e ———— T ——
—— R A AR 1) 2

| Chapter Outline §

pe—

m———

Introduction

C Character Set
C Tokens
Keywords
Identifiers
Constants

M/ariables

% Data Types

% Declaration of Variables

& F & FEE

% Assigning Values to Variables
% Defining Symbolic Constants
% Defining Variable as a Constant

% Review Questions

) 4

\m’blom Solving Techniques T

All of us would agree that we began our journey of]earning EngllSh language b)’ first le'armng
alphabets which are the basic building blocks of English language. There alphabets were combinedy,
form words, words combined to form sentences, sentences combined to for paragraphs & paragraph,
combined to form a story, Obviously, we could not have written a story without knowing the alphabe
and words in English. In a similar way, we can't write a program in C language without knowing th,,
characters and token of C language.

Q'Phabets and Digiq (Alphabets, Digits and Special Symbola

\ '
| Words and Numbers ﬁonstants, Variables, Operators, Keywords l

y

| Sentences [Statements and Instructions

y
| Paragraphs ' Programs '

In the previous chapter, we discussed the programming structure of C programs. All programming
languages are designed to support certain kind of data, such as numbers, characters, strings etc; to E
get useful output known as information. A program is a set of statements, which will be executed in a
sequential form. These statements are formed using C character set, identifiers, variables, data types,
constants, etc,. The main objective of this chapter to introduce these basic elements which are used
for C programming.

Bl .

)

datatypes

Collection of these g

elements are

variables ~aJ|
nothing but statements

0
e

operators

y
l statement] l sta:ement l l statemenTl Lstatement

collectionof
statements
isaprogram

>

Program

C Programming Basic Compum_—

I —

racter set of a language
taken from Engl

Cha .is set of all the symbols used to write a program in that language. They
have been ish language. We can think of the C character set consisting of all the
characters one could type on a standard English keyboard: for example, the digits; uppercase and
Jowercase letters; and special characters such as +, =, <, >, &, and %. The C character set is used to
form words, numbers, statements and expressions.

The characters in Care grouped into four categories.
1. Letters / Alphabets

3. Special Symbols

2. Digits
4. Whitespaces

mabets Uppercase Letters (A,B,C,D .. X, Y,Z)
Lowercase Letters (a,b,c,d, ...x,y,2)
Digits All decimal digits - 0,1,2,3,4,5,6,7,8,9
s e —
white Spaces blank space, horizontal tab, carriage return, new-line, form-feed
mmbols ' Comma & Amphersand
Period or dot 2y Caret
; Semi colon * Asterisk
Colon - Minus
? Question mark + Plus
‘ Apostrophe < Less than
“ Quotation mark > Greater than
! Exclamation mark @) Parenthesis left/right
| Vertical bar (] Brackets left/right
/ Slash {} Braces left/right
X Back slash % Percent
~ Tilde # Number sign or hash
i Underscore = Equal to
Dollor @ At the rate

Note

statements.

next chapter).

4 A-Zand a-zare used for naming variables (identifiers) and keywords that intern are used for building

4 The numbers 0 - 9 are used for forming numerical constants and are also used for naming variables.

4 Special characters such as +, - * etc are used as arithmetic operatorsand <,>,!, &&,||,!=etcare used
asrelational and logical operators. (more information about the types of operators is available in the

1 Keywora, T = TmT

n Pevmimem Luirmg Tevrtiseat

known as C Token,
ic elements of Care
One or more charocters grouped together to form basic

et SOE Somee

- = e TS anlid ol -

il e ETWOTLS -,".-‘«--‘ ma -
r e S TaEEOes —4
The C wikens indiude identifiers, comsiants, va
’ - e £ - P - -
Lyrn e
e
C Tokens

\
t
:
} }) | z -——'""K 0_:_}9,_&
k wdi] l Constants | Variables :
5)
|
b
e

] . Tred tn fn :
We know thas one€ or more characters are grouped to form
! £ | —
which intern are used for build ngd ra

H
3

C Tokens
Character keywords, constants
e variables, operators etc.

The tokens of 2 language are the basic building blocks that can
token can be a reserved word (such as int or while

be put together to construct programs. A
"Prugramming'), ade

). 2n identifier (suchas b or sum). a constant (such as 25 or
limiter (such as } or :) or an operator (such as + or =).

Every word in C language is classified as either a keyword or an identifier

The keywords are reserved for guage. .When keywords are combined
with the formal C syntax, it forms the C programming language.

The variables should not be named with any of the keywords because all the keywords in C have fixed
meaning and they cannot be changed, -/

Important to Know

All the ke

ywords are lower case letters, Thusintis a ke
Keywords are

All the

yword butIntand INT are not.
also called as reserved words.

> > > >

keywords have pre-defined meanings. They cannot be red

efined or used in other contexts.
Keywords are reserved, that is,

R

We cannot use them as identifiers

C Programming Basic Concoplsm—
/]]

Resel"’ed C l{eywords
:Keyword Description
asm Keyword that denotes in line assembly language code.
auto The default storage class.
break Command that exits for, while, switch, and do...while statements unconditionally.
case Command used within the switch statement.
char The simplest C data type.
const Data modifier that prevents a variable from being changed. See volatile.
ﬂtinue Command that resets a for, while, or do...while statement to the next iteration.
default Command used within the switch statement to catch any instances not specified with
a case statement,
do Looping command used in conjunction with the while statement. The loop will always
éxecute at least once.
double Data type that can hold double-precision floating-point values.
else Statement signaling alternative statements to be executed when an if statement
evaluates to FALSE.
enum Data type that allows variables to be declared that accept only certain values.
extern Data modifier indicating that a variable will be declared in another area of the
program.
float Data type used for floating-point numbers.
for Looping command that contains initialization, incrementation, and conditional
sections.
goto Command that causes a jump to a predefined label.
if Command used to change program flow based on a TRUE/FALSE decision.
int Data type used to hold integer values.
long Data type used to hold larger integer values than int.
register Storage modifier that specifies that a variable should be stored in a register if
possible.
return Command that causes program flow to exit from the current function and return to the
calling function. It can also be used to return a single value.
short Data type used to hold integers. It isn’t commonly used, and it’s the same size as anint
on most computers.
signed Modifier used to signify that a variable can have both positive and negative values. See
unsigned.
sizeof Operator that returns the size of the item in bytes.
static Modifier used to signify that the compiler should retain the variable’s value between
the function calls.
| Struct Keyword used to combine C variables of any data type into a group. I
switch Command used to change program flow in multiple directions. Used in conjunction
with the case statement.

——uhoblom Solving Techniques

{‘\'P(‘(ll" —] Modilier used to create new names for (-xlr,”n” variable and function lypf.'fi.
H S - = —
|

Kl-ywuuliu'.l'd to 7Jl!r:w multiple variables to share the same memory space.

| union)
i“unsignvd | Modifier used to signify tlmlr.a v.;l'i_z;llc- will contain only positive values. See signed,
5[void Keyword used to signify either that a function doesn’t return anything or thata pointe, ;
[being used is considered generic or able to point to any data type. , '
' volatile Modifier that signifies that a variable can be changed. See const. 1
while Looping statement that executes a section of code as long as a condition remains T%

A Cidentifier is a name given to a variable, function, or any other user defined item. An identifier
starts with a letter A to Z, a to z, or an underscore *_‘followed by zero or more letters, underscores,
and digits (0 to 9).

In C, the names of variables, arrays, functions, labels and various user-defined items are called
Identifiers. The variables, arrays, functions etc can be identified by giving them meaningful names,
The names given to them are nothing but identifiers.

A

4

1. The first character of an identifier must be an alphabet or an underscore (-)-
Identifiers must consist of only alphabets, digits or underscore. Special symbols
are not allowed.

The maximum length of an identifier is 31 characters.

Keywords should not be used as the identifiers.

Identifier should be single word. i.e., No blank space is allowed.

Rules for Identifiers can be both upper-case and lower-case letters. C is case sensitive,
Identifier i.e., upper-case letters are different from lower-case letters. Example: ADD,

AdD, add are different identifiers

N

O oA w

Valid Identifiers Invalid Identifiers

ADD 3add (numerics cannot be in the beginning)
Add add+123 (+ is not allowed)

_Add for (it is a keyword)
Student_Name ABC XYZ (Blank not allowed)

Name Student%123 (% is not allowed))
A312B _Add*5Add (* is not allowed) /S

@ I
A If we need an identifier that consists of two or more words, use a combination of uppercase and

Jlowercase letters (like sumOfSeries, areaOfTraiangle) or use the underscore to separate the words
(like sum of_series, area_of_triangle). Itis preferable to use uppercase/lowercase combination,

C Programming Baslec Con:oplm

nts in Creter to the - . .
Constants in erto the fixed values that do not change during the execution of a program. (Or) A
\\\‘.!“-”“ iIs (\‘k\‘l‘ \\ l(h 'l\(\‘l \l-‘l‘l“ th(‘I‘\(\s not “hu“":(“

were are Dastcally two tvpes of cone <l P 3 s
There anrt basicalt O Wvpes of constants in C: Primary and Secondary Constants,

C Constants

Seconda

Array,
m _Chumctcr lS)tl‘lllCtlll‘C‘
ointer,
b/ ,/ Union,
Enum etc.

X
Integer Real Single String
character

There are two types of numeric constants: Integer & Real constants. There are two kinds of Character
Constants: Single character & String constants. At this stage we would restrict our discussion to
only Primary Constants namely, Numeric & Character Constants.

m:xteger Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely, decimal,
octal and hexadecimal.

1. Decimal Integers : It consist of a set of digits 0 through 9.

2. Octal Integers : It consist of any combination of digits from 0 through 7, with a leading 0.
3. Hexa Decimal Integers: It consist of the digits preceded by ‘0x’ or ‘0X’. They may include

alphabets A/a-through F/f, where the letters A/a through F/f represent the numbers 10

through 15
Rules for constructing Integer Constants other than the above mentioned points:

1. It must not have a decimal point.
2. It could be either positive or negative. If no sign precedes constant, it is assumed to be

positive.

3. Embedded spaces/blanks, commas, and non-numeric characters are not permitted.

4. The allowable range for integer constants is -32768 to 32767 for 16-bit machines and
-2,147,483,648 to 2,147,483,647 for 32-bit machines. It is also possible to store large integer
constants on these machines by appending qualifiers such as U/u, L/, and UL/ul to the

constants.

—’n Problem Solving Techniques

T T TITE P
— Invalid i K
valid — (spacenotallowed) |
678 25000 (decimal not allowed) ~——
-333 15.50 (commanotallowed) _————— |
+666 15,000 ($ not allowed) ——
2470 — for 16-bit) (outside of integer ramgi__,__._—-——’—\~
) ~32766 = 8278300 (2x is invalid) -
g gxzd/O 2D (z)::ig (alphabets a to fis allowed but not g) —_—
X X

4.6.2 Real Constants or Floating Point Constants

S ; 5 forms: Fractiona]
A real constant is often called a Floating Point Constant. It could be written in twoO

& Exponential forms.

Rules for constructing Real Constants for Fractional form:

1. It must have at least one digit (0 to 9).
2. It must have a decimal point.
3. Itcould be either positive or negative. Default sign is positive.

4. Embedded spaces, commas are not allowed with in a real constant.

Rules for constructing Real Constants for Exponential form: |

The exponential form of representation of real constants is usually used if the value of the constant is
either too small or too large. '

Here, the real constant is represented in two parts. The part before ‘e’ is called mantissa, where as
the part following ‘e’ is called exponent.

The general syntax is:

mantissa e exponent

1. The mantissa part and the eéxponential part should be Séparated by letter ‘e’
2. Mantissa part could be either positive or negative. Default sign is positive

3. Exponent must have at least one digit which must be a positiv

€ or negative inte er. i
e 8er. Defau]t js

4. Blank is not allowed.

5. Range of Real Constants expressed in Exponential form js -3.4e%%to 3.4

C Progrnmming Basic Concepts l:.

Valid Invalid —\

426.00 666 (No decimal) \
-66.6666 $20060 ($ not allowed) B
+.5 | 25000 00 (Space not allowed) B
+3.2e-5 | +3.2e5 (space between e and 5 not allowed)
-0.2e+3 | -0.2+35 (‘e’ missing)

—

MCharacter Constants _ R

N\~
A character constant consists of 3 single character, sin

gle digit, or a single special symbol enclosed
withina pair of single inverted commas. The maximu

m length of a character constantis one character.

[

‘a' is a character constant
'd' is a character constant
'P' is a

character constant

'S' is a character constant
"*' is a character constant /

'5" here is different from number 5. '5' in the above example is a character.

- 4.6.4 String Constants

A string constant is a sequence of one or more characters enclosed within a pair of double quotes

("). If a single character is enclosed within a pair of double quotes, it will also be interpreted asl
a stlling constant and not a character constant. The characters may be letters, numbers, specia
characters, and blank space.

ngw " ing" "Srikanth"
" " " " "X" S c Pr‘ogr‘ammlng
"Hello" 1987 &.!

Note

"X here is different from character 'X'. "X" in the above example is a String.

“an ing consisting of
Actually, 5 string is an array of characters terminated by a NULL character. Thus, “a” is a string
tWo characters, viz. ‘a’ and NULL("\0").

4.7 Variables

execution. A variable <t:an lz’e thr,,Jpj
1 i re ’ aC(.".:' %
lue can change during progra e where values can b-e oo dthe.,. .
A variable is an entity \\“hos_e \'a.uedd of the memory spacl cated for each variable and t € va),
e s}f:boztcwrepfe‘sentaﬂf‘n 0faaddrvess in the memory is allo
and change\i A spe nflcicano?;)orcation. 1l the variables must have Ul':.,
of that variable is stored in tha ize, and the value it StOre?' A ation about them; Benerate
; - . Size, inform
Each variable haﬂ? ?:hrx;eéod;;]gp;n rd all the neceSS:rY:Zeoin memory.
indicat a reco ; . s -
<PProprise s, - ‘on and allocating required sp hile writing the Nam,
dppropriate code during translation st Be observedw
' ing] age has its own set of rules tha i —
Every Programming anguag mpiler reports comp
of variables_ If the rules are not followed, the co P

Olﬂ"led
"'ed ‘Omtion In me 4 V ‘ u‘a

J are initialized wi
not initialized.

D All the Variableg declared are

’ZZ’S&? T 35259 35252 35254
Value of >
a variable D
Name of > 1
4 variable ! 1

C Programming Baslc Concepts III.
’//:riahlcs Lije Sum are stored § . - — —_
The Jand sum are stored in me mory address 35250, 35252 and 35254 respectively.

-ariable name , Jar e . :
p Avarl lame may l‘_\‘ declared based on the meaning of the operation. Some meaningful
variable names are as follows.

xample: height, average, sum etc.
» Rules tor naming variables are same as identifiers.

-~ les o 2t 1 » g ¢) . . " N
p Examy les of valid var iable names and invalid variable names are shown below:

E Valid Variable Names Invalid Variable Names
Sum for (reserved word)
M 123Add (must begin with letter)
L__L\gd aceno%123 (% is not allowed)
|average_score average score (space is not allowed)

) \’ar?ables dcan be (!ecl‘ared in either inside the functions or outside of all functions. The
\'an:.ables eclared inside the functions are called local variables and the variables declared
outside of all the functions are called global variables.

int a, b, c ; — global variables
main()
{

int i, j, sum ; — local variables

} e

Caution

The number of characters that we can have in a variable name will depend upon compiler. A minimum of 31
characters must be supported by a compiler that conforms to the C language standard, so we can always use
names up to this length without any problems. It is suggested that variable names which are longer become
cumbersome and make the code harder to follow. Some compilers will truncate names that are too long.

4.8 Data Types

The data types are used to inform the type of value that can be stored in a variable. Before using the
variables, each variable must be declared to inform the type of data it can hold, in the beginning of a
program. We have already discussed about declaring a variable. The general syntax is

[datatype var,, var, .. var, ;]
Here var , var,, ... var_ are the variable names. The data type informs the type of value that can be

stored in variables var,, var,, ... var,.

r.int First, Second, Sum ;
Here, the declaration informs that the variables First, Second and Sum are the variables of the type
integer, used to hold only integer value.
Chas four basic data types. They are int, char, float and double.

S

Problem Solving Techniques

R

character. All v,
int Data Type any other the,,

alue, then it is not esseny,

: int or
: ecimal po
without a d . ve v
hole numbers' ‘sign. Ifa number is positive
‘+'or - .

All integer numbers are W \ber, then it is required to write .o
. i un '
egative n

numbers can be preceded by either
to write ‘+' sign before the number. If

before the number. 1

—

100 55 -250 9987 ble is system dependent. Ina 16 bit machip,
a

Tl l fl . l ore an 'n "ari ! .
i i i lllaChine, intoc

occupy 4 bytes of space in memory. 2767 for 16 bit machines.
The range of int variable is from - 32768 to + 3) 4 bytes

The size of the integer variable for 32 bit machine 32 bits
— 2]2 - 1
4,294,967,295

N

-2,147,483,648 +2,147,483,647

(min) (max)

R

L

I

Example of declaring integer variables:

int sum, 1, 3J;
int a =10, b = 20, result ;

Here sum, j, j, a, b, and result are variables of type integer. It can hold the values within the range
-2,147,483,648 to +2,147,483,647.

int a = 3547483647 ; is illegal
We can use the above declaration, but ‘a’ cannot hold the value specified.

This means that a variable is a character. A charis single ASCII character: Any symbol enclosed within
two single quotes is a character. A char data type requires a single byte.

A ‘a'. ‘5’ ‘%’ ‘\n’ etc.

Size of a ch;}a‘cter variable = 1byte
\ = B bits
|

———————————————

s / — C Programming Basic Conc.pum_—_—

g »that can be store .
The value t clar redin the character variable should be between =128 to + 127.The following
Jeclaration declares the character variables.

char (h, in str ;—]

» above declaration: .
In the al (W'cm s iCh. I and str are declared as character variables, used to store a single
racter. WE AT AIS0O assign some initial values to the variables at the time of declaration.

Ichar Ch = ‘A’, { = 'B’, str = 'C'ﬂ

¢ ha

MBont Data Type

The data t}"pc ﬂ:’a(t:ils used to declare the variables to hold real numbers. These are the numbers with
decimal points. In Clanguage, a float variable occupies 4 bytes of memory space. The numbers shown
below are examples of float data type

10.56 3.14 -1.06 10.0 .5678 etc.

The ﬂoat.variable takes asize of 4 bytes, with 6 digits of precision (i.e., 6 decimal places). The minimum
and maximum value that can be stored in float variable must be between 3.4*10-3 to 3.4*10°%.

peclaring the float variable is as follows

float a, b, c = 3.142 ;

The above declarations tells that a, b, c are variables of type float. The variable c is declared as well as
initialized with a value.

IEEXI coubie Data Type

The data type double is used to declare the variables to hold large real numbers. When higher
precision numbers are required, instead of using float, double is used. The double variable occupies
8 bytes of memory space. The double data type variables takes a size of 8 bytes (64 bits) with 14
digits of precision. This is known as double precision.

The minimum and maximum value that can be stored in double variable must be in the range of
1.7*1073% to 1.7*10*%°%. The below example shows the declaration of double variables.

- double di, d2, d3 = 1.5e55 ;

The above declaration tells that d1, d2 and d3 are variables of type double, which can be used to
store the real numbers. The d3 variable is initialized with the value 1.5e55.

mc;,ualiﬁers./ Modifiers
Qualifiers or Modifiers are keywords, used to alter the basic data types based on the size and sign.

The qualifiers that can be applied to the basic data types are

4 signed A unsigned

A short
signed and unsigned are used to specify whether the variables can store both positive and negative

numbers or only the positive numbers.

4 long

——

e

.

e

—
-~

Problem Solving Techniques : it a specific n
_’__m— he meaning of the basic data type to Mmore Precisely fita sp Ge(j_-r
them
fiers alters

}l
All these modi | syntax shows the usage of modifiers.
ra ‘

i ene
following g [',,odlﬁt’"’ <basic data type> <varmm
<
el e WS

modifier precede the basic data type.
Here,

short int a, b, c ;

e
MQualiﬁers for the int Datg Type

All the qualifiers, i.e., signed, unsigned, short anq long can be applied to the integer variableg Th,
declaration

declares the variable a of type int, whijch can hold the vajye ranging from -2,147,483,64¢ ty
+2,147,483,647. That means variable a can hold both Positive and negative numbers.

(2) unsigned int

Suppose we want to Store only positjye numbers, then we use the modif.ier unsigned. The
keyword unsigned js prefixed to the keyword int. The maximum and minimum value thy
can be stored in unsigned int variapje should be in the range 0 to 4,294,967,295,

l . Unsigned int 35 = 4000000000 ; ,
(3) shortint :
“4) long int

In 16 bit machines, int js 2 bytes and longintis 4 bytes. But j
long int are Same,

The range of long int js ‘ -2,147,483,648 to +2,147,483,647
The range of unsigned long intis - Oto 4.294,967,295

We can also yse long long int to store numbers larger thap

n 32 bijt Machines, both int and

intor long int.
The range of long longintis : -9,223,372,036,854,775,808 to 9,223
The range of unsigned long long int jg - 0to 18,446,744,073,709 55;?221';)36,854.775.807

int a = 1 5 or long int a=1¢9

long long int b=9999999999999999;

C Pingramming Pasle € nm‘-'ohm

B Qualifiors for char Data Type

The qualitiers that can be prefixed o char data type are slgnod and unslgnod, The qualifiors long
"l"l.("].l)' not hl‘ ﬂ')')“p" 1O "l".l' ‘l‘".‘ '}",‘q_ W" '(““W ||“" OvVOry o ||.|“|' to Iy annon .bl'l'l' W"ll “"

c“"' s “p y . L) '

unique ASCH value Hence the charactor varkable can bo consldored as Integer vartable. The chiaracte
variable SOTES AV POSIIVE or negative integer hotween the ranpe - 120000 v 127, The slgned qualifie
ced not be prec cded with char vartable because char vartable itsoll can hold both positive and

" -yt
n(‘x‘lu\i(\ “ll(":(‘l S
ch,,‘"‘w?"“ H i same ax 7 signed char ch

The unsigned qualifier allows the varfable to store any character In the range 0 to 255,
SR ———
[_“,. unsigned char ch ;

Qualifiers for flont and double Datn Typo

we know that a float variable occuples 4 bytes In memory and can range from 3.4*10" to 3.4*10°",
ifit is not sufficient then C offers double data type which occuples 8 bytes In memory and can range
from 1.74107°% to 1.7*10*3 If this is also not sufficlent then € offers long double,

The long double variable occupices minimum10 bytes of memory and maximum and minimum value
that can be stored in a variable must be in a range from 3.4*10-% to 3.4*10**"*, In few compllers,
the long double variables occupies 12 or 16 bytes of memory. This is compller or machine dependent.

Examples of declaring long double variables is shown below:
Llong double d = 1.5c2529,’j

Note

No qualifiers can be applied on float data type.

Size and Range of data types on 32 bit system Is shown below.

Data Type Size (bytes) Range

char 1 -128to +127

signed char 1 -128to +127

unsigned char 1 0 to 255

short int 2 -32,768 to +32,767

int 4 -2,147,483,648 to +2,147,483,647
unsigned int 4 0 to 4,294,967,295

long int 4 -2,147,483,648 to +2,147,483,647
unsigned long int 4 0 to 4,294,967,295

long long int 8 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

unsigned long long int 8 0to 18,446,744,073,709,551,615
float 4 3.4E3 to 3.4E*3®

double 8 1.7E-3% to 1,7E*308
| long double 10 3.4E4%32 to 3.4E*+2

_ma:lom Solving Techniques
—

4.9 Declaration of Variables

Specifying the data type that can be stored in cach variable is done using declaration statemen, |
Declaration statements, in their simplest form, provide a data type SRELAUC3S Hame g sl |
Syntax of declaring a variable is |

Y

\
i

datatype variablename;

or

datatype var,, var,, ----- var,;

W
(1) Declare an Integer Variable
o
int sum,; Tells the computer to reserve enough space for an
integer number
Tells the computer to "Tag" the first byte of reserved
storage with the name sum.
(2) Declare Floating point Variable
float avg: Tells the computer to reserve enough space for a floating point number.
Tells the computer to "Tag" the first byte of reserved storage with the
name avg.
(3) Declare Character Variable
char ch;
4) Declare Double Precision Variable
double d;
(5) Declare Multiple Integer Variables in Single Declaration Statement
int al, a2, a3, a4;
l'// ‘
Note:
It is required that we declare variables to the C compiler before we use them. We do this by Providing a list of
variables near the beginning of the program. This way, the compiler knows by what names the variables are
referred to and their type, i.e. what type of values they can contain,

— by |

e —Clraramming bovie concepr JURTRN

ning Valuoes to Variables

.'.10 :\Sh‘iﬂ'

once We have declared a variable, the

NEXt step is to ass '
| . ssign a value : able. The "
(ssigning a value to a variable ig calle e car o0 2 vatoe 1 5 v !

d as initialization, We can assign a value to a variable In. two
ways.
1) Using Assignment Operator
((2) Reading Data from Keyboard

Using Assignment Operator

i

rariables declared can b S Y init
Variable ¢ be assigned (or) initialized using an assignment operator ‘=", The declaration

and initialization can also be done in the same line

Syntax

data_type variable_name = constant;
’

int x = 10;

where x is an integer variable and 10 is an integer constant

E E ‘

int x;
X = 10;

In first statement x is declared but not initialized. The second statement assigns value 10 to
variable 'x'.

int x, y, z;
X =y =2z = 10;
one (or) more variables can be initialized with one value in a single statement.

int x =y = z = 10;
This statement is also valid. Declaration of three variables and initializing with one value in
single statement.

int x=10;

char gender = 'M';

float avg = 0.0;

double factor = 0.21058e-3;
Here, x is an integer variable whose initial value is 10, gender is a character variable initialized
with 'M’, avg is a floating point variable with initial value 0.0, and factor is a double- precision

variable whose initial value is 0.21058 x 103

!

y

,—m Problem Solving Techniques

Ii‘ﬁd

{ere, x is an integer variable which is declared but not initialized. The printf function prints the string

)/
W

mwﬁto a Program to Illustrate Declaration and Assignments
include «<stdio.h>

void main()

{
¥ pERsas only Declaration ------=---c-==---=--"""" «/
it x , ¥ 3
float p, q; Y
i = Smse s Declaration and Assignments --=---=--------="""""""" i
int z = 20; ‘
float r = 3.142;
' P e only Assignments ------------m=m-====-""" €/
X =y = 18;
p=g-=1.0;
f % e DiSplay ——=ctmsocmm o o m oo e * /

("z

("p = %f\n",p);
printf ("q = %f\n",q);

("r

= %f\n",r);
']

Reading Data from Keyboard

One more way of assigning values to variables is to input data from keyboard using the scanf function,
We will discuss more about scanf function in next chapters. The general format of scanf is as follows,

Syntax

scanf (" format string ", &var,, &var,,

int x;
printf(“Enter the Value of x");

scanf ("%d", &x);

nentioned in the double quotes. When scanf function is executed, the execution stops and waits for
he value of x’ to be typed in. Once the value is entered through the keyboard ang press Enter Key,

1en the value entered will be assigned to the variable x.

iIIIVote
he ampersand symbol & before variable name is an operator that specifies the variap]e name's adq
ress.

AN e

/ C Programming Basic Concophm—

@ :.11 Decfining Symbolic Constants

The C language has a unique feature called preprocessor % —
!
|

- ..—,1

ctive, which is not avaj i

ﬁ;r:uages. As the name impllileast,)laeplre::):is:::'eig :igh'IEVEI e
that processes the source code before it passes thrprolgiram
compiler. The preprocessor are used to help the rooug o
to make the source code easier, more efficient a‘;d ?)r::a';fer

The (?-preprocessor IS @ program which contains set 0;— Expanded C‘Source Code
directives called preprocessor directives, which are translated
into valid C codes by the compiler. Preprocessor o eratis
under the control of preprocessor directives which l;o]lows
a special syntax rules different from the nt;rmal C syntax
rules. In C, each preprocessor directive must start with #and | Object code
without semicolon. ‘

A

Preprocessor

Compiler

! .

The preprocessor directives are divided into 3 categories. Linker
They are Executable code | %

1. Macro substitution directives

2. File inclusion directives
3. Conditional compilation directives.

A ma‘cro-lS essentially a defined name having a replacement text for macro expansion (or) macro
substitution. The macro name is replaced with its corresponding text. A preprocessor directive called
#define can be used to define macros in a C program.

MSimple Macro Substitution

Simple macro substitution will replace all the occurrences of an identifier with the string from
the position of definition to the end of a program. This can be achieved with the help of #define

preprocessor directive.
~#define” is a preprocessor directive and is used to declare a symbolic constants in C program. A

symbolic constant is a name given to a constant.

Example : #define PI 3.14
The above statement replaces every occurrence of PI (identifier) with 3.14 (value) at the time o

preprocessing. The preprocessing is done before the compilation. When we compile our program

first it preprocesses and then it compiles.
The general syntax of #define directive is as follows.

#define <identifier> <substitute-value>

(or)

¢identifier>(argument,, - argument)

#define <substitute-value>

Here identifier is also called as symbolic name

e

“ problem Solving "‘"”"u" . —

pdefine X 100
paefine NAME SRIKANTH

Here, all the occurTences of X will be replaced by 100 anq NAME wil) be replaced by SRIKANTH, s ..

line of definition to the end of the program,) rtlng

from the
gdehne X 100

gdefine TOTAL X+1@
While preprocessing, the second line will be changed ag

TOTAL 100+10
—
Consider the following program to understand the symboli — T
ic constants.
#define X 100 T —— e
main() #deﬁ'ne()
main
{ {
int a, b, ¢ ; int a, b, € ;
a = 10; after T
= ’
b= 26; s b = 20;
C=X; preprocessing c = 100;
.)
a = ax; a = a+108;
b = X+b; b = 100+b;
J }
e

The rules to be followed while defining the symbolic constants are
» They are usually defined at the beginning of the program. However it may appear anywher
in the program but before it is referenced in the program.

D #define statements must not end with a semicolon.
Example: #define Pl 3.14;isillegal

» No blank space is allowed between # and define.

Example: # define Pl 3.14 is illegal.
A blank space is required between #define and identifier.

Symbolic names or identifiers have the same form as variable names. Traditionally symbolic
names are written in upper-case letters to distinguish them from the normal variable names.

Re-assigning of values to the symbolic names is not allowed,

Example: #define Pl 3.14
Pl = 4.28; is not allowed

J/

v —

C Programming Basic Concophm___-

Macros with Arguments

The more complicated form of re
The general form is

—
#define 1dentiﬁer(arg,. arg, ..

placement can be made with the help of macros with arguments.

. arg.) <substitute-value>

puring Preprocessing in a source program, the subse
known as macro call. When the macro

the formal arguments (argl, arg,

quent occurrence of macros with arguments is

call is made, the preprocessor substitutes the string, replacing
-+ arg) with actual arguments.

Consider the macro with arguments definition as shown below.
#define sum(a, b) a+b

If the following statement is included in the program.
z = sum(x, y) ;

Then the preprocessor would expand the statement to
z X+Yy;

e

Consider the following code

#define square(x)

X*X;
main()

{

int a = 5, b;
b
printf(“b = %d”, b);

square(a);

}

In the above code, b = square(a) would expand to
b = a*a ;

3

Therefore b will contain the value 5*5 = 25. The b value will be printed in the last printf() statement.

Consider the following code

#define square(x) x*x

main ()
{
int a ;
a = 16/square(2) ;

printf(‘‘a = %d”, a) ;
}

The above code prints a = 16. This is because the macro was expanded to a = 16/2*2
Which results in a =8*2 = 16.

Prohlom Solving Tochniq0'| ‘_A

The ¢
o !
rect Code will be as shown below
¥define SQuare(x) (x*x)

main ()eo
{
int 3 :
a = 16/square(2) H
Printf("a = xd~, a) ;
}
Now
OW. the macro was expanded to
' a = 16/ (2%2)
which results in
a = 16/4

a=2ga \

Consider the following code

#define mul(a,b) a*p

main ()

{
int x =5, y = 2, result;
result = mul(x +y, x + y);

printf(“result = %d”, result);

}

The above code would expand to
resu1t=x+y*x+y
which results inresult = 5+2*54+2
= 5+10 + 2 = 17
This result is not the expected result. Since the preprocessor does the blind text substitution, the paramete
X +y is placed in the place ofaand b respectively.
The above definition can be made correctly to get the expected result as
#define mul(a,b) ((a)*(b))
This would result a proper expansion as
result = ((x + y)*(x +y)) ; -

_—
Some more macros with arguments are
#tdefine AREA(a) ((a)*(a))
#define LARGEST(a,b) ((a>b) ? (a) : (b))
e e

/ C Programming Basic Concophm

also nest one macro wij
“@can1“ 0Wlthinanothermacro.Thalis,one-macrodcﬂnllioncanbcsuhr

e : stituted in another
macro definition. Consider the following examples.

#define mul(a,b), ((a)*(b))

#define multiply(a, b

» €) mul(mul(a, b), (c))
gdefine large2(a, b) ((a>b) ? (a) (b))

#define large3(a, b, c) large2(large2(a, b), (c))
If the following statement is placed in the program

big = large3(x, y, z) ;
Then the preprocessor would expand this to

big = large2(large2(x, y), (z))

.
2

4.12 Defining Variable as a Constant

Using the constgnt type qualifier, we can tell the compiler that the variable value cannot be changed
during the execution of the program. Once we declare a variable by using constant type qualifier, we
cannot change its value later in the program. Any attempt to change its value would result in an error.

int const x=10;

Here, x is declared as constant variable and hence its value cannot be changed later in the program.

int const x=10

x= 20; // wrong Error

Since x is constant variable with initial value as 10, we cannot assign 20 to it again.

int const x:
x=10; // Error

We need to remember that, a constant variable can be initialized only at the time of declaration.

Note:

A We can declare constant pointers.

4 We can use constant in function parameter

4 Constant can be applied to other data type variables also

