
Boundary Value Testing

Chapter 2 - Boundary Value Testing: Generalizing Boundary Value Analysis, Limitations of

BVA, Robustness Testing, Worst-case Testing, Special Value Testing, Test cases for Triangle

Problem, Test cases for the NextDate function, Test cases for the Commission Problem, Random

Testing and Guidelines for Boundary Value Testing.

Boundary Value Testing (BVT) is a specification based testing method that involves creating

test cases based on the boundary values of input domains. Boundary values are the values at the

edges of an input domain, just inside and just outside the boundaries, where the behavior of a

system might change. This technique is based on the observation that errors tend to occur at the

boundaries of input values rather than in the center.

Key Concepts of Boundary Value Testing:

Boundary Values: These are the values at both ends of input ranges. For example, if an input field

accepts values from 1 to 100, the boundary values would be 0, 1, 2, 99, 100, and 101. Test Cases:

Boundary Value Testing focuses on creating test cases for these boundary values rather than testing

with any value within the range. This approach helps to efficiently detect errors that are related to

incorrect handling of data at the edges.

Function Mapping: Just as a mathematical function maps inputs (domain) to outputs (range), a

program takes specific inputs and generates outputs based on those inputs. Understanding this

functional nature helps in designing effective test cases by considering the inputs and expected

outputs.

Cross Products: When a program's inputs or outputs are combinations of different variables, these

can be treated as cross products, which are sets formed by combining each possible value of one

variable with each possible value of another.

Example

Boundary Value Testing

Suppose a function is designed to accept an integer value from 1 to 100 inclusive. Boundary Value

Testing would generate test cases for values at and around the boundaries:

Just below the minimum boundary (e.g., 0)

At the minimum boundary (e.g., 1)

Just above the minimum boundary (e.g., 2)

Just below the maximum boundary (e.g., 99)

At the maximum boundary (e.g., 100)

Just above the maximum boundary (e.g., 101)

What is Input Domain Function?

An input domain function refers to the range of valid input values that can be accepted by a

function or program. In the context of software testing, the input domain function is defined by the

boundaries within which input variables must fall to ensure the correct functioning of the program.

Example: If we consider a function F that takes two variables x1 and x2, the input variables x1 and

x2 are constrained by certain boundaries:

a<= x1<=b

c<= x2<=d

These boundaries [a, b] and [c, d] define the valid ranges for x1 and x2

What is Boundary Value Testing?

Boundary Value Testing (BVT) also known as Input domain testing is a specification-based testing

technique that focuses on the inputs a program can accept. This type of testing is based on the idea

that errors are most frequent at the edges of an input range, hence testing these boundary values

can be more effective in finding bugs.

Importance of Boundary Value Testing?

Boundary value testing is a software testing technique that involves creating test cases based on

the boundary values of input domains. This method is particularly useful and frequently employed

because it effectively identifies errors that occur at the edges of input ranges, where bugs are most

likely to appear,

1. High Error Detection Rate at Boundaries: Many errors in software occur at the boundaries of

input ranges due to off-by-one errors and other boundary-related issues. Boundary value testing

specifically targets these potentially problematic areas, which increases the likelihood of

catching bugs that might not be detected by other testing methods that use values well within

the range.

2. Efficiency: Boundary value testing is a cost-effective method in terms of the number of test

cases generated versus the potential defects found. By focusing on the edge cases, it reduces

the number of test cases needed compared to exhaustive testing, which would require much

more time and resources.

3. Common Requirement Specifications: Requirements often define operations or behaviors at

the limits of input ranges (e.g., "the age should be between 18 and 60"). Testing these boundary

conditions directly checks the system's adherence to its specified requirements.

4. Usability and Reliability: By ensuring that the software behaves correctly at boundary values,

developers can improve the usability and reliability of their software. This is because handling

boundary conditions gracefully often reflects the software's ability to handle unexpected or

extreme inputs, which are critical in real-world operations.

5. Early Defect Identification: Identifying defects at the boundaries early in the testing process

can lead to more efficient debugging and resolution, reducing the likelihood of critical issues

in later stages of development.

6. Integrates with Other Test Methods: This method can be effectively combined with other

testing strategies such as equivalence partitioning (where inputs are divided into logically

similar groups), further refining the efficiency and effectiveness of the testing process.

Types of Boundary Value Testing

Boundary value testing is a critical technique in software testing where special focus is placed on

values at the edge of input domains. The four types of boundary value testing are:

1. Normal Boundary Value Testing: Normal Boundary Value Testing focuses on testing values

at the boundaries within the valid range.

2. Robust Boundary Value Testing: Robust Boundary Value Testing extends Normal Boundary

Value Testing by including values just outside the valid range. It tests the system's ability to

handle inputs slightly beyond the expected boundaries.

3. Worst-Case Boundary Value Testing: Worst-Case Boundary Value Testing examines the

effects of all combinations of boundary values across multiple variables. It explores interaction

between variables at their boundary conditions.

4. Robust Worst-Case Boundary Value Testing: Robust Worst-Case Boundary Value Testing

combines out-of-range values for multiple variables to stress test the system. It include extreme

combinations, even those outside the valid input ranges.

Normal Boundary Value Testing

Normal Boundary Value Testing (NBVT) is a technique that focuses on testing the boundaries the

input space to uncover potential errors that often occur near extreme values of input variables. The

rationale behind NBVT is to test input values at their minimum, just above the minimum, at

nominal value, just below the maximum, and at the maximum value. This approach helps to

identify common errors such as off-by-one errors, incorrect conditional checks (using < instead of

<=), and misunderstandings about where counting should start (from zero or one). Normal

boundary value test cases for two variables are shown in Figure

Methodology of Normal Boundary Value Testing

The testing focuses on the boundary values of input variables. This includes:-

▲ Min: The minimum value the variable can take.

▲ Min+: Just above the minimum value.

▲ Nom (Nominal): A typical or expected value (often the midpoint).

▲ Max-: Just below the maximum value.

▲ Max: The maximum value the variable can take.

1. Single Fault Assumption: NBVT often operates under the "single fault" assumption of

reliability theory, which indicates that system failures are usually due to a single fault rather

than the interaction of multiple faults. This assumption simplifies the testing process by

allowing the focus to be on individual variables one at a time.

2. Test Cases Generation: For a function with two variables, for example, the test cases would

keep one variable at its nominal value and vary the other through its boundary values. For

example, If we have two variables x1 and x2, then

Variable x1 is held at its nominal value, and x2 is tested at its min, min+, nom, max-, and max.

Similarly, x2 is held at its nominal value, and x1 is tested at its min, min+, nom, max-, and max.

Example 1: Normal Boundary Value Testing - Single Variable

Scenario: Consider a system that grants access based on age, where only individuals aged 18 to 65

are allowed entry.

Boundary Values for Age:

Min (18): Test with age 18 to verify that the system grants access.

Min+ (19): Test with age 19 to ensure access is consistently granted just above the minimum age.

Nom (42): A nominal test with age 42 (midpoint of the range) to check normal operation.

Max-(64): Test with age 64, just below the maximum age limit to ensure access is still granted.

Max (65): Test with age 65 to check that the system still grants access at the upper edge.

Testing at these boundaries helps ensure that the system accurately enforces age restrictions by

allowing access to eligible individuals while denying it to those outside the age range (under 18 or

over 65).

Example 2: Normal Boundary Value Testing - Two Variables

Scenario: Businesses are required to pay GST monthly by submitting their total sales and selecting

the applicable GST rate. The rates are variable depending on the type of goods or services

provided, commonly 5%, 12%, 18%, and 28%. The system calculates the tax payable and allows

businesses to submit their payments online.

Boundary Values for Variables:

Total Sales (x1): Input is expected to range from 70 (minimum) to 10,00,000 (maximum). Bot

representing the sales amount for the month.

GST Rate (x2): Standard GST rates applicable: 5% (min), 12%, 18%, and 28% (max).

Testing Boundary Values for Total Sales:

(0,5%) - Test case with no sales and the lowest GST rate (5%).

(1,5%) - Minimum positive sales amount with the lowest GST rate.

(5,00,000, 18%) - Midpoint of the sales range with a commonly used GST rate (18%).

(9,99,999, 28%) - Just below the maximum sales limit with the highest GST rate (28%).

(10,00,000, 28%) - Maximum sales limit with the highest GST rate.

Testing across different GST rates (using a typical sales amount, e.g., 750,000):

(50,000, 5%) - Testing with a lower GST rate applied to a typical sales figure.

(50,000, 12%)

(50,000, 18%)

(50,000, 28%) - Testing with higher GST rates applied.

By testing the system with these specific boundary values, we can ensure that the GST calculation

and payment submission process works correctly under various scenarios, including minimum,

maximum, and critic points of the input ranges. This approach helps identify potential issues

related to calculations, tax rates, and system behavior at the edges of the expected input values.

Example 3 Normal Boundary Value Testing - Three Variables

Scenario: In the Indian railway ticket booking system, passengers can book tickets for different

types of train (such as Express, Superfast, Rajdhani) and different classes (Sleeper, 3AC, 2AC,

1AC). Each train type and class combination has a specific number of tickets available per day.

Boundary Values for Variables:

 Train Type (x1): Express (min), Rajdhani (max)

 Class of Travel (x2): Sleeper (min), 1AC (max)

 Number of Tickets Available (x3): Let's assume a range from 0 to 100. (Max 100 tickets)

Testing Boundary Values for Express Train:

 (Express, Sleeper, 0) - Test scenario with no tickets available.

 (Express, Sleeper, 1) - Testing just above the scenario with no availability.

 (Express, Sleeper, 50) - Nominal availability scenario.

 (Express, Sleeper, 99) - Testing just below full capacity.

 (Express, Sleeper, 100) - Test scenario at full capacity.

Test Cases for Rajdhani Train:

 (Rajdhani, 1AC, 0)- Test scenario with no tickets available.

 (Rajdhani, 1AC, 1) - Minimal available tickets scenario.

 (Rajdhani, 1AC, 50) - Nominal ticket availability scenario.

 (Rajdhani, 1AC, 99) - Testing almost full capacity.

 (Rajdhani, 1AC, 100) - Test scenario at full capacity.

By executing these test cases, we can ensure that the ticket booking system handles different

scenarios related to ticket availability for Express and Rajdhani trains across various classes of

travel. This approach helps in verifying the system's functionality and its ability to manage ticket

availability based on the specified constraints and boundaries.

Generalizing the Boundary Value Analysis

Generalizing Boundary Value Analysis (BVA) in software testing refers to extending the

traditional boundary value analysis technique to handle a wider range of scenarios, variables, or

types of data. This generalization aims to enhance the applicability and effectiveness of BVA by

adapting it to different contexts and testing requirements. The normal boundary value analysis

technique can be generalized based on the number of variables and the types of ranges.

1. Generalizing by Number of Variables:

 For a function with multiple variables, BVA can be generalized by holding all but one variable

at their nominal (typical or expected) values while the remaining variable is tested at its

boundary values. This is repeated for each variable independently.

 For example, in a function with three variables, applying boundary value analysis by varying

each variable through min, min+, nom, max-, and max values results in 4n + 1 unique test

cases.

 This approach ensures comprehensive coverage of different variable combinations and od their

boundary conditions

Example: Generalizing the BVA by Number of Variables:

Suppose a function calculates a fee based on three variables: age (10 to 65 years), distance traveled

(0 to 100 kilometers), and hours of service (1 to 24 hours). Testing might involve:

 Holding distance and hours at their nominal values (50 km and 12 hours), and varying age

through its boundary values (10, 11, 32.5, 64, 65).

 Repeating this process for each variable, leading to a series of tests that comprehensively cover

in the boundary conditions for each variable.

This method ensures each variable's influence on the outcome is thoroughly examined, with 4n+1

unique test cases generated where n is the number of variables.

2. Generalizing by Types of Ranges:

Variables can have different types and ranges. The nature of variables determines the ranges for

boundary value analysis.

 Discrete and Bounded Variables: Such as months in a year or days in a month, where

boundaries are inherently defined by the domain (e.g., January to December for months).

Example: A movie ticket booking system allows customers to choose a month for a special

monthly screening event. The variables are Months of the year (January to December).Test

cases would typically include the first month (January), the last month (December), and a mid-

year month like June to cover the boundaries and a nominal value.

 Variables without Explicit Bounds: These require artificial boundaries. For example, ton of me

if there is no upper limit specified for a numeric input, the maximum might be set as the largest

representable integer.

Example: In the context of the triangle problem where side lengths are the variables,

determining boundary values involves setting the lower bound at 1 (as negative side lengths

are invalid) and selecting an upper bound, such as 200 or MAXINT. This generalization

ensures that the testing covers a wide range of scenarios, including extreme values and

boundary conditions, to validate the behavior of the triangle classification algorithm

accurately.

 Boolean and Logical Variables: BVA becomes less useful because they usually have only

video two states (True and False). These types of variables are better suited to other testing on

techniques like decision table testing.

 Context-Specific Adjustments: For variables like a customer's PIN or transaction type in an

ATM system, conventional BVA may not be very insightful or practical because these are

typically categorical or have a restricted range of valid inputs.

Limitations of Boundary Value Analysis

1. Requirement for Ordering Relations: BVA is most effective when the variables involved

have a natural ordering, meaning it is logical to determine that one value is greater than, less

than, or equal to another. This is crucial for defining boundary values meaningfully.

Example: Temperature and pressure have a natural ordering. For instance, 0°C can be logically

compared to 100°C (0°C ≤ 100°C). In contrast, sets of colors or names of football teams do

not have an intrinsic order. It's not logical to assert that "Red" is less than "Blue" or that "Team

A is greater than "Team B".

2. Independence of Variables: BVA assumes variables are independent, but this is not always

the case. Dependencies between variables can lead to complex interactions that BVA might

not adequately test.

Example: In the context of the NextDate function, the validity of a date depends on the

interactions between day, month, and year. February 29 is a valid date but only in a leap year,

highlighting a dependency between the day and year that traditional BVA might overlook.

3. Focus on Physical Quantities: Boundary value analysis is most suitable for variables

representing physical quantities like temperature, pressure, or air speed, where physical

boundaries play a crucial role.

Example: The closure of Bangalore International Airport due to temperatures exceeding the

maximum value shows how critical physical boundaries are. Here, BVA could have identified

potential issues with instrument settings at extreme temperatures.

4. Challenges with Logical Variables: Logical or categorical variables, such as PIN numbers or

telephone numbers, do not benefit from BVA due to the lack of physical boundaries or

meaningful extremities.

Example: Consideration of logical variables such as Personal Identification Numbers (PINs)

or telephone numbers may not reveal significant faults through boundary value testing. Testing

PIN values like 0000, 0001, 5000, 9998, and 9999 may not uncover substantial issues due to

the nature of logical, non-physical variables.

5. Inadequacy in Handling Complex Dependencies: BVA may fail to account for complex

dependencies within the system, which could lead to significant oversights in testing.

Example: Imagine a digital thermostat that controls both heating and cooling in a smart

home system. The thermostat is programmed to switch on heating when the temperature

drops to 18°C or lower and activate cooling when the temperature rises to 26°C or higher.

In typical BVA, we might test the thermostat's response at 18°C and 26°C separately to

ensure triggers the heating and cooling systems correctly. However, suppose the thermostat

experiences rapid temperature changes, fluctuating between 17°C and 27°C in a short period

due to unusual weather conditions or HVAC issues.

This scenario could test the thermostat's ability to handle quick switching between heating

and cooling, a condition not covered by simple boundary tests for individual temperatures. If

there's a delay or failure in switching modes under rapid fluctuation, the system might fail to

maintain a stable room temperature, potentially causing discomfort or even damaging the

HVAC system due to the rapid cycling of heating and cooling.

Robust Boundary Value Testing

Robust boundary value testing (RBVT) is a simple extension of normal boundary value testing:

in addition to the five boundary value analysis values of a variable, we see what happens when

the inputs are exceeded with a value slightly greater than the maximum (max+) and a value

slightly less than the minimum (min-).

Robust Boundary Value Testing (RBVT) is an extension of Normal Boundary Value Testing

(NBVAT) that aims to enhance test coverage by considering values beyond the boundaries.

RBVT includes values slightly outside the boundary limits to ensure the software behaves

robustly even with inputs that are close to the edges. This approach helps identify potential

vulnerabilities and corner cases that may not be captured by Normal Boundary Value Testing.

This approach is designed to assess the robustness of a system by observing how it handles

inputs that fall outside the expected input range. It aims to uncover potential failures that could

occur due to inputs that users may not typically provide but could potentially be used either

maliciously or by mistake.

Key Components of RBVT

1. Standard Boundary Values:

Min: The smallest value within the acceptable range.

Min+: A value just above the minimum to verify edge cases within the operational range.

Nominal: A typical value expected during regular use.

Max-: A value just below the maximum to test the upper limits of normal operation.

Max: The largest value within the acceptable range.

2. Extended Test Values:

Min-: A value slightly less than the minimum accepted input, testing the system's error handling

or validation processes.

Max+: A value slightly greater than the maximum accepted input, similarly aimed probing the

robustness of error handling and input validation.

Robust Boundary Value Testing is crucial for systems where input validation directly impact

functionality and security. By including tests for inputs just outside the accepted ranges, RBVT

he ensure that the application is secure against unusual or unexpected inputs, enhancing the over

resilience and reliability of the system. This testing approach is particularly valuable in protects

against errors that could lead to exceptions, system crashes, or security breaches.

Robust boundary value test cases for two variables are shown in Figure

Robust Boundary Value Testing (RBVT) - Single Variable

Scenario: An online application form requires users to enter their age, which should be between

18 and 65 years inclusive.

Define Boundary and Extended Values:

Min (18 years): Check that the form accepts the minimum age.

Max (65 years): Ensure that the form accepts the maximum age.

Min-(17 years): The form should reject this input, ideally with a clear error message.

Max+ (66 years): Similar to Min-, the form should not accept this age and should provide an

error message.

Test Cases:

At Minimum (18 years): Verify the form processes this input correctly.

Just Above Minimum (19 years): Confirm the form continues to function correctly slightly

above the minimum.

Nominal (42 years): A common age to test the form under typical conditions.

Just Below Maximum (64 years): Test the upper operational limits.

At Maximum (65 years): Ensure the maximum boundary is respected.

Below Minimum (17 years): The system should identify and reject this out-of-bounds input.

Above Maximum (66 years): Similarly, this should be rejected to confirm robust boundary

handling.

Worst-Case Boundary Value Testing

Worst-Case Boundary Value Testing (WCBVT) is a testing approach that goes beyond

traditional boundary value testing by considering extreme values for multiple variables

simultaneously. This method aims to explore scenarios where more than one variable reaches its

boundary limits to assess the software's behavior under such conditions. By analyzing worst-case

scenarios, testers can uncover potential vulnerabilities that may not be evident with single-

variable boundary testing.

Unlike Robust Boundary Value Testing, which tests each variable independently at and just

outside its boundaries, WCBVT involves the Cartesian product of the boundary values of all

variables. This approach is designed to detect issues that may arise specifically from interactions

between variable at their extreme operational limits.

Key Points

1. Rejecting Single-Fault Assumption: Worst-case boundary value testing challenges the single-

fault assumption by examining the impact of extreme values on multiple variables. This

approach is particularly useful in scenarios where the failure of the software due to extreme

conditions can have severe consequences.

2. Generating Test Cases: To conduct worst-case boundary value testing, testers start with a

five-element set for each variable, including the minimum, slightly above minimum, nominal

slightly below maximum, and maximum values. By taking the Cartesian product of these sets

for multiple variables, a comprehensive set of worst-case test cases is generated.

3. Comparison with Normal Boundary Value Testing: Worst-case boundary value testing is

more exhaustive than normal boundary value testing as it considers extreme values for

multiple variables simultaneously. The number of test cases generated for worst-case testing

is significantly higher (5° for n variables) compared to normal boundary value testing (4n+1

test cases).

Key Components of WCBVT

1. Standard Boundary Values:

 Min: The smallest value within the acceptable range for each variable.

 Min+: A value just above the minimum, within the operational range.

 Nominal: A typical or average value expected during regular usage.

 Max-: A value just below the maximum, still within the operational limits.

 Max: The largest value within the acceptable range for each variable.

2. Cartesian Product of Boundary Values:

This approach multiplies the boundary scenarios of each variable with every boundary scenario

of the other variables, producing a comprehensive set of test cases that explore interactions

between variables at their boundary conditions.

Importance of WCBVT

1. WCBVT is important in environments where multiple variables interact in complex ways,

potentially impacting the system's behavior under extreme conditions. By systematically

testing all combinations of boundary values, WCBVT can uncover issues that might not be

visible when variables are tested in isolation or only within their normal operational ranges.

2. This type of testing is particularly useful in critical systems where failure can result in

significant consequences, ensuring that the system is robust against a wide range of inputs

and conditions. It's essential for ensuring the reliability and stability of systems in real-world

scenarios where multiple factors may affect outcomes simultaneously.

The result of the two-variable version of this is shown in Figure,

Example: Worst Case Boundary Value Testing (WCBVT)

Scenario: A system manages an online promotional campaign where users can enter the

number of items they wish to purchase and select a delivery option. The valid range for the

number of items is from 1 to 20, and the delivery options are categorized into regular (1) and

express (2).

Variables:

Number of Items (x1):

Min: 1 item

Max: 20 items

Delivery Option (x2):

Min: 1 (regular)

Max: 2 (express)

Test Cases: Apply the boundary values for each variable and create combinations using the

Cartesian product.

Boundary Values for Number of Items: [1 (Min), 2 (Min+), 10 (Nominal), 19 (Max-), 20

(Max)]

Boundary Values for Delivery Options: [1 (Min, regular), 2 (Max, express)]

Test Case Combinations: Each combination of the above boundary values forms a test case,

such as:

(1 item, regular)

(1 item, express)

(20 items, regular)

(20 items, express)

(2 items, regular)

(19 items, express) And so on, through all possible combinations of these boundary values.

Robust Worst-Case Boundary Value Testing (RWCBVT)

RWCBVT takes the principles of both robust boundary value testing and Worst-case Boundary

Value Testing to create even more stringent testing environment. This approach focuses on

evaluating the software’s behavior under extreme conditions while also testing for robustness

against unexpected inputs and variations in the boundary values of multiple variables

simultaneously.

Key Points

1. Incorporation of Non-valid Inputs: RWCBVT includes values beyond the normal operating

range for each variable, testing how the system handles inputs that are typically considered

invalid.

2. Cartesian Product Including Out-of-Range Values: The approach involves taking the Cartesian

product of extended boundary values (which include values beyond the typical range) for

multiple variables. This extensive combination aims to simulate potential extreme scenarios

that could arise in actual operations. This involves the Cartesian product of the seven-element

sets we used in robustness testing resulting in 7n test cases.

3. Comprehensive Testing Scope: This method is the most exhaustive form of boundary value

testing, examining not only the interactions between variables at their defined limits but also

how these variables behave when pushed beyond these points. The number of test cases for

RWCBVT can be significantly higher, especially when extended boundary conditions are

considered.

Key Components of RWCBVT:

1. Standard Boundary Values:

Min: The smallest value within the acceptable range for each variable.

Min+: A value just above the minimum, to verify the system’s behavior just within the operational

range.

Nominal: A typical or average value expected during regular usage.

Max-: A value just below the maximum, testing the near-upper limit operations.

Max: The largest value considered normal for each variable.

2. Extended Boundary Values:

Min-: A value slightly less than the minimum, testing how the system handles inputs below the

acceptable range.

Max+: A value slightly above the maximum, probing the robustness of the system's upper

3. Cartesian Product of All Boundary Values: This methodology multiplies every scenario,

including out-of-range scenarios, across all variables, creating a comprehensive set of test cases to

explore how variable interactions might affect the system under extreme and unexpected

conditions.

Importance of RWCBVT:

1. Detecting Hidden Vulnerabilities: By pushing the system beyond its intended operational limits,

RWCBVT can uncover hidden issues that might not be evident during standard testing. This is

critical for systems where safety and security are paramount.

2. Ensuring System Resilience: This testing is crucial for ensuring that the system can handle

erroneous inputs without crashing or behaving unpredictably, which is especially important in

high-stakes environments like medical, aerospace, and financial systems.

The below Figure shows the robust worst-case test cases for our two-variable function.

Example Robust Worst Case Boundary Value Testing (RWCBVT)

Scenario: A flight booking system that allows users to select the number of travelers and class

of service. The system typically handles up to 5 travelers and offers three classes of service

(Economy, Business, First Class).

Variables:

• Number of Travelers (x1):

Min: 1 traveler

Max: 5 travelers

• Class of Service (x2):

Min: 1 (Economy)

Max: 3 (First Class)

Test Cases: Apply both the typical and extended boundary values for each variable and create

combination using the Cartesian product:

• Boundary Values for Number of Travelers: [0 (Min-), 1 (Min), 3 (Nominal), 5 (Max), 6

(Max+)]

• Boundary Values for Class of Service: [0 (Min-), 1 (Economy), 2 (Business), 3 (First Class),

4 (Max+)]

Test Case Combinations: Each combination of the above boundary values forms a test case, such

as:

• (0 travelers, Economy) - Testing below minimum travelers with the lowest class.

• (1 traveler, 4 classes) - Minimum travelers with beyond maximum class.

• (6 travelers, 0 class) - Above maximum travelers with non-valid class.

• (5 travelers, First Class) - Maximum valid travelers and maximum valid class.

And so on, through all possible combinations of these boundary values. These combinations ensure

that every possible extreme and out-of-bound scenario is tested, providing insights into how well

the system ca maintain functionality and reliability under adverse conditions.

Special Value Testing

Special Value Testing also known as ad hoc testing is a form of functional testing that relies on

the tester's domain knowledge, experience with similar programs, and understanding of potential

weak points in the software to design test cases. This approach is highly dependent on the tester's

judgment and expertise as no specific guidelines are followed other than best engineering

practices. Special Value Testing can be valuable in uncovering faults that may not be easily

detected by other testing methods. Testers using this approach often consider unique or critical

scenarios that may not be covered by traditional boundary value testing.

Characteristics of Special Value Testing:

1. Tester-Driven: Special Value Testing heavily relies on the tester's judgment, experience, and

expertise. The effectiveness of this testing approach is highly dependent on the individual

tester's capabilities and insights in identifying critical test scenarios.

2. Domain Knowledge: Testers leverage their in-depth understanding of the application's pinpoint

specific functionalities or modules where defects are more likely to occur and focus domain to

anticipate potential error-prone areas. By applying domain knowledge, testers can their testing

efforts accordingly.

3. Ad Hoc Approach: Special Value Testing follows an ad hoc approach, lacking standardized

procedures or guidelines. Testers have the flexibility to design test cases based on their

intuition, experience, and knowledge without strict adherence to predefined testing

methodologies. This creative freedom allows testers to explore unique scenarios that may not

be covered by traditional testing techniques.

4. Targeting "Soft Spots": Special Value Testing aims to target "soft spots" within the software,

which are areas known to be prone to errors or vulnerabilities. These soft spots may include

blow complex calculations, unusual input types, historically problematic modules, or

functionalities with a higher likelihood of defects. By focusing on these critical areas, testers

can uncover hidden issues that might not be revealed through standard testing methods.

Importance of Special Value Testing:

This method is particularly valuable for:

1. Uncovering Rare Issues: By focusing on specific, often rare conditions that are not typically

covered by other testing methods

2. Highly Contextual Applications: Effective in complex systems where the tester's deep

understanding of the application can guide the testing process.

3. Areas Prone to Errors: Particularly useful in areas known for their susceptibility to bugs, where

testers can apply their insights to explore specific scenarios thought to be risky. Example

Example: Special Value Testing

Scenario: The "NextDate" function calculates the next day's date given a specific day, month, and

year. This function can be particularly tricky around the boundaries of months, changes in year,

and especially during leap years.

In the context of the NextDate function, Special Value Testing may involve creating test cases

related to specific dates such as February 28, February 29 in leap years, and other scenarios that

are not covered by standard boundary value testing. While this method may lack the systematic

approach of boundary value testing, it can be effective in revealing faults and vulnerabilities in the

software.

Special Value Test Cases:

February 28 in a Non-Leap Year: Test what happens on the day after February 28. The expected

result should be March 1 of the same year.

February 28 in a Leap Year: Here, the next day should be February 29.

February 29 in a Leap Year: Testing the transition from February 29 to March 1 in a leap year

is crucial since February 29 does not exist in non-leap years.

December 31: Testing the transition from December 31 to January 1 of the following year to

verify that the function handles year changes correctly.

Triangle Problem
Normal Boundary Value Test Cases/ Boundary Value Test Cases for x, y, z :

min value = 1

close to min = 2

nominal = 200

close to max = 199

max = 200

Test cases are,

4*3 + 1 = 13

C1. 1 ≤ a ≤ 200.

C2. 1 ≤ b ≤ 200.

C3. 1 ≤ c ≤ 200.

C4. a < b + c.

C5. b < a + c.

C6. c < a + b.

Case X Y Z Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a triangle

6 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 199 100 Isosceles

9 100 200 100 Not a triangle

10 1 100 100 Isosceles

11 2 100 100 Isosceles

12 199 100 100 Isosceles

13 200 100 100 Not a triangle

2. Robust Test Cases: Range (100 to 500) – for x, y, z :

min value : 100

close to min : 101

nominal : 300

close to max : 499

max : 500

lesser than min value : 99

larger than max value : 501

Total test cases,

= 6*n+1 = 6*3+1 = 19. So there will be extra 6 cases apart from the above 13 cases –

X Y Z

99 300 300

501 300 300

300 99 300

300 501 300

300 300 99

300 300 501

3. Worst Test Cases: Range (1 – 200)
If we reject “single” fault assumption theory of reliability, and consider cases where more than

1 variable has extreme values, then it is known as worst case analysis.

Total no. of test cases,

5^n = 5^3 = 125 cases

Mathematically, the test cases will be a cross product of 3 sets –

 {1, 2, 100, 199, 200}

x {1, 2, 100, 199, 200}

x {1, 2, 100, 199, 200}

Let set A,

= {1, 2, 100, 199, 200}

So, the set of worst cases will be represented by,

= A x A x A

Case a b c

Expected

Output

1 1 1 1 Equilateral

2 1 1 2 Not a Triangle

3 1 1 100 Not a Triangle

4 1 1 199 Not a Triangle

5 1 1 200 Not a Triangle

6 1 2 1 Not a Triangle

7 1 2 2 Isosceles

8 1 2 100 Not a Triangle

9 1 2 199 Not a Triangle

10 1 2 200 Not a Triangle

11 1 100 1 Not a Triangle

12 1 100 2 Not a Triangle

13 1 100 100 Isosceles

14 1 100 199 Not a Triangle

15 1 100 200 Not a Triangle

16 1 199 1 Not a Triangle

17 1 199 2 Not a Triangle

18 1 199 100 Not a Triangle

19 1 199 199 Isosceles

20 1 199 200 Not a Triangle

21 1 200 1 Not a Triangle

22 1 200 2 Not a Triangle

23 1 200 100 Not a Triangle

24 1 200 199 Not a Triangle

25 1 200 200 Isosceles

… … … … …

NextDate Function

Since BVA yields (4n + 1) test cases according to single fault assumption theory, hence we can

say that the total number of test cases will be (4*3+1)=12+1=13.

C1: 1 ≤ month ≤ 12

C2: 1 ≤ day ≤ 31

C3: 1900 ≤ year ≤ 2025.

Normal BVA for nextDate function

Test Case

ID

Month

(mm)

Day

(dd)

Year

(yyyy) Expected Output

1 6 15 1900 16 June, 1900

2 6 15 1901 16 June, 1901

3 6 15 1962 16 June, 1962

4 6 15 2024 16 June, 2024

5 6 15 2025 16 June, 2025

6 6 1 1962 2 June, 1962

7 6 2 1962 1 June, 1962

8 6 30 1962 1-Jul-62

9 6 31 1962

Invalid Date as June has 30

Days

10 1 15 1962 16 January, 1962

11 2 15 1962 16 February, 1962

12 11 15 1962 16 November, 1962

13 12 15 1962 16 December, 1962

This is how we can apply BVA technique to create test cases for our Next Date Problem.

Worst-case Test cases based on 5n – 5x5x5 = 125 test cases

Case Month Day Year

Expected

Output

1 1 1 1812 1/2/1812

2 1 1 1813 1/2/1813

3 1 1 1912 1/2/1912

4 1 1 2011 1/2/2011

5 1 1 2012 1/2/2012

6 1 2 1812 1/3/1812

7 1 2 1813 1/3/1813

8 1 2 1912 1/3/1912

9 1 2 2011 1/3/2011

10 1 2 2012 1/3/2012

11 1 15 1812 1/16/1812

12 1 15 1813 1/16/1813

13 1 15 1912 1/16/1912

14 1 15 2011 1/16/2011

15 1 15 2012 1/16/2012

16 1 30 1812 1/31/1812

17 1 30 1813 1/31/1813

18 1 30 1912 1/31/1912

19 1 30 2011 1/31/2011

20 1 30 2012 1/31/2012

21 1 31 1812 2/1/1812

22 1 31 1813 2/1/1813

23 1 31 1912 2/1/1912

24 1 31 2011 2/1/2011

25 1 31 2012 2/1/2012

26 2 1 1812 2/2/1812

27 2 1 1813 2/2/1813

28 2 1 1912 2/2/1912

29 2 1 2011 2/2/2011

30 2 1 2012 2/2/2012

31 2 2 1812 2/3/1812

32 2 2 1813 2/3/1813

33 2 2 1912 2/3/1912

34 2 2 2011 2/3/2011

35 2 2 2012 2/3/2012

36 2 15 1812 2/16/1812

37 2 15 1813 2/16/1813

38 2 15 1912 2/16/1912

39 2 15 2011 2/16/2011

40 2 15 2012 2/16/2012

41 2 30 1812 Invalid Date

42 2 30 1813 Invalid Date

43 2 30 1912 Invalid Date

44 2 30 2011 Invalid Date

45 2 30 2012 Invalid Date

46 2 31 1812 Invalid Date

47 2 31 1813 Invalid Date

48 2 31 1912 Invalid Date

49 2 31 2011 Invalid Date

50 2 31 2012 Invalid Date

51 6 1 1812 6/2/1812

52 6 1 1813 6/2/1813

53 6 1 1912 6/2/1912

54 6 1 2011 6/2/2011

55 6 1 2012 6/2/2012

56 6 2 1812 6/3/1812

57 6 2 1813 6/3/1813

58 6 2 1912 6/3/1912

59 6 2 2011 6/3/2011

60 6 2 2012 6/3/2012

61 6 15 1812 6/16/1812

62 6 15 1813 6/16/1813

63 6 15 1912 6/16/1912

64 6 15 2011 6/16/2011

65 6 15 2012 6/16/2012

66 6 30 1812 7/1/1812

67 6 30 1813 7/1/1813

68 6 30 1912 7/1/1912

69 6 30 2011 7/1/2011

70 6 30 2012 7/1/2012

71 6 31 1812 Invalid Date

72 6 31 1813 Invalid Date

73 6 31 1912 Invalid Date

74 6 31 2011 Invalid Date

75 6 31 2012 Invalid Date

76 11 1 1812 11/2/1812

77 11 1 1813 11/2/1813

78 11 1 1912 11/2/1912

79 11 1 2011 11/2/2011

80 11 1 2012 11/2/2012

81 11 2 1812 11/3/1812

82 11 2 1813 11/3/1813

83 11 2 1912 11/3/1912

84 11 2 2011 11/3/2011

85 11 2 2012 11/3/2012

86 11 15 1812 11/16/1812

87 11 15 1813 11/16/1813

88 11 15 1912 11/16/1912

89 11 15 2011 11/16/2011

90 11 15 2012 11/16/2012

91 11 30 1812 Invalid Date

92 11 30 1813 Invalid Date

93 11 30 1912 Invalid Date

94 11 30 2011 Invalid Date

95 11 30 2012 Invalid Date

96 11 31 1812 Invalid Date

97 11 31 1813 Invalid Date

98 11 31 1912 Invalid Date

99 11 31 2011 Invalid Date

100 11 31 2012 Invalid Date

101 12 1 1812 12/2/1812

102 12 1 1813 12/2/1813

103 12 1 1912 12/2/1912

104 12 1 2011 12/2/2011

105 12 1 2012 12/2/2012

106 12 2 1812 12/3/1812

107 12 2 1813 12/3/1813

108 12 2 1912 12/3/1912

109 12 2 2011 12/3/2011

110 12 2 2012 12/3/2012

111 12 15 1812 12/16/1812

112 12 15 1813 12/16/1813

113 12 15 1912 12/16/1912

114 12 15 2011 12/16/2011

115 12 15 2012 12/16/2012

116 12 30 1812 12/31/1812

117 12 30 1813 12/31/1813

118 12 30 1912 12/31/1912

119 12 30 2011 12/31/2011

120 12 30 2012 12/31/2012

121 12 31 1812 1/1/1813

122 12 31 1813 1/1/1814

123 12 31 1912 1/1/1913

124 12 31 2011 1/1/2012

125 12 31 2012 1/1/2013

Commission Problem

A rifle salesperson in the former Arizona Territory sold rifle locks, stocks, and barrels
made by a gunsmith in Missouri.

• Locks cost $45,

• Stocks cost $30,

• Barrels cost $25.

The salesperson had to sell at least one lock, one stock, and one barrel (at least
one complete rifle) per month

Production limits:

• Maximum of 70 locks ; 1<=locks<=70

• Maximum of 80 stocks ; 1<=stocks<=80

• Maximum of 90 barrels ; 1<=barrels<=90

After each town visit, the salesperson sent a telegram to the Missouri gunsmith with the number

of locks, stocks, and barrels sold in that town.

At the end of a month, the salesperson sends a very short telegram showing

–1 lock sold (to indicate the end of inputs for a particular sales person)

The gunsmith then knew the sales for the month were complete and computed the salesperson’s

commission as follows:

10% on sales up to (and including) $1000

15% on the next $800

20% on any sales in excess of $1800.

The commission program produced a monthly sales report that gave the total number of locks,

stocks and barrels sold, the salesperson’s total dollar sales and finally the commission.

Sales = lock_price * total_locks + stock_price * total_stocks + barrel_price * total_barrels

If sales >1800

Commission =0.10 * 1000.0

Commission =commission + 0.15*800.0

Commission =commission+0.20* (sales-1800.0)

Else If sales >1000

Commission =0.10 * 1000.0

Commission=commission + 0.15*(sales-1000.0)

Else

Commission=0.10*sales

For commission problem, we look into boundary values for the output range especially near the

threshold range 1000$ and 1800$.

[Note: This is Generalized table to produce test cases, to be

Sales value range from 100 (min) to 7800 (max).

LOCKS STOCKS BARRELS SALES COMMENT
1 1 1 100 MIN min+

5 5 5 500 MID

10 10 10 1000 BORDER
border-

border+

14 14 14 1400 MID
18 18 18 1800 BORDER border-

48 48 48 4800 MID
70 80 90 7800 MAX

CHECKING BOUNDARY VALUE FOR LOCKS, STOCKS AND BARRELS AND

COMMISSION

Commission Problem Output Boundary Value Analysis Cases

Case

Id

Description Input data Expected output Actual output

Locks Stocks Barrels Sales Commission Sales Commission

1 Enter the min

value for locks,

stocks and

barrels

1 1 1 100 10

2 Enter the min

value for 2

items and min

+1 for any one

item

1 1 2 125 12.5

3 1 2 1 130 13

4 2 1 1 145 14.5

5 Enter the value

sales

approximately

mid value

between 100 to

1000

5 5 5 500 50

6 Enter the

values to

calculate the

commission for

sales nearly

less than 1000

10 10 9 975 97.5

7 10 9 10 970 97

8 9 10 10 955 95.5

9 Enter the value

sales exactly

equal to 1000

10 10 10 1000 100

10 Enter the

values to

calculate the

commission for

sales nearly

greater than

1000

10 10 11 1025 103.75

11 10 11 10 1030 104.5

12 11 10 10 1045 106.75

13 Enter the value

sales

approximately

mid value

between 1000

to 1800

14 14 14 1400 160

14 Enter the

values to

calculate the

commission for

sales nearly

less than 1800

18 18 17 1775 216.25

15 18 17 18 1770 215.5

16 17 18 18 1755 213.25

17 Enter the value

sales exactly

equal to 1800

18 18 18 1800 220

18 Enter the

values to

calculate the

commission for

sales nearly

greater than

1800

18 18 19 1825 225

19 18 19 18 1830 226

20 19 18 18 1845 229

21 Enter the

normal value

for Locks,

Stocks and

Barrels

48 48 48 4800 820

22 Enter the max

value for 2

items and max

- 1 for any one

item

70 80 89 7775 1415

23 70 79 90 7770 1414

24 69 80 90 7755 1411

25 Enter the max

value for

Locks, Stocks

and Barrels

70 80 90 7800 1420

Random Testing

Random Testing is a methodology within the field of software testing where inputs are generated

randomly to test the system rather than selecting them based on any predetermined criteria such as

boundary conditions or typical values. This approach is unique in its reliance on randomness to

uncover errors. It a potentially powerful tool for identifying hidden issues in the software. Random

testing is a valuable approach to software testing that involves using a random number generator

to select test case values. This method helps in avoiding bias in testing and can uncover unexpected

issues in the software.

1. Statistical Basis: Random testing is often discussed within academic due to its statistical

nature. By using random inputs, the testing process attempts to simulate a broad spectrum of

user interactions, potentially uncovering less obvious faults.

2. Use of Random Number Generators: Inputs for testing are selected using random number

generators to ensure that the values are spread across the entire input domain of the variable

being tested. This method helps in mitigating tester biases that might influence the choice of

test data.

3. Challenge of Determining Test Adequacy: One of the critical challenges with random testing

is deciding how many test cases are sufficient to confidently assert the software's reliability.

This decision can be somewhat subjective and often requires statistical or risk-based

approaches to resolve.

4. Considerations for Random Testing: Random testing can be particularly useful for exploring

a wide range of inputs and scenarios that may not be covered by traditional test cases. It is

important to ensure that the random number generator used is truly random and provides a

uniform distribution of values. Random testing can be combined with other testing techniques

to achieve comprehensive test coverage. The effectiveness of random testing can be influenced

by the quality of the random number generator and the size of the input domain.

5. Determining the Number of Random Test Cases: One common question in random testing

is how many random test cases are sufficient to provide adequate test coverage. The number

of random test cases needed can vary depending on factors such as the complexity of the

software, the size of the input domain, and the quality of the random number generator. In

practice, running a large number of random test cases can help increase confidence in the

robustness of the software.

Advantages of Random Testing:

1. Comprehensive Coverage: Random testing can potentially cover a wide range of input

scenarios than manual selection methods.

2. Unbiased Testing: It reduces the likelihood of unconscious bias in choosing test cases, which

might overlook certain types of errors.

Limitations:

1. Less Efficiency: It may require a large number of tests to achieve sufficient coverage,

especially for variables with a wide range of possible values.

2. Difficulty in Reproducing Errors: Randomly generated test cases can make it hard to reproduce

failures unless the specific inputs causing the failure are recorded.

Guidelines for Boundary Value Testing

Boundary value testing is a crucial aspect of software testing that focuses on testing the boundaries

of input and output ranges of a program. This technique can be especially useful when testing for

edge cases, error message handling, and robustness of internal variables like loop controls and

pointers. Key Guidelines for Boundary Value Testing:

1. Understand Variable Relationships: Make sure that variables in the software are

independent of each other. If they are not independent, consider how they affect each other to

avoid unrealistic test scenarios. For example, ensure that dates like June 31 are not accepted.

2. Apply Testing Widely: Extend boundary value testing to not only input ranges but also output

values and internal variables like indices. Test error messages and output values to ensure they

are within expected limits. Use robust testing for internal variables to catch common errors.

3. Use Semantic Understanding: Understand the real-world purpose of the software function

being tested. This helps in creating test cases that are more relevant and avoid impossible

scenarios. For instance, knowing that a function calculates mileage per liter petrol can help in

avoiding negative values or division by zero.

4. Create Diverse Test Cases: Develop test cases that cover a range of values, including

minimum, maximum, values just inside these boundaries, typical values, and values slightly

beyond the boundaries. This comprehensive approach ensures thorough testing.

5. Avoid Strict Technical Focus: Move away from solely technical testing methods and consider

the practical application of the software. By incorporating semantic information, test scenarios

become more meaningful. For example, when testing a banking application, ensuring that a

user cannot transfer a negative amount of money or transfer funds without having sufficient

balance adds practical value to the testing process.

By following these guidelines, testers can conduct effective boundary value testing that covers a

wide range of scenarios, considers real-world applications, and ensures the software functions

correctly in various situations.

