\
Y

|
[nﬂﬂ[er

Array Technigues

Chapter Outline

% Array Techniques

)
=%
¥

Array Order Reversol

¥

Array Counting or Histogramming

% Finding the Maximum Number in o Set

% To Remove Duplicates from on Ordered Array
% Partitioning an Array

- Finding the K® Smallest Element

Multiplication of Two Matrices

> Review Questions

Problem Solving Techniques

14.1 Array Techniques

ndexed collection of data elements of the same type. Indexed means that th,

n array is an i : '
‘ : s are stored in consecutive memory ce|

elements are numbered (starting at 0). Array

must be the same type and same size. it
nt is accessed or identified ys
All the elements will have the same name, but each eleme ntified using the

or subscript or position value. The index will always begin patRoshence If there are 'n’ elemey
an array the index of last element will be n - 1. The index is used to access the individya) eleme

<«——afe] a[1] a[2] 3[31\‘

Any name e % e 28 | Index or subscript

S. E‘J’Ep

One Dimensional Array Example

Arrays plays an important role in computer algorithms as using arrays simplifies the operz
performed on collection of data. Let us discuss some problems related to arrays.

14.2 Array Order Reversal

IIG- Problem

Rearrange the elements in an array so that they appear in reverse order

OriginalArray | 1 |2 |3 |4 |5

ReversedArray | 5 (4 |3 |2 | 1

Consider an array a[5] .The elements before reversal and after reversal are given below.

Array element alo] a[1] al2] al3] al4]
Input 14 21 67 32 45
Output 45 32 67 ¥ '.' 1 14

To reverse an array, the concept of swapping is used. Swapping is a term used for interchanging
values at two different locations with each other.

The set of exchanges in the reversal process is given below:
Step 1: Exchange a[0] ¢ al4]
Step 2: Exchangea[1] & a[3]
Step 3: a[2] ¢ a[2] - (No Exchange)

a[1]= 32
al3] = 21

Swap 3[1] and 3[3I
After swapping

while (2<2)is
False

An array after reversal is shown below.

a[1]

!
i32

ginclude <stdio.h>

void main()

int n,i,],temp;
printf("Enter the size of an array:
scanf("3d", &n);
int a[n];
printf("\n Enter %4 elements: ");
for(i=0; i¢n; i44)
scanf(*%d", 8a[1]);
i=g;
Jan-1;
while (1<1)
{
temp = a(1);
1] = agy);
7] « temp;
ies;

Loy

Prints(~
‘* ‘ \n er rw.rs%
(120; 1¢p, fo4) array ..

Mntf(- %d ".i{:[]).

Enter the size of an :

After reversing an

i |7M.] S : .
- dents, and the X-axis represents the marks. Eacly Star e
tudents,
mber of s

ic ark.
Ul f students scoring a particularm
s

H n; ;emqn e cy Histogram: T'he horizontal frequency histogram on the
om - rhn; : e the d'g‘m with horizontal bars. The Y-axis represents i
2. lor t it displays the dat: he width of each bar corresponds ot
ﬂ:Si o nts the frequency count. The
¢ se \
e X-axis represent A
f students who achieved that mark
ol h

Y
= ; j! A
2 : +
5 + | 100
<=3 : A
z J' | 50) chii S U
v 2 .
g o [B+ 4+ 4
1 |)
z
B B 35 e 4
S 10 15 ..100 e A
Marks ; | 2 3 +
L || Frequency Count —»

This approach provides a clear visual representation of the distrib
understand the frequency of each score.

ution of marks, making it ¢

distribution of a set of marks nee
red for the aboye problem is as follows:

01 variables: ‘counto, countl, count2, .., cou

=TS + perform the following:
m=0", thep iﬂl‘rernent 'count(’ by L

, then increment ‘count]’

- lf'm =2 i by ;
I then lncrement Icount2' b}’ 1
- lf'm = IUOI i
’ ' § then mCl‘el‘nent :

tount100' 1
Iength ethog requireg Yy L.
— eIemm'ﬂgl‘aln. *€Parate checyg for each mark, leading to an unneces

Meate 5 At ArTay to track the frequency of each mark. 38
; With 101 elements. where each index corresp

+
+ i
t +
+
LAt
—
m':
Frequenchm_ﬂ |

. |
tribution of marks, mak g itz
“'"'5" 4

tribution of a set of marks eed ¥

am i as follows
e problem s as fol

0, countl, €0

[=

unt,

a
il

R e — '
LY Y e T A e i et i
» i _—

g dsh

Array T--(hm:lu..\m

."I[I] J_l_zi T._ & 1[100]
k0 Mark 1 Mark 2 Marki0:
Ma vidTK L0
represents the marks, an s value at aac
hei“dex[ﬂlo lm}] p d the value at each index |||‘.||-f-ll|'sH'."1Ii'(|||l']jr_'j,'

f that mark.

count 0 1 ATy
requencies : For each mark, increment the corresponding array element. For instance
(=] J = 2l ce

y countF R Mpricce
. |fa student scores 50, increment 'a[50]' by 1.

If another student scores 75, increment 'a[75]" by 1.

- Ifan
be gencra'lizud as:

other student scores 50 again, increment 'a[50]' by 1,

This can
;11111] =a[m] + 1
where 'm'is the mark obtained by a student.
3, Update Counts:
update the corresponding array element:
_ Ifthe first student's mark is 50, then 'a[50]' becomes'0 + 1 = 1"

Initially, all elements of the array are set to 0. As we read each student’s mark,

. Ifthe second student's mark is 75, then 'a[75]' becomes'0 +1=1".
. Ifthe third student's mark is 50, then 'a[50] becomes "1 + 1 = 2'.
- Continue this process for all students.
. Final Output : After processing all marks, the array will contain the frequency count of each
mark. For example, if 25 students scored 50, then 'a[50]' will hold the value 25. Finally, array

contains the frequency count of each element.

arks by using an array to track the frequency of
a mark from 0 to 100. As student marks
many students

.

This approach simplifies the process of counting m
tach score. The array has 101 elements, each representing
i read, the corresponding array index is incremented, effectively counting how

ﬂ"[“ Y
"tteived each mark. Initially, all array elements are set to zero, and as marks are processed, the array
zﬁ:ms toreflect the frequency of each score. In the end, the array provides a complete distribution
Jowing € marks, with each index holding the number of students who achieved that specific mark.
To Display the Frequency Count of each element in an array
ey 1; Start
Step 5,
P I
S&H fPUt n, number of marks to be processed.
4 ‘In
o X itialize counting array elements a[@, ...108] to zero:.
il ! Whi
rumJ“L lensoe, do
& }eJ-.‘]t 5 Y Redd next mark m
. ¥ & Increase the count by one in location m in counting array
} i.e
Ly . kL ajm] =
W 5t Outpyy Al > a[m] = a[m] + 1 :
""[le'b l"ﬁﬁ 5! Eng eguency count distribution or histogram for marks.
4 A
’,THU"“‘__FI"'F
¥ #ﬁ” e TR T
. W
~

[
b L
L
L
LiAL L

-t
g R

p——T
b LA A aae e

=

iy W o ' o
g M B

oh Pigmbtaayi b
solving Tec hniques

S s——
N - rrequency count of the number of stud
am to print the frequency 0 dents th; i
C progr K. lat “hl.‘un

. TV
[P, S)
A Ty e each possiblt' mar

e ¢stdio.h?> Output :
Enter Number of Students: 10
: Enter 1@ marks: 37 45 50 45 188 0 45 «
int main() Mmarks Frequency > 39 50 18
e : 1
37 @

{
. ,i,3,3(101]; ;
int n,m1,] 45
50

10€

e askde

#includ

for(i=0; 1¢=100; 1++)

a[i] = ©;

printf("Enter Number of Students:

scanf("%d", &n);
printf("\n Enter %d marks: =sn);
for(i=1; i<=n; i++)
{

scanf("%d",&m) ;

a[m] = a[m] + 1;

printf(“Marks\tFrequency\n");
for(i=0; i<=100; i++)
if(a[i] I= o)
printf("\n¥%3d : " i
: 1\t%3d",i,a[i]);

Let us dis
 display the same output i ;
The widths of the bars r, Rl Horizontal Frequency Histogr: mnh

epresent the frequency count y Histogram graph in the below progra

C progra
m to print the f
. requency
Possible mark : quency count of the]
#include ¢stdio.p, k in Horizontal e number of students that obtained each
int llain(}

F :
requency Histogram graph

i
nt “"'»Lj,a[m]];

fOI"(j.a,
2 1(:1%.
a[i] - o;) i++)

.\nErequency Histogram in Horizon

e
Dutput :
il

fster Number of Students: 18

un

Ester 18 marks: 45 35 5@ 45 65 50 5@ 58 108 35

y Histogram in Horizontal Format

"0‘ Problem

Tofi
0d may;
XImum number in an array of n elements.

e (79) MAY

,—-.

12)

(70)

i
| ; i
AN S N N O
q - ((9) (73)
10) (89) 32 (12) (&) (&

—_ — -

Maximum Elemeny in Array

=]

_’l 3)

m Problem Solving Techniques e

{ number is a number which is greater than or equal to all other Numbe
The maximum ray should have one or more elements to find the maximum
'n’ elements. An ?;edyto find the maximum number. The solution is to injtia
need to ;i:x:;’verse the given array from second element till end. For eve
:;r::;te it with max, if it is greater than max, then update max.

ISing
Number All
ize the first
ry lraverged .

e pproach for finding the maximum element in an array is as follows:

Step 1: Start by examining every element in the array and compare them with each other
Step 2: Set the first element of the array as a temporary candidate for the maximum value, 1,
to as ‘'max..
Step 3: As we examine the second number (ie. the second element of the array), one of
scenarios can occur:
1. The second number is less than 'max’.
2. The second number is equal to ‘'max’.

3. The second number is greater than 'max’.

Step 4: Ifthe second number is less than or equal to 'max’, move on to the next n
it. However, if the second number is greater
second number.

umber and cop
than 'max’, update 'max’ with the valye g

This process continues until all elements in the arra
hold the highest value in the array.

Consider an array with five elements a[5] ={11, 24, 90, 35, sy

Let temporary maximum variable, max = a[0] = 11

y have been examined, and by the end, 'may

Step 1: Compare max with second element a[1]
11
<24, 50 update the valye of max with value of second number (24)
max = 24
Step 2:

Compare may with, third element af2]

24 <90, 5 Update the value of may 90
Mmax =9

B Remove the duplicates
"l i Duplicate Puplicate
o puplicate I e 0
- [1 i l 1 v v
s -.—-F"“’_:“-"'—”"_‘—_":—___ — [-]'1
annaonooon
—— ' ; — e
s | 1 ‘" 7
sl 11 Remove Remove Remove
\J
- Afer removing duplicates from the above sorted array
s— '.'. —f 7
] 3fafslel
- | The elements of a sorted or ordered array are arranged in ascending (or descending) order. Duplicat
are always adjacent in a sorted array. For example, in the array {1,3,5,5.7,7,9), 5 and 7 are duplica
elements. Let us understand the different methods of removal of duplicates in sorted array.
Method 1: Using Temporary Array
Approach:

1. Create a Temporary Array : Start by creating a temporary array temp|] to store unique

elements from the original array arr{].
r4 :
'I‘Iraverse the Input Array : Go through each elementin arr[] and, one by one, copy the
elem ' ; |
ents to temp[]. Simultaneously, keep track of the count ol unique elements using d
variable .

unique

3. Copy Back 2
py and Print: After the traversal, copy the first j elements from temp|] back to arr(l,

and then print the array.

Detailed Steps:
L. Initialize Index Variables:
» Useanind m
. Use llml:h:: ‘;::::Ie I to iterate through each element in ‘arr|]
~ element will be stored. I:t:allli;z track the position in ‘tempf]' where the &
2. Check for Uniqueness: j = 0" since "temp(]' is initially empty-
Compare each element ‘arr{)
1 arrfi)is not B w'“rm with the next element ‘arr[i+1]"
and 'f' b 1]’ it means "arr[i]' is unique. so store arri)

ot unique

in emplll

S wa 4 delicars slement

L=

. Las
 the 14
pdle
L a0
fhe fov |

Y potincdu

L
Copy pack
B, After proce

it the
g ouipy

. Finally

R
\.gnul Array arm|

paporaly Array:

}k\\JIIJh!l“- i
\ v !1'“-]

b Ite

."__l!l:!

tem) —1
| T
o l IR

i |

1 Will he

SNEN

AT

B
] ={1.3.2.0

temp|] (Initially empty)

yruns it
jed in the loop because there is no ‘arr[i+1]' for tl
: \ the |

.

{ Element:
om the first element to the second-last elemer
it element of

 Jast element l

i\t LII'IhllIl‘I should be handled s« parat

o Original Array:

ssing, copy the first'j' elements from "templ[]’ back to "art

R;‘\HI[:

e
b |

print the array

ly i=0 and j=U
ation of the tor loop,
s equal to the (i+] 1™ element

and 1 will be 1nc remented by 1 s

D
aned by 1. 50, 1 1 and j=1
|
||
1 | i

L We Wl |\].‘.L'1]\\\'ht'““'| 3 ““"i“'l! L

&

I

1S not l'I]l|l|| o7 Sp °
7. S0, 5 will be stored (n temp an
|

ncremented by 1

arr[]', which now contains only unique elements

0 5. Itis notequ

w150 that it points to the index of the third element

S time, the |* gle
€ the i* element (5) is equal to the (I4 1" eleme

I will be incre
icremented so that it points to the inde

[] 1=2

-[ul.u,nmw.'tllk'l'!.nu! i (to track the position in temp[] where the nextun by
¢t unique e ent will |

i' will point to the index of the first elemer

1 is not equal to 3, so the i" elemen
o that it points to the index of the econd eleme

1al,

<0 3 will be stored in tem

pand i will be incremented

(5).71 will be incremented by 1

w of the next 5

it [(5). 50, the |'

{'f* will be Incremen

element will not be stored in temp

tedl so that it points to the index

be stored in temp and i will be incremented by 1 to point

Print j Elements

ARer processing the arrav arr]
¥ g e array arr{] nov contains <

4 u N Con .1]119031[_‘- the unique elements:]il 3,5.7 9) This . .

“J Ll dap !l__-\.i—_'f"""

OO Lupd by utl Ing Emporary Y an II risons, e ne
removes d cales I71 a 1 f f e
L pora alTay a d 5 .1plE' LGnTpil 1S0NS, ensur II th t e on

To Remove Duplicate
Elemen
ts from an Ordered Array using Temporary Array

Ia-ﬂll_n-ljbednsortedm-ay,uﬁerenzl

Step 1: Stary

Step 2: pec

i lare variap]es arr(], temp[], n i :
,zu!umsﬁm » 1 and j.

Step 4: Initia]lfze 1=8 and j-g

hs:hll.un.z “

array g
Y and store the elements in array arr

element of arr then

array 2a
ay Elen

< 3; i+

.{.* ", ar

' ,&n);

i

Enter Num

nl;

An Enter !

icn; 1++

F("%a", sar

Juplicates!

yrray so while providing an input vy,
it will glve unexpe ted results les .

Technlqued

14.18 problem Solvind

jly for gorted

Il work ot :
L otherwlse

rogra m
orted ordern,

Note: The above P .
array IsIn s

sure that the given

sing Temporary Are

'\T<1'|m||_' Without | : i | |
t we will not make a separate array (temp), 1, te

ne, bu
array (arr) instead of temp,

|nwiuu5 (
in the same

| v as the
is method is the same ‘
it elements

we will store our final resultant

s, n =0
Let us consider the below sorted array art of 6 elements.

Initially i =0 and | =0
0 1 2 3 1 5
o Tan Lo [[34 [50]
I,

for loop, i will point to the index of the first element (1). Then we will check jf
; : . rck if the

not equal to (i+1)" element of arr, then store el
; .

“ In the first iteration of the

element is equal to the (i+1)" element. if i" element is
value

in arr(j]

Step1: The element at 1* position (a[i] =11) is compared with element at 2 position (ai+1] =

Elements compared are different (11, 21). 11 is a unique element placed at 1" positi 5
[t d position,

arr[j] = arr[0]

arr[j] = 11

arr[0] = 11

increment i byl and j by 1

So,i=landj=1

L 0 1 1 2 3 4 5
22 [3 |
4 34 50
) l
Step 2: The e]
ementat 2" pogitj |
ntat2* position (a[i] =21) Is compared with e]
dare same (21, 21), e

Ifitis same, thep, i
_ o
i=2 Justincrement by 1,

Elem
ents compare position (a[i+1] =21}

N e
0 change jp J' value, 50,)=1

=21) is com

ar ; .
(21,340,311 - element at 4" position (o[t -4)

1 is 5
A unique element placed at 2™ position:
I a p

bk mSﬁlVi“ Techniques e ——————

ata sets, we can see, elements from left side which are
m right side which are less than or eq

Breate
alto 20

ove two d

i b
By comparing thea ht side and elements fro

must be moved to rig
moved to left side.
"‘-:T':- to Achieve P.

rtition value 'x' are on one side, while all elements greater than 'x"are on the gthe T
given pa h is to use two index variables that move inward from opposite ends of th

artitioning an Array

idea of this approac
swapping elements that are out of place as they go.
Irl,gpanjtion growing to the right - < Right partition growing tO_th_fﬂf_fF__J!

Step 1: Initialize Index Variables
. Left Index (‘i) : Start at the beginning of the array ('i=0").
. Right Index ('j') : Start at the end of the array ('j = n-1', where 'n' is the total numb
elements in the array).
Step 2: Inward Movement of Index Variables
« Left Index Movement ('i'):
- The left index ('i') moves from left to right through the array.
- It continues moving right as long as the current element is less than or equal to
partition value 'x'. When it encounters an element greater than 'x', it stops.
+ Right Index Movement ('j') :

- Theright index ('j') moves from right to left.

- Iltrconu’nues moving left as long as the current element is greater than the partition val
x. When it encounters an element less than or equal to 'x', it stops.
Step 3: Swap Elements

* When Both Index Variables Stop:
- If the left

index ('i") fi ' 0 y g
St (') finds an element greater than 'x' and the right index ('j') finds a

ss than or equal to 'x', these elements are out of place.
i=0

a[i] > x | a[j] < x =l
Left Partition Elements Bikiang, -0 Right partition;
€ partitioned
—_— i - .
_ e
When we find an element at :

Position 'i' where afi] > x, that need to be moved to Figh”nd

Where a[j) < 4 i lements

an elen'Ient at 'j'
tthis point, that must be moved to left partition, i and J

are exchanged a
- Exchange s
on
- After SWapping, the elements at positions 'i' and l ' o
continue the Process, ft index (I') and decrement the right index (7)

n Problem Solving Technigues

ing inwards
Step 2: Since i < | is true (0 < 9 is true), lets proceed with moving
While (i<jandafi] sx)doi=i+1
0<9and 1520 istrue,soi=0+1=1

1<9and4 s20istrue,soi=1+1=2 |
2 <9and 32 <20 is false, so stop iterating loop.

i=2

While (i<jand a[j] >x)doj=j-1
2<9and38>20istrue, soj=9-1=8
2<8and35>20istrue,soj=8-1=7
2<7and28>20istrue,soj=7-1=6

2<6and 10 > 20 is false, so stop iterating loop

j=6
Now, swap a[i] and a[j] i.e,, a[2] and a[6] - swap 32 and 10

i J
2] 1 i 3 4 5 6 7 8 9
(1] 4 [20] 23 [15[12 [32] 28 [35 | 38 |
Increment i by1 and decrement j by 1
=2+1=3
j=6-1=5

Step 3: Since i<jis true (3<5 s true), lets proceed with moving inwards
While (i<jand afi] <x)doi=i+1

3<5and 23 <20 s false, so stop iterating loop

No change in i value, i = 3

While(icjanda[j]:-x] doj=j-1

3<5and12>20is false, so stop iterating loop

No change in j value,j=5

Now, swap a[i] and a[j] ie., a[3] and a[5] - swap 23 and 12

i J
S R g T
; mmmmmmm
ficrement i by1 ang decrement jby1
=3+1=4
‘ = s - l = 4
Step 4; Since i<j js fa]
se (4
s (4<4is false), lets Stop moving inwards.

¢ final array after paryyy

on is shown below.
o 1 2

. . 1333
=R E S 4

Problem Solving Techniques

Step 4: Adjust the Bounds Based on K" Element's Position

: rtition (or) right

* After partitioning , the k™ smallest value could be m, l‘;:t T-tition is(di)scaiie

example, If k™ smallest value is in right parition thenb eungvalue Py

for k™ smallest value in right parition. Replace Iowe'r‘ 0 T AR
smallest value again in smaller subset of right partition. Rep

smaller subsets to find k™ smallest value.

P sare < pj
- Ifthe K™ smallest element is in the left partition (where element pevor
lower bound 'l' to i’

k 1
{i‘“ Smallest Element in this subset [
[< x >7j i u

- Ifthe K" smallest element is in the right partition (where elements are > pivo
the upper bound 'u' to 'j".

= k
L K™ Smallest Element in this subseﬂ

[J =

-

Step 5: Repeat Until the K™ Smallest Element is Found

» Continue the partitioning process within the updated bou

right bounds overlap, isolating the K smallest element at
the K* smallest element.

Ex‘——————————_)..u

nds ('l' and 'u") until the |
Position 'k'. Once isolated,

This optimized approach efficiently narrows down the search Space to find the K* smallest el
without requiring the entire arr-

ay to be sorted, making it a fast and effective method.
Find the 3w Smallest Element in the Array
Let's go through a detailed,

step-by-step process for fingin the 3rd smallest ¢ i artiti
approach with the array A =[5, 2, 9,1,6]'and 'K = 3 g St element using the B
Initial Setup
Array: A - [5.2,9,1, 6]

K=3 (we want to find the 3w

smallest element)

Convert 'k’ to zero-Indexed: K=331= 2

Step 1; Initialize Boundaries

at, the elements less
n 'pj

than or equal to "pivot (9)’
YOt (9)' will movye

to the right.

Mrohltm Solving Techniques

e e e s e

* Swap ‘A[i]" and ‘A[j]": \

- va ! r—l - (] C .-
- Swap ‘A[2]' and 'A[3]": The array becomes '[5,2, 1, 6, 9]
« Update the index variables:

- Increment 'i = 3'
- Decrement 'j = 2' e
« Now'i'(3) is not less than 'j' (2), 50 the partitioning stops here.,
Step 6: Determine the 3rd Smallest Element i3 | .
After the initial partitioning process, the array is '[5, 2, 1 6,9] *‘l he pivot e.] ement’6’ s Correctly s
and we need to focus on the left partition '[5, 2, 1]" to find the 3rd smallest element.
Since j < K (where j = 2 and K = 2), the 3rd smallest element is within this partition.

e B 3 - s | o f 2 'l 9
- The pivot '6'is now correctly positioned. The elements to the leftare '[5, 2,

1]', which CONtain the
smallest elements.

Let's go through the process again, focusing on correctly finding the 3rd sm
the partitioning process on the subarray '[5, 2, 1]".

Step 7: Repeat the Partitioning Process on '[5, 2, 1]’

allest element by continyjpe
i)

Now, we consider the subarray '[5, 2, 1]' with new bounds:
* Lower Bound ('I'):'1 = 0'
« Upper Bound ('u’): 'u=2"'
New Partitioning Process:
1. Choose a New Pivot:
* Since we're focusing on the subarray '[5, 2, 1],
(which is still 'K = 2' from the origin
* Pivot=A[K] =1
2. Partition the Subarray:

we choose the element at position 'K
al array):

* Initial Array: '[5, 2, 1]’
* Index Variables:
e i=0
o =2
3. Increment '’ until an element greater than the
* i=0%Af] =
4. Decrement 'I" until

l = 2.: 'A[i] =1'(equal to Pivot, continye decrementing}
1=1%Afj] = 2! (greater than pivot, ¢q

"= Alj] =5 (greater than pivot,
5. Swap Ali]' and Alj]':

— > Since 'i=0'ang =

2' L}] i
:SWap ‘A[0]' anq A[2]': The array becomes '[1

‘pivot’ is found:
5" (greater than pivot, stop here),

an element less thap orequal to 'pivot’ is found:

ntinue decrementing).

continue decrementing}-

Problem Solving Techniques

printf("\n Enter ¥d Elements :
for(i = 0; 1 < n; i++)
scanf("%d",&arr[i]);

*,n);

printf("\n Enter the Value of K : ");
scanf("Xd",&k);

k=k-1;

1=8;
u=n-1;
while(1l<u)

i=1;
j=u;
x=arr[k];

while(i<=k &8 j>=k)

{

while(arr[i]<x)
i=i+1;

while(arr[j]>x)
J=j-1;

temp=arp[i];
arr[i]=arr[§];
arr[j]=temp;

i=i+1;

J=3-1;

if(j<k)
1=1-

Fl

if(i>k)

i=13

printf(" %d v
printf("\p

i)

Problem Solving Techniques

Matrix Multiplication Formula

A wan i iplication by the technique, "F;
We can understand the general process of matrix multiplic: 4 1U€, “First rows

ar ille % sider
multiplied by columns (element by element) and then the rows are filled up.” Consider two Matri

of order 3x3 as given below,
fa b cllj k 1] [(ajs+bm+cp) (ak+bn+cq) (al+bo+cr) !
. m n o (dj+em+fp) (dk+en+ fq) (dl+eo+fr)|
p q r| [(gi+hm +ip) (gk+hn+ig) (gl+ho+ ir)

|
!

?d - f‘

(g h i

F How to Multiply Matrices?
The steps in matrix multiplication:

L. Make sure that the number of columns in the 1st matrix equals the number of rows in the 2ng ma
(compatibility of matrices).

t3

Multiply the elements of each row of the first matrix by the elements of each column in the seco
matrix.

3. Add the products.

4. Place the added products in the respective columns.

ez iR
J_l Byl ™" B:;} _54
3x2

e |1 2
AB:F 1 2J¢ . =[3xl+lx{}+2x3 3x2+1x5+2x~4] [3+0+6 6+5-
IX142%0+1x3 1x242x5+1x—4 [T [1+0+3 2+10-

3x2

AB is not possible as numper of ¢

olumn of A Matrix is not equal

m:n.‘u-h to Find the Mllllipli('

ation of Twe .\l;uri:-m

< Define three Matrices A, B,and ¢ lh

