Unit - 3

cnapter

{8 Factoring Methods

% |ntroduction

% Finding the Square Root of a Number

% Finding the Smallest Divisor of an Integer

% The Greatest Common Divisor of Two Integers
% Generation of Prime Numbers

% Computing the Prime Factors of an Integer

b Generation of Pseudo-Random Numbers

% Raising a Number to a Large Power

4 Review Questions

N

m Problem Solving Techniques N =

==
-

The factor is a number or algebraic expression that divides another numbe

I'or e

AL XPress;
its remainder is 0. (or) factors are small numbers when multiplied gives othe Numberg ;‘) “ven]y,
S : “TS. For o @
3 and 6 are factors of 12 because 12 + 3 = 4 exactly and 12 + 6 = 2 exactly. The other factn;r anmple
1,2,4,and 12. S o1

Factoring or Factorization is nothing but writing a number as the product of Sm
the decomposition of a number (or) mathematical objects into smaller or simple
In simple words, factoring is the process of finding the factors:

rn o
umbers/oblect
S,

Note: Factoring is the reverse process of multiplication.

For example, 7 and 3 are factors of 21. For example, x and x - 2 are the factors 7 _ 2%

7o x| 3| = x:
Factors of 21

Algebraic expressions also have factors. Here, x x 2x is the factored form of x2 - 2%,

So, factors can be numbers, algebraic expressions, or algebraic variables.

\
The Theory of Numbers, especially factoring methods, has been thoroughly studied in the field

of mathematics. Factoring of integers into its prime numbers has many practical applications in
encryption, hashing technique etc. A numerical simulation is a computer-based study that uses a
software to implement a mathematical model of a physical system. In numerical simulations, random

numbers are widely employed. Methods for factoring large whole numbers are of great importance
in public-key cryptography.

13.2 Finding the Square Root of a Number

IIG Problem

Given a number m, design an algorithm to calculate its square root.

There are in built functions in all programming languages to calculate square root of any gWen
number but idea here is to find the square root of a number without using any predefined functio®
The algorithm should be designed to find the square root of a number using an iterative method.

A square root of a number is a value that, when multiplied by itself, gives the number.
We know that, 2x2=4,5s0 square root of 4 is 2.

3 x3=9,50square root of 9 is 3.
From the above examples it is clear that,

—— 7 Factoring Meihodsm
e root 'n’ of a number' st sat R
o The square ro ber m. muyst satisfy the
e)
e

n €quation
ng SIS s (1)

o find the square root of a perfect square, A perfect i
It's easying a number by itself. In other worgs, 5 perfect nprSl;llve .”“mber ety
mumprraised to the power of 2. €r that is the result of an
integ®
! =36, 72:49’ 82
e four methods to find the square root of Numbers anq tj

Repeated Subtraction Method of Square Ro¢
1. - Root by Prime Factorization Methoq
z' quare Root by Long Division Method
4: square Root by Approximation Method (Newton's method).

sider Newton's method of solving a Square root of a numper.

=64 and so on.

0se methods are as follows:

To Find the Square Root of 49

1. Tofind the square root of 49, start with an initialgTessoT;_

2. Multiply 9 by itself: 9 x 9 = 81, which is greater thap 49,509 s too high.
3, Tryalower guess of 8.

4. Multiply 8 by itself: 8 x8 = 64, which is still greater than 49 byt closer,
5. Try a further lower guess of 7.

6. Multiply 7 by itself: 7 x 7 = 49, which exactly equals 49.

7. So, 7 is the square root of 49.
8

. The number of tries needed depends on how close the initia] guess is.

m Find \/g to 4 Decimal Places

Since 22 = 4 and 32= 9, we know that V6
2.5°=6.25, which is too high. So, we make a

is between 2 and 3. Let's guess it to be 2.5. Squaring 2.5 gives us
slightly lower guess 0f 2.4. To find an approximation to four decimal
places, we need to keep refining our guess until we have five decimal places, and then we can round the result.

Guess Square of guess High/low
2.4 5.76 Too low
2.45 6.0025 Too high but real close
2.449 5.997601 Too low
2.4495 6.00005025 Too high, so between 2.449 and 2.4495
24493 5.99907049 Too low
24494 5.99956036 Too low, so between 2.4494 and 2.4495
244945 5.9998053025 Too low, so between 2.44945 and 2.4495,

0hi s e
%me result will round to 2.4495 (and not to 2.4494).

|"

Square Root of a Number

o task is to find the square | — '
) 'l‘
1
Hllly
b

Given an pumber T
Method Fn' can be given by the formula: ™,
root 0 s whi an be : ‘
1. The »‘q“”ﬂ; (n+(m /n)) where '’ is any guess which can be assume ¢, | {
= 5 - F'my’ 2 " § g
root ia, 'n' is &Ny assumed square root of 'm' and root is the ¢4, » M op |
7 In this formu ;'er ' dted Squ O 4
2 . / i . " Ala
e Jevel L 1S the maximum allowed difference betweep, '\ | "oy
e ang
p tolerance nd ' 0f
3. ﬁnmate accurate en()l]gh- o~ A . Ir)m ; M f
es h‘ formu]a |n§id9 a loop and t]y tO glICSS l1, Sl(“ llng h'(”n ”ll[nh(rr)h“)
5 ‘ : : s Wae ekl ST fr i
4. We use th! - ith each iteration with new guessed root. Continue thjs , fro . rinl,w
we update ! 4 ‘root' is 1esS than or equal to the tolerance level 'L, PTocess llnr)vr LW
between T °7 : erance level, the | il e i
erance level, the 100p stops, an ’ L
5. Once the gifference meets the to Ps, and the currep val it 0
. otof 'm’. dlye Of’rf)r)r' N,

the square o

Find the Square R
e 128

Let m=256,

teration 1:

teration 2:

oot of 256 Using Newton's Method.

1=0.1and Jet us assume n= .2_ ==

—05* 128+ Eé) |
e 128

= 0.5*(128 +2)
=0.5*130
I
(n=128 and root -65, the difference (n-root) is greater than tolerance |im;t 01
la

continue with next iteration) 0d hepg,

ley

Assign root ton
Therefore n=65

oot 05((ED
o 2)

= 0.5 * (65 + 3.93)

=0.5*68.93

= 34.46 |
I

(n=65 and root =34.4 '
=34.46, the differenc . : ‘
continue with next iteration) e (n - root) is greater than tolerance limit 0.1 andhen !eﬁ}‘
|

Assign root to n
f

Therefore n=34.46
/L

n e
:0.5*[111{[—)) =0.5*£34.46+(2\‘)6_
’ 3: root n 34.46

ion
o - 0.5 * (3446 +7.42)
_0.5*41.88
-20.94

(=34, 46 and root =20.94, the difference (n - root

) is great LW,
lets continue with next iteration) greater than tolerance limit 0.1 and hence

Asslgﬂ rootton

Therefore n=20.94

m 256
=0.5* n+[—)] —05*[2094
on" root L n 20 94

_ 05 *(20.94 + 12.22)
=0.5*33.16
-16.58

(n=20-94 and root =16.58, the difference (n - root) is greater than tolerance limit 0.1 and hence
Jets continue with next iteration)

[[efa

Assign root to
Therefore n=16.58

_[E* e e 256
[teration 5: T00T =05 [n+(nD =0.5 [16.58+(TS8D

- 0.5* (16.58 + (256/16.58)
=0.5* (16.58 + 15.44)
=0.5*32.02

=16.01

(n=16.58 and root =16.01, the difference (n - root) is greater than tolerance limit 0.1 and hence
lets continue with next iteration)

Assign root to n
Therefore n=16.01

256
Iteration 6. =0.5* Ml =0.5% 16.01+ ——j
| root 0.5* n+ A 16.01

=0.5*(16.01 + (256/16.01)
=0.5*(16.01 + 15.99)
=0.5*32
=16
(n=16.01 and root =16, the difference (n - root) is less than tolerance limit 0.1 and hence stop the
iteration)

£
alie e Square root 0f 256 is 16. We have calculated the square root of 256 in 6 iterations with initial guess
a

21/2. The number iterations will vary based on the initial guess value.

1

m Problem Solving Techniques
tof'aNmnberusim}:Newlnn'gM(,“""l

Find the Square Roo
uare root to be fount

To —
!andl(ﬂerancollnntislh

Letnvhethernunher\vhosesq

Start.

Step 1

Step 2 Declare variables M, M L and root.

Step 3 Read a number m and Toleranceé Limit L

Step 4: Initialize root to @ (root=0)

Step 5 cet initial guess n=m/2 .

Step 6 Repeat the following. gteps until absolute difference between "

less than tolerance limit L. 4

(a) root = 0.5 x (n+ (m/ n))
(G) = root

Step 7: print root.

Step 8: End

Number using Newton's Methgq

C Program to Find the Square Root of a

#include <stdio.h>
#include <stdlib.h>

double squareRoot(double m, double L)

{
double root, n; Output :
root=0.9; Enter a Number to Find the Square Root (m) : 294
n=m/2; Enter Tolerance Limit (L)) : ©.00001
while(1) i
Approximate Square Root of 299.000000 is -
‘ 1s @ 17.31202¢

root = 8.5 * (n + (m / n));
if(abs(root-n) < L)

break;

n = root;

}

return root;

void main()

{
double m, L;
printf("\n Enter a Number to Find the Square Root (m) : ");
scanf("%1f",&m); :
printf("\n Enter Tolerance Limit (L)) : ");
scanf("%1f",8&L); ,
printf("Approximate Square Root of %1f is : %1f",m,squareRoot(m,L));

Q are sot of a Number neing Pradafuad ©
m to Fmd the Square Re a N M sing sdefined Funetion -y

je : , ‘
aob er a Number to Find the Square Root : ;

wf(—nf',ﬁl)i
:.mtf('\“ square Root of X1f is : X1f", m, sqrt(m));

1o the Smallest Divisor of an Integer

Findi

Problem

esig an algorithm to find smallest exact divisor of an integer n other than one.

/ » .« . 7 o ol = ‘ 7
3 factor of 2 number is an exact divisor of that number. An exact divisor of a number divides that

with no remainder. For any number n, there are at least two divisors. All divisors of m are
petween 1and n and can be totally ordered.

Consider the even number 64. The complete set of divisors is {1, 2, 4, 8, 16, 32).
Smallest exact divisor of 64 other than 1 is 2.

Consider the odd number 81. The complete set of divisors is {1, 3,9, 27, 81}
Smallest exact divisor of 81 other than 1 is 3.

Consider the prime number 31. The complete set of divisors is {1,31}
Smallest exact divisor of 31 other than 1 is 31.

MW to find the smallest exact divisor of an integer

Suppose we have an integer n and need to find its smallest divisor other than 1. A common approach is to start
from 2 ang keep dividing n by successive numbers until we find one that divides n evenly.

N”"fr imagine n is a large prime number, like 1013. Would we really check every number from 2 up to 1012 to
S¢€ifany of them divides 10137 This would require a lot of time and effort, making it an inefficient solution.

Do we have better way?
Consider the number 64. The complete set of divisors other than one is {2,4,8, 16, 32).
Let us taje the first divisor 2. We can easily observe that:
2*32=64
Similarly e can take other numbers and observe the following:
4*16=64 8*8 =64 16*4 =64

n Problem Solving Techniques

Lallest divisor 2 is linked with the largest divisor
cond largest divisor 16. This goes on with 8 |ipj.

sm
So from this we can observe that the

+ Simns
d \,vith 8]

May
ce e ith se Yi
second smallest divisor 4 s linked W g fina:;(
S f divisors of 64, we can see that smallest divisor 2 is linke(With |y
Considering the complete setol ked with second biggest divisor tiededeg et v,
=03 a1t 3oy
32, second smallest divisor 15_1:3___’____________
smaller factor is linked with Bigger factor
_————————T 32
e i e 16
8 8
16 §

rve that if any number n has a divisor then th,; diviga. . |

i i obse

if we want to generalize this, we can . AR : Mg

15-0: e anotier divisor. The general pattern is that a smaller divisor is linked with 5 larger Site alway I
inked wi :

3
ViCe
versa.

smaller divisor * larger divisor = n

Another interesting thing that can be observed is that if we go on increasing the value of smaller i
s ime i n decreasing the value of t)

consider the next larger divisor, at the same time if we go 0 g he large divj

. SO[‘ 3
: n
consider the next smaller divisor then we reach a cross over point. At the cross over point e obse d

Ve tha
smaller divisor = larger divisor.

25458
32—>16—>8

In this example, cross over point is 8.
So what is 8 in our case? 8 is the square root of 64.

So once we find the square root of any number n we don't need to look beyond the value of the Square root f,
the smallest divisor. The other side of the square root will always have the larger divisors.

Steps to find the the smallest exact divisor of an integer:
Step 1. Check n is divisible by 2, If yes then 2 will be the smallest divisor

Step 2. Iterate from i = 3 to sqrt(n) and making a jump of 2. If any value divides the n in that particular
range. Then that will be the the smallest divisor.

Step 3. If nothing divides, then n is a prime number and it is a smallest divisor

Further to improve the design of algorithm few important considerations are as follows:

1. Ifanumber n is divisible by 2 (even) then smallest divisor is 2

2. if the number n is odd, test all the odd divisors (ie.,3,5,7,...) which are less than or equal to vn.

3. The divisors to test can be generated with equation div = div + 2 ,with initial value of div =3

4. To check a number is an exact divisor or number mod function is used. If n mod div = 0 (ie., n0
remainder after division) then div is an exact divisor.

<

If n is the smallest divisor of n then it is a prime number and the smallest divisor is 1. "/j

gtart :
) iables n, r, div
step 1. Declare Var‘labl D,]
. ol 1 to @ th
: equal to en print
S”PS' £f mod 2 15 €9 P 2 is smallest divisor and go to Step 9
o 4: compute I = square root of n
o 50 mitialize divisor div to 3
S“p6. Jhile div is less than or equalt to r do the following steps
1 1o T
; s equal : G
tep (a) if (n mod div is eq to @) then print div is the smallest divisor and
go to stepd
(b) div = div + 2
)8 print n is the smallest divisor
ste
M
C Program to Find the Smallest Divisor of an Integer
sinclude ¢stdio.h>
sinclude <math.h>
int smallestDivisor(int number)
{
if(number % 2 == 0) //if given number is even then smallest divisor will be 2
return 2;
else
{
int r = sqrt(number);
AN ERdIVE=R 3
while(div <= r) //looping from 3 to square root of given number
{ -
if(number % div == @) //checking for smallest divisor
return div;
daat=RdaVvoat 23
¥
: £ pri umber it will return number
i n
return number; //in case of prime
) Output :
void mai
{ B0 Enter the Number:100
. Smallest divisor: 2
int n;)
printf("Enter the Number:"); Enter the Number:725
scanf("%d":&”)3 . Smallest divisor: S
int result=smallestDivisor(n); Enter the Number:1013
printf("smallest divisor: %d",result); Smallest divisor: 1013

i inigreien W

problem

mmon divisor (GCD) of two positive non zer it
—_— }g(l

0
to find greatest c .
Design an algorithm atest positive intege = S0,
+ oreatest common divisoT (GCD) refers t0 5 eatel i I;] stcom g(fr that s a o, m)
g Y (
The greates : 1rp(JS]t]W]r]teg(ers.Itis also termed as the highe mon actnr(;,w)or n g,
for a given set0 oy
g,
common factor (GCF) IO et ;
For a set of positive integers (a b), the gt reatest Cotme) o d[;: the o reate
5 hich is a common factor of both the positiV g e CCD o p”%itivn
number which is that divides each of the integers such that their remaindey 0 p g
er()‘ -

e largest integer
10 is the largest
gest number w
tive or 0 as the least positive integer Commop 1,

integers is th
GCD of 20,30 =10 (
GCDof42,120,285= 3 (3isthelar,

number which divides 20 and 30 with remainder 5 0
hich divides 42, 120 and 285 wit}, remaiy

GCD of any two numbers is never nega X
numbers is always 1. q
Md the Greatest Common Divisor of 13 and 48.

We will use the below steps to determine the greatest common divisor of (13, 48).

Divisors of 13 are 1,and 13.

Divisors of 48are 1,2,3,4, 6,8,12,16,24 and 48.

The common divisor of 13 and 48is 1.

The greatest common divisor of 13 and 48 is 1.

Thus, GCD(13,48) = L.

T e

Md the Greatest Common Divisor of 10 and 20.
T ——

Divisors of 10 are 1, 2, 5,and 10.

Divisors of 20 are 1, 2, 4, 5,10, and 20.

The common divisor of 10 and 20 is 1, 2, 5,and 10
The greatest common divisor of 10 and 20 is 10.
Thus, GCD(10, 20) = 10.

Methods to Find GCD:

There are several methods to find the greatest common divisor of given two numbers.

1. Prime Factorisation Method
2. Long Division Method
3. Euclid’s Division Algorithm

Euclid’s Algori . _
uclid’s Algorithm (or Euclidean Algorithm) is a method for efficiently finding the gre

divisor (GCD) of two numb
i ers. Let us discuss Euclid’s algorithm to find the GCD of two 1

atest commo?
mbers !

g - Fuduring Met m
5 : ¢ hod

n: B :
o7 Operat | ¥
Ju ation gives the remainder whep + '
om0 ulonpe.atl .g ed by 9%, T 161 two POsitive i
Theﬂ‘od “ operator is denoted by %, The mody

 odu
0

m ey
The rdiVlSlon'

inrcge it as follows : A%B=R
ite

pividing 7 by 2 gives the remainder 1)

Eaa(
7%27 ” (Dividmg 42 by 7 gives the remainder ()

==
steps to Find the GCD of Two NumhersW
Tl

Ifa=0 then GCD(a, b)=b since the Greatest Commo \

1: n Divis :
step and stop. Otherwise go to step 2. orof0andbisp. Return the value of
Ifb=0 then GCD(a,b)=a since the Greate -
0l s Common Diyisor f0 i
et and stop. Otherwise go to step 3. > P andaisa Return the value of '
gtep 3: Let r be the remainder of dividing a by b assuming a > b
r=a%b
Ifr=0 then G.CD(a,b)=t-,. Return the valye of ‘b’ and stop. Otherwise go to step 4.
step 4 The smaller integer b is taken as larger integer and remainder I'is taken as the divisor.
Assign the value of ‘b’ to ‘4’ and " to ‘b’,
Go to Step 3 to Find GCD(b, r)
The process continues until remainder becomes zero in Step 3.

Find GCD of 285 and 741 using Euclid's algorithm.

To calculate the GCD of 285 and 741:
1. Since 285 is less than 741, start by calculating GCD(741, 285).
2. Divide 741 by 285, which gives a remainder of 171. Now, calculate GCD(285, 171).
3. Divide 285 by 171, which gives a remainder of 114. Now, calculate GCD(171, 114).
4. Divide 171 by 114, which gives a remainder of 57. Now, calculate GCD(114, 57).
5. Divide 114 by 57, which gives a remainder of 0.

The process stops here because the remainder is 0. Therefore, the Greatest Common Divisor (GCD) of 285
and 741 is 57. This result was obtained by repeatedly dividing and taking the remainder until we reached
aremainder of 0, confirming that 57 is the largest number that divides both 285 and 741 without leaving a

remainder,

ﬂ o opiraaive WL =™
. ing Buclid's algorithm

£ 0. The last number we used to divide s ,
*1s 8

16%8=0 .
g 0
ce we've already gota remainder

We stop here sin
40 and 64 is 8. ‘
g Buclid's algorithm \

SO
rh[’l (l(l
‘J'J‘

Find GCD of 16 and 2

28 % 16 =12
16% 12=4
12% 4 =0 (rer

Hence GCD (16,28) is 4,

t Common Divisor of Two Integers a and b

nainder s zero)

To Find Greates

Algorithm

Step 1: Start

Step 2: Declare variables a,
Step 3: Read two numbers a and b

if a is @, GCD of a and b is b.

byt L

return b and stop

Step 4:
step 5: if b is @, GCD of a and b is a. return a and stop
Step 6: Repeat below steps until remainder 'r' becomes zero
(a) r=a%b
(b) a=">b
(d)b=r
Step 7: Return b
Step 8: End

et VBl C Program to Find Greatest Common Divisor of Two Integers
#include <stdio.h> i

int GCD(int a,int b)
{ ; Output :
1f(a==0)
e rra Enter Two Numbers:0 20
if(b==0) GCD of © and 20 are: 20
! return a; Enter Two Numbers:25 ©
ANt s
while(z % b >) GCD of 25 and @ are: 25
{ Enter Two Numbers:285 741
: 1
r=ab%b; GCD of 285 and 741 are: 57
a=b;
b = ;s
}
return b;

: i

/ w
qain0)

{ int a’b; N b L
. tf("\" Enter Two Numbers:");
n
r1nf("%d %d",&a,8b);
scaj‘n'n‘("\“ 6eD of d and Xd are: Xd",a,b, Geo(a, b)),

19+ 15 ; :
is prime if it has exactly two positiye divisors, 1 an

e v
m egar ' im
AN s usually regat ded as being neither prime nor composite
} .
nuﬂ

LR 13,17, 19, 23 are first few prime numbers, All prime numbers other than 2 are odd
35> |

method to generate pll-)lme nu}inbers, should check whether a number is prime or not. From the
i er we kn ‘ o :
pition of prime num ow that, if a number is prime it will have no exact divisors other

d itself. Otherwise it is composite. The

f;fn 1 and itself .

Astraightfofward method used for the generation of prime numbers is the Sieve of Eratosthenes.

Eratosthenes’ a f?mou.s Greek mathematician devised a ‘sieve’ to identify prime numbers. The Sieve
r pratosthenes 1s a simple and anc1e.nt algorithm for finding all prime numbers up to a specified
teger The Sieve of Eratosthenes drains out composite numbers and leaves prime numbers behind.
This generates all of the prime numbers less than or equal to n. Start by writing the numbers from
2,3,4..nina line. Then keep repeating the following process until all the elements or numbers less
han or equal to Jn have been crossed out or circled.

circle the next number which is neither circled nor crossed out, and cross out all other multiples of
that number which are in the list (some of these are probably already crossed out).

The numbers which are not crossed out when the process terminates are all of the primes between
2to M.

To list out the prime numbers less than or equal to 36.

ie, whenn=36

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36

The square root of 36 is 6 and therefore we have to repeat the process mentioned earlier until all the elements
are crossed out or circled less than or equal to 6.

Consider a first number 2, which is not yet circled or crossed out. Circle the number 2 and cross-out all the
multiples of 2 except 2 i.e., 4, 6, 8, 10 36.

. el I
i 1 /ﬁ/
24 4% LN ,’
20 || 31 A ®

o » w4 Mow, circle th
llhcrmmsad ()ulnm"(;iltlﬁd.l‘ , number 5, Now, circie |

*

¥
)

A
3

4

rthe next number which Is ne
es of 3 except 3.
ie, (6,9 12,15, it 33,36)

d to crogs them again,

Conside
cross out all the multipl

rossed out, then no nee
is neither crossed out nor circle
t5,ie., 10, 15 i1 35,

the ¢

If some of them are already ¢
d. i.e, number 5, Now, circle

Consider the next number which
cross out the multiple of 5 excep
@

11

A

29

L

e all the numbers from 2 to 6 [Sqrt (36)] are crossed out or cir

Now, we cannot consider any number sinc

So we terminate the process.
bers between 2 and 36.

The numbers that are not crossed out are the prime num
13 |17 | 19| 23 | 29| 31

IR 1 i T PR L

Integer

13.6 Computing the Prime Factors of an

||G Problem
Every integer can be expressed as a product of prime numbers. Design an algorithm to compute 2l

the prime factors of an integer n.

What are Factors and Prime Factors?

r examp

Factors of a number are the numbers that can be multiplied together to get the original number. Fo

4 and 5 are factors of 20 because 4 x 5 = 20.
Prime factors of a number are the prime numbers that, when multiplied together, give the original
For instance, the prime factors of 20 are 2, 2,and 5 because 2 x 2 x 5 = 20. A prime factor is simply 2

e
numabei

factor ot

the number that is also a prime number.
For example, consider the number 30. We can factorize 30 as 30 =5 x 6, but 6 is not a prime
further break down 6 into 2 x 3, where 2 and 3 are prime numbers. So, the prime factors of 3

number. We cal
Qare2*3%°

where all the factors are prime numbers.

¥ D '3 |

eaning of Prime Factorization?

e |
of cxpl'CSSi"g a number as the produyct of prime numbers fs called l'

) s A1) - ~alled prime factorization Prime

proce e that have only two factors: 1 and the number itself, Examp| f Ao .

Th(‘ s are tho . >Hi- Examples of prime numbers include z
i 3,17, 19 and so on

1L .
o _ion involves breaking down a numper into pri is b
3,2 faCtoﬂzg,non 1 O Prime numbers that, when multiplied together,

primf rigi“a] pumber: In other words, prime factoriza tion is the method of decomposi ng
0

a number into its
ginal number.

el s, which, when multiplied, produce the orj
faCtO J

pri™

prime factors 0f108=2,2,3,3,3 The prime factors of 288 = 2 2,2,2,2,33 |
The 2| 108 ‘
2| 54
3 W2/
3|9
3
product of prime factors=2x2x3 x3x3=108 3
roduct of prime factors represents the
Ther;forleog Product of prime factors =2 x 2 x2x2x 2 x 3 x 3
number

=288

Therefore product of prime factors represents the
number 288.

Prime factorization of 12is2 x 2 x 3 =22 x 3 =12
Prime factorization of 18 is 2 x 3 x 3 =2 x 3? =18
Prime factorization of 24 is2 x2x2x3=2*x3 =24
Prime factorization of 20is 2 x 2 x 5=22x 5 =90

Prime factorization of 36is 2 x 2 x 3 x 3 =22 x 32 =36

Note

The input number need not be a prime number. But the factors of the number must be prime number.

For example, 24 and 35 are not prime numbers. But the prime factors of 24 are 2, 2, 2, and 3. Here both 2 and

3 are prime numbers. Similarly, prime factors of 35 are 5 and 7. Both 5 and 7 are prime numbers.

ey

'm Problem Solving Techniques

ger

Step 1: Start
Step 2: Declare variables n and 1
: ber n
Step 3: Read num e SHS following steps
Step 4: While n is divisible by 2, "e€P
(a) Print 2
(b) Divide n/2 (n = n/2)
Step 5: After step 4, n must be odd. i
ing ste
i = 3 to the square root of n, repeat the following -
St tvi i (n = n/i)
(a) while i divides n, print i and divide n by i (
i : ntinue.
(b) After i fails to divide n, increment i by 2 and co
Step 6: if n is greater than 2, print n
Step 7: End
e
: ——
Let us consider n = 36.
Step 1: Since 36 % 2 =0 Print 2 Divide 36/2 So, n becomes 18 (n=18)
Since 18 % 2 =0 Print 2 Divide 18/2 So, n becomes 9 (n=9)
Since 9 % 2 =1, stop iterating and go to next step
At the end of this step n becomes odd.
n =9 at the end of step 1.
Step 2: Square root of n = Square root of 9 = 3
Iterate this step from i =3 to sqrt(9) i.e., i = 3 to 3 (It means this step will be executed only once)
Checkn % i is divisible, where i = 3
Since9%3=0 [Print3 Divide 9/3, So, n becomes 3 (n=3)
Increment i by 2, So i becomes 5
Loop will terminate as i value is 5.
n = 3 at the end of step 2.
Step 3: Check if n is greater than 2
Since 3 > 2 is true, print the value ofn |Print 3
We have printed 2, 2, 3 and 3 in above steps.
The prime factors of 36 are 2, 2, 3,3
Product of prime factors =2 x 2 x 3 x 3 =36

-y £ Ffl'ﬂﬂrinq M.'hqd‘m

¢ Program to Compute the Prime Fae

tors of an Integey, "““-——-————~___1
P cstdio-h” s

e
“ﬂc math h>
v
pif
rimeFactOrS(i”t y
yo*
(print the number of 2's that divide n
intf("\n Prime Factors of %d are "oy
pr ’
while (1 %2 == 0)
{ 0, "
printf(" %d ", 2);
n=n/2;
} Yaise
/o must be odd at this point. So we can skip one element (Note i = i 42)
for (i =3; i<=sgrt(n); i = i + 2)
{
// While i divides n, print i and divide n
while (n FEi== 0)
{
printf(" %d ", i);
n = n/i;
}
Y
// This condition is to handle the case when n is a prime number greater than 2
if (n > 2)

printf(" %d ", n);

void main()

{
int n;
printf("\n Enter a number to find the prime factors : ");
scanf("%d",&n);
primeFactors(n);
}
Output 1 :

Enter a number to find the prime factors : 108
Prime Factors of 108 are : 2 2 3 3 3

tors *

he prime fac

number to find t
e

Enter a
actors of 108 are :

prime F

d the prime factors 20

Enter a number to fin
)l) 5

are

prime Factors of 20

Qutput 4:
sls

tors -

nd the prime fac

Enter a number to fi
- S () 7

prime Factors of 315 are :

Random N umbers

13.7 Generation of Pseudo- S

||o- Problem
ate a uniform set of pseudorandom Numh
€rs,

Use the Linear Congruential Method to gener
r software algorithm that gener
ates 5 0y

A random number generator is a hardware device 0
that is taken from a Jimited or unlimited distribution and outputs it. These numbers M
. 3 . . < 1 1 1 a .
using some kind of mathematical algorithms which uniformly distributes all numbers T generat%
Preset ;
n the

sequence.
om number is a value produced b

be until it is generated.

Generating truly random numbers is very challenging. The main difficulty lies in th
o : B e f
se instructions, making it impossible for it taCt that

0 Cregte

a computer is a machine that follows preci
sorr;e?thmg genuinely unpredictable. Computers are deterministic, meaning their behavi
r . .] ’ '
predictable, and nothing they do is truly random. To create numbers that appear rand o
C) Cd d Om, COmputer
3

use math ' i : :
e} ttematlcal algorithms designed to simulate randomness. These random numb
attempt to produce results that seem unpredictable, even though they are based er generators

are based on predefineg

In simple words, a rand y a hardware device or softwg
YEabO.
o ”mm

and we don't know what it will

algorithms.

What are the applications of Random Numbers?

Random numb i
i ;;S have many applications, but one of the most important is
it num,b erselrlfseet:f?y play a key role in creating encryption keys. The quality o

in cryptography directly affects the security of the system I

Random
number gene
rators ar
values. These industries incl de also used across various industries to produce random
clu : . L
e gaming, financial institutions, secure communicatio™

I i l . . l ””mbe

Fucloring Me'hOdsm

o classified in two categories tr
ersalecla BOries true rang o, Numbers ang pseqq ’
dorandom numbers

';ndoml gandom nETS
R' ("
"true" random number
| enerate a y d Computel‘ meaSUreS a phvsi
W s outside the computer. For exappje it mj Physical phenomenon

: pl ht :
of @ is unpredictable, making this 3 Source of “Hiife ra:ldem whe? radioactive decay
ocC rs his process is inherently unpredictah Omness" from the universe,

cause r wouldn't be ab]
(}fe random value. e to guess

- Jorandom Numbers
e

dorandom numbers are generated by cop
psev

s pseudorandom Number Generator (PRNG) is a program or function that
ocess 10 produce numbers that simulate randomness. PRNGs may a
pandom Number Generators (DRNG) or Deterministic Random Bit Gene

PRNG requires only two steps:

uses a mathematical
Iso be called Digital
rators (DRBG).

1. Provide the PRNG with an arbitrary seed.

2. Ask for the next random number.

The seed value acts as the "starting point” for generating random numbers. This value
influences the sequence of numbers that the PRNG produces. If the seed

value changes, the
generated numbers change as well. Howev

er, the same seed value will always produce the
same sequence of numbers, which means the numbers aren't truly random—trye randomness
can't be recreated.

A common practice is to use the current time as a unique seed value, For example, the precise

time of May 5, 1977, at 5:03 A.M. and 7.01324 seconds UTC can be converted into an integer

and used as a seed. Since that exact moment will never occur again, a PRNG seeded with that
time should generate a unique sequence of random numbers,

Pseudorandom numbers offer an alternative to “true” random numbers. A random number

generator that doesn't rely on real-world phenomena to produce its sequence is referred to as
aPseudorandom Number Generator (PRNG).

R Tt

4" Congruential Generator to Generate Pseudorandom Numbers
S Tie

Hnear Congruential Generator is one of the oldest and best known pseudorandom number

¥nerator algorithms. Liner congruential generator is a simple example of pseudorandom number
¢
*IErator, It was developed by D. H. Lehmer in 1949.

L 4

ques i

hetween 0 and m-1 are generateg Usin
numbers X, X - 8 the

Problem Solving Techni

Sequence of pseudorandom

expl‘eSSlon. ¢ J (a g+ b) mOd m
n+l .

: ing conditions:
Each of these members have to satisfy the following

is positive),
m>0 (the modulus is po Milie
0<a<m (the multiplier s positive but less than the modulus),

0<b (the increment is non negative but IS thanthemadulus), and
<b<m

are chosen for these parameters, the algorithm cap Prodyce
e tant to note that pseudorandom

ted by following a predictab]e P

When appropriate val _
it’ or
sequence that appears random. However, it's imp

deterministic. This means that the sequence is genera

the initial conditions. . . .

Theprocessworksbygeneratingthenextrandomintegerusmgth;p;eVTl‘iUS one,alongwiththe, Oty
e . The appe

b, and m. To start the process, an initial seed x, must be provide i ip ara.nce of ranq,

achieved by using modulo arithmetic, which keeps the numbers within the desired range,

lo
generatms "y

are
atterp based .

g
Mnegs

However, if an attacker knows a small number of values in the sequence and has information -
a, b, and m, they could potentially reconstruct the entire sequenc.e. To reduce this risk, the Valug ofy,
should be very large, allowing the generation of a long series of distinct random numbers, 5 Comg
choice for m is a value close to or equal to 2%, which is near the maximum representable NON-negfiy,
integer for many computers.

A computer executes code that is based on a set of rules to be followed. For PRNGs in general, thog
rules revolve around the following:

1. Accept some initial input number x , that is a seed or key.

2. Apply thatseed in a sequence of mathematical operations to generate the result. That resyti
the random number.

3. Use that resulting random number as the seed for the next iteration.

4. Repebat the process to generate pseudorandom numbers.

Cseame |

Using Linear Congruential method, generate a sequence of Random numbers with x,=27, a=17,b= 43 "md;
m = 100 using expression x| = (ax_+b) mod m forn > 0 |

|

X,=X,,,=(ax,+b) mod m X,= (ax, +b) mod m |
=[(17 % 27) + 43] mod 100 =(17 x 2) + 43] mod 100)
=502 mod 100 |

=77 mod 100
=2
77)

-

/r (axﬁ‘ b) mod m
e 1

/’/ //’__‘7\%‘ 2 Factoring Mﬂ"mri‘.m

| X,

| (17 77) + 431 mod 100 (3%, + b) mod m

g 3 l(l / % 52 |) .

1352 mod 100) +43) mod 100

£ 927 mod 100

=52 - 4%

7 =27 |
e R |
x-;: (aXA xh: (’1)\"\ + h) l]]()(‘ m T T l\

[a7> 27) + 43] mod 100 ' ‘\
= i :[(17x2) +43] mod 100 “‘

s mo ‘

=502 =77 mod 100 \

i =77

\\

observing the above random numbers, it is understood that the sequen & dicats
aweakness of our example generator: If the random numbers are betcxlxveenci) repc(ta?)t; b mmmt&‘s
jike every mm,lber e en0iand 99 o be.a possible member of the se uen?e‘: Th ks One' W‘m“d
and m determine th(.E characteristics of the random number generator a;ld the c.hoie pafr ame;er% ‘d'db
Jetermines the particular sequence of random numbers that is genera’ted If the enceer;)t XD'(t : Sbe'tt)\
the same values of the parameters, and the same seed, it will generate a lsequefce that’osrijerr?t?cvavll to

the previous one. In that sense the numbers generated certainly are not random. They are therefore
someétimes referred to as pseudo random numbers.

for example, the sequence obtained whenx =a=b=7,m=10,is

16,970 1659 (e

As this example shows, the sequence is not always "random" for all choices of x , a, b, and m; the way
of choosing these values appropriately is the most important part of this method.

Because X 1S determined by X , so once some number in the sequence get repeated, the sequence
will get into a cycle. And because there are only m possible different values for X , so the sequence will
get into a cycle in at most m steps and the period is at most of length m.

It's very reasonable that we want the sequence to have long period so it might look random. So m is
chosen to be very big, e.g. 2°%.

Our real examples will have large and safe values, for example
a=21751,x,=3553, b=10653, and m=2147483648

To Generate Pseudorandom Numbers using Linear Congruential Generator

Step 1: Set parameters values for multiplier a, Increment b ,nodulus m and Initial seed value X,

Step 2: Generate successive members of Linear congruential sequence Using

' |' tEd.

: Repeat step 2 for n numbers.

Iing Technigues
13.22 Problem Solving = /m\
——— ,dnlzandnn\N\"“ Sl ‘“nurn
— ’“'"‘ Generate ' L ; n”u]
C Program T

lrrnr Mm P |
s X

™ ~

s
Asa NS %

i lude math
o A)
['f"“f*“‘rf(rwu-ltl‘rr.rimm‘,l e sl
gekir 3
A \
=4Po60;, 1;
shr 10, beR53, M=40 }
1ohe lone 1 nt x= 23653
rs are :)5
prifte("\n Pseudorandom Numbers are
for(i = 1; 1 <= n; iss)
x = (a*x + b) ¥ m;

printf("\t ¥11i \t",%);

3
f

void main()

{

s s to be Generated :");

printf("\n Enter Number of pseudorandom Number
scanf("%d",&n);
generatePseudoRandomNumbers(n);

}
4‘———___‘-~\\\\\\\N
Output : ‘
Enter Number of Pseudorandom Numbers to be Generated :5
Pseudorandom Numbers are : 19490 36303 25720 19053 29630
T e

How to Generate Pseudorandom Numbers usmg Predeﬁned Functlons inC:

Let us understand how we can generate the random number in the C programming language Using
predefined or inbuilt functions. As we know, the random function is used to find the random numpe
between any two defined numbers. In the C programming language, the random function has tyg
inbuilt functions: rand() and srand() function. In order to use these functions, we must include the
<stdlib.h> library in the program. These two functions are closely related to each other. Without the
srand() function, the rand() function would always generate the same number each time the program
is run. Let's understand these functions in the C language.

‘Fl. rand() Function:

In the C programming language, the rand() function is a library function that generates the random number
in the range [0, RAND_MAX]. RAND_MAX is a constant which is platform dependent and equals the maximi™
value returned by rand function. the rand() function does not contain any seed number. Therefore, when We

execute the same program again and again, it ‘
, Itreturns the same values. /

//,,_... — Factoring Methods JEERTN
int rand(void)

s not need an Jarameter % b L . ”**‘**'
1 doe Yi ers. The rand() function yjjj Fotine s i |
(up to RAND_MAX). ~Ufh a pseudo-random number in a

The functic’

Jortsin T"E"

wando Function
¢stdio.h>

ginclvde
ue <stdlib.h>
#1

VOid main()

{ // This program will create same sequence of random numbers on every program run
int n,1;
printf("\n Enter Number of Pseudorandom Numbers to be Generated - “3;
scanf("%d",&n);
printf("\n Pseudorandom Numbers are - =)
for(i = @; i<n; i++)

printf(" %d ", rand());
}
.
OQutput 1:

Enter Number of Pseudorandom Numbers to be Generéted 5

Pseudorandom Numbers are : 41 18467 6334 26500 19169

Output 2:

Enter Number of Pseudorandom Numbers to be Generated : 5

Pseudorandom Numbers are : 41 18467 6334 26500 19169
_ Output3:

Enter Number of Pseudorandom Numbers to be Generated : 5

Pseudorandom Numbers are : 41 18467 6334 26500 19169
L

—

S0 Runctton:

The srand() function is a ¢ library function that determines the initial point to generate different series of
PSeudo-random numbers, A srand() function cannot be used without using a rand() function. The srand()
Unctiop jg required to set the value of the seed only once in a program to generate the different results of

Tandop, integers before calling the rand() function. If srand() is not called, the rand() seed is set as 1 by

1 G

B .void srand(unsigned int);

Syntax =
The function needs an unsigned intas a mandatory value that will set the S“O(li

atorshould(nﬂylaeseedefloncc,heﬁnquny(I
s Sl ty

'Thepseudoqandon1nurnbergener
tedbrseeded,orlnsccde(lcvery time we

the program. It should not be repea fangy |

.(”

€her 1d

pseudo-random numbers. ”(“”n, the .
Ul

Standard practice is to use the result of a call to srand(time(0)) as the seed, Howeye by N0t
) ol (
value which vary every time and hence the pseudo-random number vary for eyer, . Me() g

ml)mgram to Generate Pseudo-Random Numbers using Srand()

#include <stdio.h>
#include <stdlib.h>
U

#include <time.h>

Wigh l() g

void main()

{
Anthn, s
printf("\n Enter Number of Pseudorandom Numbers to be Generateq - "y,
scanf("%d",&n);
srand(time(®));
printf("\n Pseudorandom Numbers are : “);
for(i = @; i<n; i++)

printf(" %d ", rand());
}
Output 1:

Enter Number of Pseudorandom Numbers to be Generated : 5

Pseudorandom Numbers are : 22622 28802 3179 18146 31579

Output 2: \

Enter Number of Pseudorandom Numbers to be Generated : S

Pseudorandom Numbers are : 22720 23574 14816 19149 13336

Output 3:
Enter Number of Pseudorandom Numbers to be Generated : 5
Pseudorandom Numbers are : 22825 7075 29414 2743 15723

13.8 Raising a Number to a Large Power
“G- Problem

Given some integer x, compute the value of X where n is a positive integer considerably greater thann

The power (or exponent) of an Integer is how many times number is a multiplied by itself. Powers
represented with a base number and an exponent.

Factoring Mnlhmicm

> pum mber is what number is being multiplied. The power or exponent is how many
a ‘¥ i 1 [: " g
The ‘ the » hase number 18 being multiplied. Power w ritten above and to the right of the base number

'

x2x2=16

q 2-4:2"2

Here 2 is the base number and 4 is the power or exponent,
The rule for multiplying two integers of same base are (x)*(x") = x***
344 — d
, gext= = X

where 53 = xexxx and X' = XEXxxex
I———)
mostproglammmglanguagm have a built-in or predefined library functions like pow() that computes

of a number, we can Wr ite a similar function without using predefined functions, and it can be very

nt, There are so many methods to find the powers of a number. Let us understand some of the methods.

Altho ough
gwers

efﬁ cié

Naive [terative Method (Simple Method)
lr S

The - implest approach to find the value of x" is to repetitively multiply x exactly n times and print the
product Consider the expression p = X where p is the accumulating product p, integer x and n is the

ver.
T(l:‘e result is derived in a linear fashion multiplying x by n times. So Product is computed as
PRodUGER(p)E = Xt A Nt la S
The approach is shown below:
p=1;
for i=1tondo

p:p*x

ekl C Program to Find the Power of a Number using Naive Iterative Method

#include <stdio.h>

// Naive iterative solution to calculate "pow(x, n)"
long power(int x, unsigned n)
{
// initialize result by 1
long pow = 1;
int i;
// multiply 'x' exactly 'n' times
for (i = @; i < n; i++)
{
pow = pow * x;
}

return pow;

B

=

m Problem Solving Techniques

————— i x g
void main() L Yutput ; ' -
{ Enter Base a)
int x,n; Enter Power p . § '
printf("\n Enter Base x ! "); pow(3,¥22¥ﬁ 19683 ‘
scanf("%d",8x); T ‘
printf("\n Enter Power n : ");
scanf("%d",&n);
printf("pow(%d, %d) = %d", X, n, power(x, n));
}
The time complexity of the above method is O(n) as it requires n "“"Upl'catlom

{ L . : AP e ne
efficient? Not really, as we require 'n’ multiplications, and B 21O N canye ver tog

S : * dr

R s o
Although this works with small exponents, for larger e'xponentIS, lctl S quite a bit of work, Sureyy thi l
must be a better way. In fact, there's a much more efficient method. Te

2. Exponentiation by Squaring

The efficient exponentiation algorithm is based on the concept of squaring. Let us understand th
» » e
basics of this concept.

+ The base case iswhenn=0,andx"=1

+ When n is positive and even. We know that when we multiply powers of x We aqq y,

. 5 e

exponents: x*x°=x*® for any base x and any exponents a and b. Therefore, if n js POsitiye ang
even, then

X" = xn/Z 3 xn/Z'
+ Ifnis positive and odd, then, x* = x™! - x

This method can compute x* with only log(n) multiplications instead of n multiplications, Which jg
a significant improvement, especially when n is large. This technique, known as "e.\'ponentiation by
squaring,” is widely used in algorithms where efficiency is crucial, such as in cryptography,

—__\

We know that computing x° takes 6 multiplications in naive method. Let us see how we can re
of multiplications in exponentiation by squaring approach.

——*—\\
duce the Number

P =x'=x P,=x*=xx*x
P,=x*=x?* x P,=x*=x**x
P =x’=x**x P,=x’=xS*x

Itis clear from the above steps that the power of x is increasing by one at each step. And the multiplication at

each step is addition of powers of x. This method will be efficient if the power is a small number. But we know
that ™ "xt= 33 &2

The number of mutilations to generate x° = x* * x%is only one here. (Adding the powers 3 + 3 = 6). Further to
reduce the number of steps, identify smallest pair of numbers that add up to 6.

The smallest pair of numbers that add up to 6 is 3 + 3.

Fqc!oring Method 1m

s b 3 & w3
| X°=X"*X

jy, it requires only 3 mnlliplu.nlim\\ rathey than ¢
e i an 6 ln”ll. {
.{)t" . ”)]l’ il i
5§ P! Jive iterative method. y
i 1¢
to1
ed

and hence It is effic lent

Computing 3"

: 13 Sttt :
¢ computing 3™ takes 13 Multiplicationg "N Naive methqqy Let y I
» ne 2 . JCL S qn > . g oy -
oW o [tiplications 1N squaring approach, € oW we can reduyc, the
We fn‘]l]
-0
e

iplication ivesus,yzg*‘:(
qurm the first multiplication g a4

: b the second multiplication we compute, 34 = 324 55 949 gi
Wi
=81%81 = 6561

esult

' he third multiplication we Compute, 38
1 the
W]lh
3.

, fourth and fifth multiplication yield the desire r
4, T g* 3" 38=3*81 *6561 = 1594323
313 =

— 34 * 34

ch, it requires only 5 multiplications 14
~0acll,
is appro

: d tiplications and hence it is efficient
In this 3to naive iterative method.
are

comp pove examples. We can derive at two ryjeg for power ey
ed

luation process.
from th e of power generation one of these rules are applicable:

stag
E\Yery

[fthe power to be generated is odd, it must be generateg from power one less than it
i (Example: ¥eh= xad + x!)

ther than 13 mu]

fthe power to be generated is even, it must be generated fro
9

M power that is half its size.
3
(Example: x° = X° * x°)

To Raise a Number to a Large Power

be the integer to be raised by a power n,
Letx

step 1: Start

step 2: Declare X, n and product

step 3: initialize value of product = 1
step 4: Read x and n

Step 5: While n > @

(@) if =n s odd, multiply the resylt by 'x!
product = product * x
(b) Divide n by 2
(c) multiply x by itself
Ki=ox ko x
St 62 Print product

Computing 8’

S . (el
lhﬂ?,xrR;nuin:Q.Theiniﬁalvahurﬂfpr”d”Ctm L (B | n=n/2
dd ®
Iteration while (n>0) i R
it n is odd, sO n=n/2
: ct= I’OdllCt X =9 2
while (95 0) is product =P n=9/
- True product = 159 n=4
product=3
n=n/2
, : =4/2
: while (4 > 0) is 1 is not odd 12
True n=2
/,__f————
. n=n/2
3 while (2>0)1S | js not odd HE2/2
True f=1
//———
nis odd, so n=n/2
‘ = product * X
4 O R £ 0 g ek n=1/2 X= 6561 * 656
S
True product =3 6561 2 i
product = 19683
5 while (0 > 0) is
False ;
The final value of productIs : 19683 =3

r using Exponentiation by Squaring

C Program to Find the Power of a numbe
Method

#include<conio.h>
#include<stdio.h>

int power(int x,int n)

{
int product = 1;

return 1;
while(n >)

{
if(n % 2 == 1)

return product;

if(n == @) // if power is zero then return 1

product = product * Xx;

Output :

Enter Base x : 3
Enter Power n : 9
pow(3, 9) = 19683

~—]

a
b

3

wn

e ® N e

10.
1L
12
13.
14,
15.
16.
17.
18.
19,
20,
2,
22,

Factoring Mu!l\mhm

in()
in(X, My
"\n Enter Base x : "),

.an{\"\d".S\\:

Su

*“\n Enter Power n :).
‘i

rriﬁt*(

P}*int* \
Sfan{\"xd“.Sn\;

“pow(Xd, Xd) = Xd", x, n

p!‘int\c\ » POWERr(x, pn))

What is Factoring or Factorization?

Write the Applications of Factoring in Computer Science,

Write an Algorithm to Find the Square Root of 3 N umber using Newton's Method.
Write a C Program to Find the Square Root of a Number using Newton's Method.
Write a C Program to Find the Square Root of a Number using Predefined C Function.
Write an Algorithm to Find the Smallest Divisor of an Integer.

Write a C Program to Find the Smallest Divisor of an Integer.

Write an Euclid's Algorithm to Find the GCD of Two Numbers a and b.

Write a C Program to Find Greatest Common Divisor of Two Integers a and b.

What is the Meaning of Prime Factorization?

Write an Algorithm to Compute the Prime Factors of an Integer.

Write a C Program to Compute the Prime Factors of an Integer.

What is Random Number? What are the Applications of Random Numbers?

What is Pseudorandom Numbers?

Explain Linear Congruential Generator Method to Generate Pseudorandom Numbers.

Write an Algorithm to Generate Pseudorandom Numbers using Linear Congruential Generator.

Write a C Program to Generate Pseudorandom Numbers using Linear Congruential Generator.

Explain rand() and srand() functions in C with an example.

Write a C Program to Generate Pseudo-Random Numbers using rand() and srand(
Writea ¢ Program to Find the Power of a Number using Naive Iterative Method.
Write an Algorithm to Find the Power of a Number using Exponentiation by Squ
Write ¢ Program to Find the Power of a Number using Exponentiation by Squaring Method.

) functions.

aring Method.

B Al Adal

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

