3 f—3
3 while (3 < = 10) = True Prints 3 sum =3+3 = 6 L
4 while (4< = 10) = True Prints 4 sum = 6+4 = 10 L
5 while (5 < =10) = True Prints 5 sum= 1045 =15 L
6 while (6 < =10) = True Prints 6 sum = 15+6 = 21 L
7 while (7 < = 10) = True Prints 7 sum = 21+7 = 28 i=8
8 while (8 < = 10) = True Prints 8 sum = 28+8 = 36 i=9
9 while (9 < =10) = True Prints 9 sum = 36+9 = 45 i=10
10 while (10 < = 10) = True Prints 10 sum = 45+10 = 55 i=11‘
11 while (11 < = 10) = False e

mite a program to calculate the faétorialf of a

If'n' is a number, then factorial of n ig n! 1% 2% 3 ..o mip

=1*2*3=6

given number ﬁsing while loop.

by ne=3, 31

if ns=4, 4l=1*2*3*4=24
oo Dl b Basdodi2 o Qi ARM B 100
#include <stdio.hs —

void main()

_ Output;

{ Enter the number: 4
int n, fact = 1; Factorial of given number is 24
printf("\n Enter the number; "),
scanf("%d", &n):
while (n >= 1) ,

{
fact = fact * n;
{=r)
}
} printf("\n Factorial of given Numbep §¢ %d" fact),

@ Scanned with OKEN Scanner

|

Control S"uduresL

@;El—aination

Initially fact = 1 and Assume n = 4

. w that factorial

w:;k?zach iteration Of‘\’;}i‘_;‘ll{’ﬂber means product from 1 to that number. The variable 'fact’ is initialized to
.1‘ otion When 'n"value b — o t'he fact is multiplied with n and 'n’ value gets decremented by 1 at each
iteratiotl. ecomes '0', then loop terminates and prints the factorial of given number.

~ Jteration while (n>=1) fact = fact* n n--
___,—1 while (4 >= 1) = True fact=1*4=4 n=3
B 2 while (3 >= 1) = True fact=4* 3= 12 n=2
B 3 while (2 >= 1) = True fact=12*2-124 n=1
4 while (1 >= 1) = True fact=24%1=24 =0
5 while (0 >=1) = False =z ——

Write a program to reverse a number.

#include <stdio.h>
void main()
{
long rev, num;
int digit
printf("\n Enter the number:");
scanf("%1d", &num);
rev = 9;
while (num>®@);

{

Output:
Enter the number: 1234

The Reverse of a given number = 4321

digit = num %10;
num = num/10;
rev = rev*10+digit;

}

printf("”\n The Reverse of a given number = %1d", rev);

@ﬁaﬁaﬁon
The statement digit = num
erformed are shown in the following table. Initially assume num = 1234 and rev = 0.

9% 10 gives the remainder and num = num/10 gives the quotient. The iterations

@Op while (num > 0) digit = num %10 num = num/10 rev = rev * 10+digit

1 while (1234>0) = True |digit= 1234 %10 num = 1234/10 rev=0*10+4

' digit = 4 num = 123 rev =4

2. while (123>0) = True - |digit=123%10 num = 123/10 rev=4*10+3
— digit =3 num =12 rev =40+3 =43

3 while (12>0) = True digit = 12% 10 num = 12/10 rov =43 * 10+2
— digit = 2 num = 1 rev = 430+2 = 432

4 while (1> 0) = True digit=1%10 num = 1/10 rev =432 * 10+1

digit=1 num = 0 rev = 4320+1
=4321
) while (0 >0) = False — — -

The last value of rev is the reverse of a given number 1234, Print this number using printf()

| Statement.

& Scanned with OKEN Scanner

ml Problem Solving Techniques

i i
Write a program to find sum of d

e \\x- T R —

gits 0

Suppose n = 1234, then sum of the digits of the number

Wm Find the | am

Repeat this process until num h(.(Orm

] . / 'rlﬁ
using digit = num 9% 10 and add this digit to the va ariable sum <
#include <stdio.h>
void main()

{

int num, digit, sum = 0;

printf("\n Enter the number:");

scanf("%d", &num);

while (num > @) —

{ Output: |
digit = num % 10; Enter the number : 1234 !
sum = sum + digit; ; . |

igi f given number is 19
num = num/10; TheFsunioffc1etesion € —

} . " L4

printf ("\n The sum of digits of given number is %d", sum);

} — |
Explanation
Assume n = 1234, sum = 0. The each iteration is explamed as shown below.
By
Iteration while (num)O) sum = sum+d1glt num = num 10
1. while (1234 > 0) digit = 1234 %10 sum = 0+4 num = 1234/10
digit = 4 sum = 4 num = 123
22 while (123>0) = True digit = 123%10 sum = 4+3 num = 123/10
digit=3 sum = 7 num = 12
3. while (12>0) = True digit = 12%10 sum = 7+2 num = 12/10
digit = 2 sum =9 num = 1
4 while (1>0) = True digit = 1%10 sum = 9+1 num =1/10
digit=1 sum = 10 num =0
5 while (0>0) = False — o
The last value of sum = 10 js printed usi
sing the printf() statement A
Consider the following code s

while (a)
{

Printf("%q»
a3

a):

\%

s |

@ Scanned with OKEN Scanner

J

Control Struciures m

nce while loop gets executed. If the variable 'a" becomes 0, then loop gets
terminalt‘d. Any non-zero value is considered as TRUE and zero is considered as FALSE. The above code

prints the values from 10 to 1. Once the value of '3’ becomes 0; then the condition becomes false. Observe the
following code.

mlo 'a' is non-zero and he

while (@)

{
printf("Hello");
printf("Hai");

}

The constant ‘0" indicates FALSE, So, the body of the loop will never get executed. The control will not be
transferred inside the loop.

while(1)

{
printf(“Hello");
printf("Hai");

}

Here, the constant 1" is TRUE, So, the body of the loop will be executed infinite number of times. Only way to

terminate the loop is by using break / return based on some condition within the loop. Consider the following
code carefully.

a = 3;
while (a <= 5);
{
a++;
}

There is a semicolon (;) at the end of while. It means as long as (a <= 5) do not do anything. It waits infinitely till
the above condition becomes false which will never happen. It is an example of an infinite loop.

m0-whﬂe Loop

In while loop, the condition is tested in the beginning. If the condition becomes false for the first time,
then the body of while loop will not be executed even once. In some programming situations, we
may require to execute the body of a loop at least once even though the condition is false for the first
time. In such situations, do..while is used. This structure is also called as the "Post-tested" looping
construct or "exit-controlled loop".

The condition is tested after executing the body of the loop for first time, If the condition is true, then
body of the loop will be executed again. If the condition is false, then the control is transferred out of

vthe do..while construct. i.e., the body of the loop will be executed again and again until the condition
becomes FALSE.

The Syntax of do..while is shown below.

The body of the loop is executed first. At the end of the do..while loop, the condition is tested. If this
Ondition results to true, then the body of the loop is executed once again. This process continues
‘}as‘ long as the condition is true. When the condition becomes false, the loop will be terminated and
“Ontrol reaches the statement -x.

|-
& Scanned with OKEN Scanner

R R A R NN

m Problem Solving Techniques e \\
The semicolon is required at the end of while. b \

do
{
printf("%d", 1);
i"“j irad
} while (i > @);. <—— semicolon require
=13
Syntax T
art
{
statement 1
statement 2
}
while (condition);
statement-x;
MOnsider the following program which prints the numbers from 1 to G
#include <stdio.h> ‘ ——
Output:
void main() : n:vpgef
{ 12345
int i ,=s.4%
do
{
printf("%2d", i);
its;
} while (i <= 5);
})
AL AR s D i —
Explanation]

The program first initializes the value of the variable 'I'to 1. Then ¢o
which prints the value of i (prints 1), then the valye of 1becomes 2 No
(2 <= 5) becomes true. This process is continued until the valye of‘ L
the loop is terminated. The iterations are showeq in the follo

ntrol reaches to printf() statement”
W the condition s tested in the whil an‘:
becomes 6 and (6 <= 5) becomes false,’

‘ — wing table. Initjally - 1.
Iteration printf ("%2d",1) | 2 = 1 L e
: - S SN o while (i<= 5)

1 Prints 1 i e

2 Prints 2 i=3 while (2 <= 5) = True

3 Prints 3 = While (3 <= 5) = True

4 Prints 4 =5 while (4 <= 5) = True

) =6

Prints 5 : Wwhile (5 <= 5) = True

@ Scanned with OKEN Scanner

R e

Control Structures !I!

The followin
g pro : :
— gram demonstrates the execution of statements in do..while exactly

P —

ginclude <stdio.h>

yoid m2in()
{
int i = 10;
g0 Output:
{ 10
printf("%d", i);
iss;

} while (i <= 5);

}

n

We can observe that the statements within the loop executed for the first time even though the condition is
glse. First it has printed the value of i = 10 and value of i has incremented by 1.i.e, i = 11. Then it has tested
the condition (i <= 5) and i.e, 11 <= 5 which is false and loop is terminated.

The following program accepts a number from the user, displays digits and finds
sum of digits in the number.
Finclude <stdio.h>

void main()

{

Output:

Enter a number: 345

1 . Digits in the number are... 5 4 3
int num, digit, sum = ©;
The sum of the digits are 12

printf(”"\n Enter a number :");
scanf("%d”, &num);

do

{

digit = num %10;

printf("%d”, digit);

sum+digit;
num = num/10;

} while (num != 9);

sum

]

: printf(”\n The sum of the digits are %d", sum);

&

l : Initially sum =0, and assume num = 345.

} . m = nllm %10 printf("o/()d")digit) Sum=sum+digit num:numllo
I digit =345%10=5 print 61 sum=0+5=5 num = 345/10 = 34
i digjt=34 %10 =4 prlnts 4! sum=5+4=9 num=34/10= 3

:. digit=3%10=3 prints '3 sum=9+3=12 num =3/10=0

;'ﬂle third iteration, the value of num becomes Zero and hence the loop is terminated.

& Scanned with OKEN Scanner

m Problem Solving Techniques —

it Controll .
What1s the difference between Enm,c()ntrolled and Exit Contro em
1at is the er

In Entry Controlled Loop, loop body is checked after Chec}ll('llng' tge.tegt Conditioni
n Entry Controlle) ; B e i
conditi:n is checked first after that loop body 'w111 etX:‘:r‘:dition e Olleq ,
loop body will be executed first after that loop’s tes

4
0%

Example: Entry Controlled Loops areé : for, while

The for loop is also called as "Pre-test loop" or "'Fixed-execution loop”. The for loop is the modif,
form of a while loop. The for loop is especially used to execute the statements for a certain nyy,
of times. This loop simplifies the program as well as can reduce the number of statements. In a

Exit Controlled Loop is : do while.

=

loop, before the condition is tested, all the variables used in the condition are initialized. Ina forloy

the variable initialisation can be done in the for statement itself. The general syntax of for log;
shown below.

Syntax

for (Expressionl; Expression2; Expression3)
{
statementl;

statement2;

statement-x;

Where Sk |
< Expression 1 is initialization
S Expression 2 is the conditional expression

S Expression 3 isan updation. Which may be assi "
. assignm . eSSl
(or) decrement expression, ghiment statement (or) increment expr

S Conditional Expression: This s gener
as long as the conditional expressiop is

o Updation: Which Updates the valye of |

o, - . . oyect®
i ational €Xpression. The for loop i g

& Scanned with OKEN Scanner

Control Structures Ei!
/—- o :

Usually expression 3 changes the variables
used in the expression 2, The expression 2
is checked again and the process is repeated.
The body of the for-loop will be executed as
long as expression 2 is evaluated to true. Once
expression 2 is evaluated to false, control goes
out of the for loop and statement-x following
for-loop will be executed. The flow chart of for-
loop execution is given below.

| Body of the lo%]

| Expression3 |

Let us consider a simple task of displaying the even numbers from 2 to 10.

initialization Condition Updation
for™ (dN="25 IWLSR O g I TR
{
printf (" %d", i);
}

A When the control enters the for statement for the first time, the loop variable i' is initialized to 2.
Initialization of loop variable is done only once at the beginning of first iteration.

A Then the control reaches to the conditional expression, The condition (i <= 10) is tested and (2 <= 10)
is true, So, the body of loop is executed by printing the value 2,

A After executing the body of the for loop, the control reaches to the Updation statement. Where the
value of i is incremented by 2. Now 'i' becomes 4.

A After executing the Updation statement, the control reaches to the condition again. Which checks
the condition (4 <= 10) and it evaluates to true. Then again body of the loop is executed by printing
the value of i (i = 4).

A This process is carried out as long as the condition is true. Once the value of ‘i reaches 12, then loop

is terminated.

Qhe above code prints2 4 6 8 10

CX Scanned with OKEN Scanner

———-.wm Problem Solving Techniques

R

for (1 = 1; 1 ¢m 5; L)

4_________________—77_;1uare&
. ; T — along with theirsq
Consider the following code which prints the first five numbers along

{
prontf("\n Number = Xd square = %d", 1, 1 * 1)
}
The Output would be
Number = 1 Square = 1
Number = 2 Square = 4
Number = 3 Square = 9
Number = 4 Square = 16
Number = 5 Square = 25

A The value of'i' is initialized to one for the first time when execution starts in the for loop.

A The condition i <= 5 is tested in each iteration. Initially the condition is true since the value ofiis1,
Then the statement following the for loop executes.

A The printf statement prints the value of i and square of i (i.e 1 and 1)

A Upon execution of printf statement, the compiler sends the control back to the for loop where the
value of i is incremented by one (i becomes 2)

A The new value of i if exceeds 5, then control exits from the loop. ‘
A The printfstatement executes as long as the value of i is less than or equal to 5.

ations of for loop

We know that for loop in its general form consists of initialization, conditional expression an
updation of loop variable. However certain modifications are permitted to suit different situations

P Loop variable can be of type int, float or char etc., and the u
be done by incrementing (or) decrementing.

pdation of the loop variable &

float f;

{

}

for (f = 210 51 TR 10.5; f = 'F+1.0)

printf("%f", £);

p Thevar

int 1i;
1=1;

{

}

The initialization statementi= 0 is shifteq fy

for (5 1 <= 5; 4 44

Pr‘intf("%d--, i);

iables which are initialized in the initialization can pe written above the for [00P®
ove the

om for | : p
However the semicolon (}) must precede tj, 00p to a location prior to the state™’

€ conditiona) expression

4

& Scanned with OKEN Scanner

(¥ scanned with OKEN Scanner

mwlem Solving Techniques e lue Ofi Fem\
(— *He fy,

{

void main()

Write a program to fing sum i e
of natura)] numbh
FII!’!!!HI!II[:: er :
#include <stdio.h> S Up to given number us

ce the va
‘minate the loop: OD

Here, the keyword break is used to terminate ctions.

; eak in further s€

loop is terminated, We study about br hat the body of the loop is €mpty,

indicates t
The semicolon at the end of for statement indi

for (1= 1; 1 <= 5; 1 +4);
{ " 1)°*

printf("%d", 1);
}

The output of this statement is only 6. The reasonis, the semicolon at tf-xe end o.f for statemem
indicates that no statements under for. The for loop is executed 5 tlm-es without enterip,
into the printf() statement. Once the value of 'i' reaches 6, then control is transferre, the
printf() statement which prints the value 6.

More than one variable can be initialized within for statement and also more than e
updation statements can be used in for statement as shown below.

for (i =1, j = 10; i <= 10; i++, J++)
{

printf("\n %d Lol by 9)A
}

int num, sum, i;

3

printf("\n Enter the number of te

rms: "y,
scanf("%d", &num);
sum = 9;
for (1 = 1; i<=n; i++)
{

sum = sum+i;
}
printf("\n Sum of series = %d" sum)

3

I)

& Scanned with OKEN Scanner

Control S'rucfurm—_

P —

Write a pro
program to find factorial of a given number using for loop.
ginclude <stdio.h>
void main() Output:
{ Enter a number : 5
e R Factorial of 5 is 120
printf ("\n Enter a number :");
scanf ("%d", &num); :
for (i = 1; i<=num; i++)
{
fact = fact*i;
} : |
3 " . o - |
printf("\n Factorial of %d is %d", num, fact);
} |
ﬁ
Mrite a program to calculate sum and average of five subjects for five students.
#include <stdio.h> v ‘
void main() . I
(Enter the marks of five subjects of student [1] : \
' ! 65 68 72 86 54 “
int ml, m2, m3, m4, m5, sum = @, 1ij; ‘
Total marks of student [1] : 345 ‘
float avg; o o ‘
A % g
e (G = 5 £ G B fe verage marks of student [1] : 69.60 ;
{ |
printf("\n Enter the marks of five subjects of student [%d] : \n", 0%
scanf("%d %d %d %d %d", &ml, &m2, &m3, &m4, &m5);
sum = mil+m2+m3+m4+m5;
avg = sum/5; ;
printf("\n Total marks of student [%d] : %d", i, sum) ; f
printf("\n Average marks of student [%d] : %ol CIUSETESEaV &) ‘
} |
}

Mrite a program to check whether a given number is prime or not. '
Prime number is one which is divisible by 1 and by itself. Numbers 2, 3,5, 7, 11 ... are prime numbers. To test '
the prime property of a given number, the number must be divided by all the integers from 2 to half of the number |

itself, (or it can be divided from 2 to square root of the number itself). If remainder becomes zero, then number
is not a prime, If all the numbers between 2 and half the-number does not divide the number equally, then the

| number is prime number. |
#include <stdio.h> A |
void main()

{

int‘num, i, flag = 9;
printf("\n Enter a number :");

scanf("%d", &num);

for (i = 2; i <= num/2; it+)

CX Scanned with OKEN Scanner

Problem Solving Techniques —— —

: Output:\
{ E
if (num %i == 0)

nter a number -

11
{ The number is Prime
flag = 1;

break;
}

}
if (flag == 1)

Printf("\n The number is not prime");
else

printf("\n The number is prime");

}

0

While executing any loop, it becomes necessary to skip a part of the loop or to leave the loo
as certain condition becomes true, thatis

one statement to another within a loop a
We may come across a situation where

aloop. The break (or) goto statement
of loop) and the continue sta

mrhe break keyw

We have studied the keyword break
switch construct. Looping constructs

as the condition is TRUE. Execution of a
evaluated to FALSE.

But in some situations, we may require to terminate the loop based on specified condition before to
the condition is evaluated to FALSE.

P as soop
called jumping out of loop. C language allows jumping frop

s well as jumping out of the loop.
we need to terminate the execution of a loop (or) skip part f

can be used to terminate the execution of a loop (j umping oyt
tement can be used to skip part of a loop.

ate any of the loopin constructs. Thi di used
in connection with if within a looping construct, The keyw%rd bre sheeseord s o
is present. The flow of execution of br

ak terminates the loop in whichit
eak statement is showr below, y
R diti : e R
while(condition) do G, S —
{ { .
if (condition) 1f (Condition) ;;'é..';:;:;;;
break; break; conditi
....................... ~L o break;
i) } while (condition) .
statement-x; Statement b SO | | R s, G L T
}
— statement-x;
(a) .
(b)
\\“L__,/

& Scanned with OKEN Scanner

b

Control Slruclurnm__

—
Consider the following code,

printed only 1 and 2.

1wy
while (1 <= 5)
{
1f (i (1] 3)
break;
prontf(Rd", 1);
Lok

)

The above codcj prints the output as 1 2, Once the value of 'I' become 3, then it checks the condition in if, the
condition (i == 3) becomes true and break is executed which terminates the execution of the loop. Hence it has

Example 2

Consider the folloWlng code, |

AR
for (5 3)
{
printf("¥d", 1);
T
if (i==6)
break;

}

The for (; ;) statement is called infinite loop since the condition is omitted. To terminate the loop, we must
use break keyword. The variable 'I' starts with one, and incremented by 1 each time. When i becomes 6, the

condition of if is satisfied, and thereby the loop is terminated.

mh‘ °tQ9Nlpge K‘?XWQ_I’&{ o

In some situations, we may require to s

kip a set of statements from particular point in the body of

the loop upto the end and control is to be taken back to the beginning of loop for the next iteration. In

such situations, we can use continue keyword.
When the continue is encountered, it transfers the control back to the loop condition by skipping the

rest of the statements of the body of the loop. The continue works only with loops. The keyword

continue cannot be used in switch constr

1°°Plng constructs is shown below.

uct, The transfer of control of continue statement in the

if (condition)

;‘hile(condition) do for(exprl; expr2; expr3)
{

PR R RN U BB)

if (condition)

continue; continue; continue;
| 047 O T D S la s gIs At) P T T e WY (Y O | e ¥ T AN TR LS CRCRCRCIE
i)} while (condition);
| Statement -x; statement-x; statement-x; \
" c
LN (a) (b) (

if (condition)

@ Scanned with OKEN Scanner

Consider the following code.

for (1 = 1; 1 < = 55 i)
{
if (i == 2)
continue;
printf("%d", 1);
}
Theabovecodegenenﬁestheoutputas

1883453

When the value of 'i' becomes 2, the condition (i == 2) is satisfied and continqe statement .is executed ang
control goes to next iteration of the loop. After which 'i' becomes 3 and (3 <= }?) is ;rule anq 3 is printed in the
imi i i i omes 6, then the loop is terminateq
body of the loop. Similarly it prints 4 and 5. When the value of 'i' bec p ted
C

onsider the following code

sum = @

for(i = 1; i <= 100; i ++)

{
LFN(IR%$28==H0))
continue;
sum = sum+i;
}

printf("Sum of numbers = %d"

In the above code, the for loop determines Sum of numbers upto 100, skipping 2!
numbers divisible by 2. Whenever the value of i is divisible by 2, the statement

sum = sum + i is skipped and control is sent back to the beginning of the loop for the next iteratio?

> sum);

So, finally the above code is used to sum all odd numbers fr
. om 1 to 100
. /
. = /
What are the jumping statements and hoy these work?
Jumping statements are used to transfer Program contro] to one location to other |ocatio™
Example: goto, break, continye ‘
\ ‘//
What is infinite loop? e B
A loop which is never finisheq is kno oS
Wn as infipj o . jtion
always true, so that loop neyer terminate nfinite loop, it means the looping cond!
Example: while(1) { printf("He“o..)' }

R e s — RO G e

CE Scanned with OKEN Scanner

o e
,I, ‘,I

R

Control Structuros nl.

Can we use continue statement without using loop?

do while

error "misplaced continue",

No, continue statement can only be used within the loops only, it can be any loop while,
or for. If we use continue statement without using loop , there will be a compiler

“Goto Statemenf aﬁd Labe'ls

The goto statement is known as jump statement in C. As
the name suggests, goto is used to transfer the program
control toa predefined label. The goto statment can be used
to repeat some part of the code for a particular condition.
It can also be used to break the multiple loops which can't
be done by using a single break statement, However, using
goto is avoided these days since it makes the program less
readable and complicated. In practice it is always easy to
write code without goto statement.

.._(goto Iablenarﬂ

’(Statement)

The goto statement allows us to transfer control of the ,f(StatementJ
program to the specified label. The goto statement moves !

the execution of the program to another statement. The
transfer of the control is unconditional and one-way.

Alabel is a name that is formed with the same rules as | { labelname: J

variable names, and must be immediately, followed by a [__Statement

colon. The label is placed directly before the statement to

which the branch is to be made, and must appear in the | ' -
; (Statement J

same function as the goto.

The label is an identifier. When the goto statement is
encountered, the control of the program jumps to label:
and starts executing the code.

__Syntax
80to labelname; goto start;
labelname: statements to be executed start: printf ("This is labeled statement");

The aboye example will cause the program to branch immediately to the statement that is preceded by
the lahg start. This label can be located anywhere in the function, before or after the goto statement.

| ' .
' ';rhe use of goto statement is unstructured programming. Moreover, use of goto statement leads to
. efficient code being generated by the compiler.

The ryjes for label :
D Must be defined within a function.

D Each label in one function must have a unique name, It cannot be a reserved C word.

(} Scanned with OKEN Scanner

mm°b'°m Solving Techniques man use the same Nam
O
i

els,
tantifiers and 1ab
P C has a separate namespaces for identifiers @

variable and a label. «abeled statement”.
P Must be followed by a statement. It is called as "1d have a unique name within that fuy
P Labels has function scope. Therefore the label mU.St s defined. "ty
and is not accessible outside the function, where it wa | of the program “jumps” to
Note : When the control reaches the goto statement, the cqntro hes the labeled statement e.lahe-
Then the execution continues normally. If the execution reac Withy,

: o o er.
a jump the program will execute it just like any oth :
er is an even or odd using gotm

m Write a program to check whether a numb \
#include <stdio.h» - Output: |
\{lOid g Enter a number : 5 |

int x; 5 is a odd number
printf("Enter a number"); ‘
scanf(%d", &x);
if (x%2 == 09)
goto even;
else
goto odd;
even:
printf("“\n %d is a even number");
return;
odd:
printf("\n %d is a odd number");
}

mue a program to to print multiplication table of N using goto statement.
#include <stdio.h>
void main() Output:

{ :
35
int count,n,result; Enter number
SR - 5
printf("Enter number: "); 5*2=160
scanf("%d",&n); S % 3 =15
5 %4 =20
count=1; 5 *5 = 25
DIRN =
start: 2 8 2e
if(count<=10) S*7=35
{ 5 % 8 = 40
result=n*count; , 5 % 9 = 45
printf("%d * %d = Xd \n":n,count,result)' SR = 0
count++; !
goto start; ,
}

(} Scanned with OKEN Scanner

. (T -
|
|
|
|
|
I
|
|
|
|

(¥ Scanned with OKEN Scanner

T

2 e e | oA 1
control I“h{'—]”.!“

(¥ scanned with OKEN Scanner

e
cadl
" R ERTRRRRRURRRRRIRRRRAIRNRA NS

/—-’ﬁ , - Control Structures x!

consider the following code.

e S N
for (i = 1; i <= 3; i++)
{
for (3 = 15 j<=5; j++)
{

printf("\n' i = %d j=%d", i, j);

}
The above BICEE has nesting of two for loops. The outer loop variable 'i' is initialized with value
1, the condltlon' (i <=3)is tested and since it is true the control shifts to inner loop The inner loop
variable 'j' is initialized to 1 and (j < = 5) becomes true, then body of the inner loop is executed by
printing the value of iand j as 1 and 1. The body of inner loop is executed 5 times for i = 1 and again
inner loop is executed 5 times for i = 2 and again inner loop is executed 5 times for i = 3. The sample

output is.
i=1j=1 ' i=2j=1 i=3j=1
i=1j=2 : i=2j=2 i=3j=2
i=1j)=3 ‘ i=2j=3 i'=3!j=13
i=1j=4 i=2j=4 i=3j=4
1=300=8 i=2j=5 =3 j=5

Write a program to print the multiplication table of 1 to 10.

#include <stdio.h>

void main()

{
L) by 55
for (i = 1; i <= 10; i ++)
{
for (j = 1; j <= 185] ++)
{ . .
printf("\n %d * %d = 7 LIS R0 D
}
}
}

e inner loop is executed 10 times. When i = 1, the inner loop

ted and control is sent back to the outer loop. In outer loop
of iterations is 10 x 10 = 100.

In the above nested loop, for each value of | th

EXecutes 10 times after which inner loop is termina
the value i’ becomes 2 and again inner 100p is executed 10 times. Total number
hen the value of 'i' becomes more than 10,

Mr loop is terminated W

& Scanned with OKEN Scanner

Problem Solving Techniques / : %

jables using nested f, \

ddition of three loop varid 5 10098. 1

Write a program to perforﬂli‘______/"__'_"—f/———\\
AN " 41 o

#include <stdio.h> 4
main() =t =il k = 1 sum = 5
{ IR=A 1 = TR KE= 2 sum = 4
e Sl Sl (<8 A= RS =F] sum = 4
fo : -J1-" = 2; i++) /* outer loop*/ |3 =1 j=2 k=2 sum=<gq
r‘(l—,1<—, 1=2]=1 k =1 SUm:4
! =p1aeld =82 su
R R R * middle loop*/ |i =2 J = m=s
WP () 2 alg 3) &= 23 9f) / 1=23=2'k=1 sum = s
! =2 k=2 sum =
for (k = 1; k <= 2; ke+) /* inner loop*/ i =2 J %
{
printf("\n i = %d j = %d k = %d sum = %d", 1, 3, kK, (1#3+K));
}
}
}
} T
Explanation

For each value of i, middle loop executed 2 times and inner loop is executed 2 times. The outer loop executes

two times. Therefore total number of iterations = 2 x 2 x 2 = 8. The following table shows the execution of the
above program.

Outer loop - AT i ! arial
EibiE : myddle loop variable mnel" loop var.}abl'e. e o
=il = e
i=1 oy .
IER R T
k=2 sum =5
j=1 k=l gt
> ‘ k=2 sum=5
=2 k=1 sum =5
R=)

. s . , sum = 6
Wheni=1,andj=1, t.he inner loop executes 2 times, Similarly whep i=1and j i m
times. The outer loop is terminated when i becomes 3, T

- \
Write a program to displam ' %
* = D€ stars as shown below, B
* *
* * ¢
* - * i
* # g 3 ;

M - OO .

& Scanned with OKEN Scanner

e
o
c
c
©
(%)
n
=
i
4
o
=
=
=
o
9]
=
=
©
5]
n

