B —————— e

FEEEFEEFEEEEEEEEEE

What is an Algorithm ¢
Characteristics of Algorithm

The Role of Algorithms in Computing
Practical Applications of Algorithms
Algorithms as a Technology

Steps in Problem Solving

Designing Algorithms

Qualities of Good Algorithm
Analysing Algorithms

Growth of Functions

Standard Mathematical Notations and Functions

Advantages and Disadvantages of Algorithms

Review Questions

I Chapter Outline §

e s S e S i i ———— ——————

M B R T R s -
e

lﬁoblom Solving Techniques \

1.1 What is an Algorithm ?

o write a computer program. To write a compyy,,
exactly what we want ittodo. The computer th,
to accomplish the end goal.

To make a computer do anything, we have t
program, we have to tell the computer, step by step,
"executes" the program, following each step mechanically,
When we are telling the computer what to do, we also get to choose how it's going to do it, That'g
where computer algorithms come in. The algorithm is the basic technique used to get the job done,
Every problem solution starts with a plan. That plan is called an algorithm. Let's follow an example to
help get an understanding of the algorithm concept.

Let's say that one of our a friend arriving at the airport, and our friend needs to get from the airpor
to our house. Here are four different algorithms that we might give our friend for reach our home

from airport:
Algorithm 1 : Taxi Algorithm Algorithm 2 : Call Me Algorithm
1. Go to the taxi stand. 1. When plane arrives, call my cell phone.
2. Getina taxi. 2. Meet me at the entrance of the arrival gate.

3. Provide address to the driver.

Algorithm 3 : Rent a Car Algorithm Algorithm 4: Bus Algorithm

1. Take the shuttle from arrival gate to the 1. Take the shuttle from arrival gate to the bus
rental car place. terminal.

2. Rentacar 2. Catch bus number BIA 175.

3. Follow the google maps directions to reach 3. Get down at Jayangar 4* Block.

" my home. 4. Call my cell phone.

All four of these algorithms accomplish exactly the same goal, but each algorithm does it in completely
different way. Each algorithm also has a different cost and a different travel time. Taking a taxi, for
example, is probably the fastest way, but also the most expensive. Taking the bus is definitely less
expensive, but a whole lot slower. We choose the algorithm based on the circumstances.

In computer programming, there are often many different algorithms to accomplish any given task.
Each algorithm has advantages and disadvantages in different situations,

Problems that can be solved through the computer may range in size and complexity. Since the
computer does not possess any common sense and cannot make any unplanned decisions, the
problem whether it is simple or complex has to be broken into well defined set of solution steps. It
should be remembered that computer don’t solve problems rather they are used to implement the
solutions to problems. So, the well defined set of steps for solving a problem is called an 'Algorithm'.
The word algorithm comes from the name of the 9th century Persian Muslim mathematician Abu

#liyllah Muhammac og M.usa s and’ he developed systematic approach to problem
solving by breaking it down into step-by-step instructions,

Introduction to Algovi'hmsn—
s — —
in layman’s language, an algorithm can pe d

efined as a step-by-step procedure for accomplishing
a task. We use algorithms every day but we often do not explicitly think about the individual steps
of the algorithm. For example, starting a car, logging into computer or laptop, or following a recipe
for cooking a food dish, are all accomplished using an algorithm, a step-by-step series of actions.
We can also view an algorithm as a tool for solving a well-specified computation
engine is an algorithm that takes a search query as an input

relevant to the words in the query. It then outputs the results.

al problem. For

example, a search and searches its

database for items

A sequence of computational
Steps that transform
the input into the output

Input

Output 1

Algorithm

rious Definitions of Algorithms

¢ Analgorithmisa step-by-step procedure for performing some task in a finite amount of time.
é

An algorithm is a sequence of unambiguous instructions for solving a problem. It is a step by step
procedure with the input to solve the problem in a finite amount of time to obtain the required output.
¢ An Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be

performed with a finite amount of effort in a finite length of time. No matter what the input values may
be, an algorithm terminates after executing a finite number of instructions.

¢ An algorithm is a well-structured computational

procedure that takes some values as input and
produces some values as output.

¢ An algorithm is a set of well-defined instructions to solve a
and produces a desired output. vV

=]
Examples of an Algorithm

particular problem. It takes a set of input

el
An algorithm for making a telephone call. An algorithm%nd the average of three numbers.
Step 1 : Start This algorithm is used to find the average of three
Step 2 : Pick up the receiver numbers. Let a, b, ¢ are the three numbers, find the
. \ average and store the result in the variable called
Step 3 : Listen for the dial tone.

p
2
3
as ‘Average’.
Step 4 : Dial the phone number
Step 1 : Start
Step S : When someone answers talk
6
7
8

Step 2 : Read three numbers a, b, ¢

Step 3 : Average = (a + b + c) /3

Step 6 : say "gyg»

Step 7 : Hang up the receiver

Step 4 : print Average
Step 8 : sStop

Step 5 : Stop. ‘J

S

i

. lgorithm.
The following are the five important characteristics (features) ofalg

1. Finiteness:
terminate after a number of steps. If we trace

out the instructions of an algorithm, then fy,
the algorithm terminates after ,

An algorithm must alway,

all cases,
finite number of steps.

it 2. Definiteness: Each operation must e

Charac(t)trarlsucs | definite meaning that it must be perfectly

Algorithm clear. Each step of an algorithm must be

precisely defined. The actions to be carrieq

out must be rigorously and unambiguously

specified for each case.

Definiteness

Effectiveness

3. Input: An algorithm has zero or more “inputs” quantities that are given to it initially before the
algorithm begins, or dynamically as the algorithm runs. These inputs are taken from specified
set of objects. These inputs are extremely supplied to the algorithm.

4. Output: An algorithm has one or more “output” quantities that have a specified relation to the
inputs. An algorithm produces at least one or more outputs.

5. Effectiveness: Each operation should be effective i.e., the operation must be able to carryout
in finite amount of time. An algorithm is generally expected to be “effective”, in the sense that
its operations must all be sufficiently basic that they can in principle be done exactly and ina
finite length of time by some one using pencil and paper.

The Algorithm designed must be language-independent, i.e. it must be just plain instructions that can be
implemented in any language, and yet the output will be same, as expected.

Just like it is an important plan before working. It is important to define the algorithm before coding.

'1.3 The Role of Algorithms in Computing

An algorithm is a well-defined procedure that allows a computer to solve a problem. Another way to
describe an algorithm is a sequence of unambiguous instructions, In fact, it is difficult to think of a
task performed by a computer that does not use algorithms,

We can also view an algorithm as a tool for solving a well-s
statement of the problem specifies in general terms the de
algorithm describes a specific computational procedure for ac

Let us consider an example to sort the numbers in ascending
the sorting problem.

Pecified computational problem. The
sired input/output relationship. The
hieving that input/output relationship.
order. Here is how we formally define

Introduction to Algorilhrmn_
p—

/
rting Problem

'problem : Sorting

|

Input : Asequence of n keys a,a,a,...a

output : The reordering of the input sequence such that asa,s--sa_sa.

For example, given the input sequence {30, 50, 40, 20, 10}, a sorting algorithm returns as output the sequence
(10,20, 30, 40, 50}. Such an input sequence is called an instance of the sorting problem.

An instance of sorting might be an array of names, like {Rama, Anitha, Indu, Srikanth, Sita}, or a list of numbers
like {30, 50, 40, 10, 20). Determining that we are dealin

g with a general problem is our first step towards
solving it.

An algorithm is a procedure that takes an

y of the possible input instances and transforms it to the
desired output.

What is an instance of a problem?

Ingeneral,aninstance ofa problem consists of the input (satisfying whatever constraints

are imposed in the problem statement) needed to compute a solution to the problem.
Example : The input values like {30, 50, 40,20, 10} in a sorting algorithm,

How to decide which algorithm is best suited?

1. It depends on how efficient the al
For example, sorting algorithm mi
10 or 100 or 1000 numbers but m
1 million or 10 million numbers.

gorithm when higher values of input is given.
ght be efficient for smaller values of n such as
any not be efficient for large values of n such as

The possible restrictions/constraints on the input values,
The architecture of the computer and the kind of s

torage devices to be used.
4. The correctness of the algorithm '

What is correctness of an algorithm?
An algorithm is said to be correct if, for every instance, it halts with the correct output.
We say that a correct algorithm solves the

given computational problem. An incorrect
algorithm might not halt at all on some input instances, or it might halt with an incorrect
answer.

Algorithms are heart of computing, We can find several algorithms working to solve our daily life
D.I‘Oblems like internet, social media networks, GPS applications, Google Maps, e-commerce platforms
like amazon ang flipkart, youtube recommendations and so on. There are many applications of
algorithms in various domains. Lets look at few of the applications of algorithms.

1. Intemet:Thelntern

; d
et without which it is difficult to imagine a day is the result of clever an
efficientalgorithms.

. ableto
With the help of these algorithms, various sites on the lnte_er:tt?;:r:ata ot
Manage and manipulate this large volume of data. Finding good routes on wh.lC jeshi
travel and using search engine to find pages on which particular information is p

—_n Problem Solving Techniques
great milestone is the Human Genome Pro/

2. The Human Genome Project : Another
100000 genes 1"
e human DNA.

has great progress towards the goal of identification of the
determining the sequences of the 3 billion chemical base pairs that make UP th nalysis
databases, and developing tools for 4t 2

ount of information in
histicated an

comm

card numbers, pass
d digital sig

d efficient algorithms-

storing this huge am
ely de
e hig on. The cOre

Each of these steps required sop

e day-to-day electronic
dit/debit
key cryptocurrency an

erce activities ar

3. e-Commerce : Th
formation such as cre words: 0 :
public natures whic

nd number theory.

personal in
technologies used include
on numerical algorithms a
's search
r search terms. PageRa
lgorithm is hig

geRank to find

ithm Called Pa
e algor! you

ich pages are listed first when
ed and playe important rolein °

engine uses a highly effectiv
nk decides wh

4. PageRank: Google
hly sophisticat

the best matches fo

search for something. This a
and make

Google Search success.
ms to model weather patterns

Weather Forecasting: Weather forecasting algorith

e to place its wells in order

ws to flights in the least
rnmentregulations
determiné where

An oil company may wish to know wher

. .h to assign Cré
vered and thatgove
wish to
ffectively. All of these are

predictions.
6. Linear Programing:
to maximize its expecte
expensive way possible, makings
regarding crew scheduling are me

to place additional resources in order to
examples of problems that can be solved using linear progra

. Shortest Path Algorithm : Trans y hav
shortest path through 2 road or rai ing shortest path result in lower

labour or fuel costs.
t Applications of Algorithms : Speech recognition, image processing,

Hungarian algorithm, Facebook's friend suggestion
product recommendation in e-commerce

hflightis co
rvice provider may
ee

ure thateac
t. An Internet s€
serve its customers mor
mming.

portation companies ma e financial interest in finding

| network because tak

8. Other Importan
g fastestpickupto cabdriversusing

Resource allocation in operating system,
rt i in cri i
h Lewis method in cricket, machine learning algorithms solving

assignin
algorithm,
sites like amazon, duck wo

puzzles like crosswords and sudoku.

/ 1.5 Algorithms as a Technology
We must understand th
Ao gl thathasaproc:gts(c)tr;p:er programs adopt different algorithms th
infinitely fast, and the memory w Emor?r, and these components have limitati &t run on compurer -
wisely, and a good algorithm:}}: (-3 av.e _ls not free. They are bounded ik o APIOCESSOR NS
Despite the fact th at is efficient in terms of time comp] resources. They must be used
e fact that modern process mplexities
ors are incredibl and space co iti
y fas mplexities.

study algorith i
gorithms, design them so as to see if the soluti ry is che
lon terminates and g #Ppwestll haye'to

oess i
o with a correct result.

—

MEfﬁciency of an Algorithm v

Efficiency considerations for algorithms are inherently tied in with the design, implementation,and
analysis of algorithms. Every algorithm must use up some of a computer's resources to complete its
task . The resources most relevant in relation to efficiency are central processor time (CPU time) and

internal memory. Because of the high cost of computing resources it is always desirable to design
algorithms that are economical in the use of CPU time and memory.

Algorithms that solve the same problem can differ enormously in their efficiency. Generally speaking,
we would like to select the most efficient algorithm for solving a given problem.

my Analysing Efficiency is Important? G

Suppose we would like to run two different sorting algorithms on two different computers A and B,
where computer B is 1000 times slower than computer A. For comparing the performance, let us

consider of running the slower sorting algorithm Insertion Sort on faster computer A and running
the faster sorting algorithm Merge Sort on slower computer B.

!j Efficiency Comparison of Two Computers

Computer A Computer B

4 Execute 10 billion Instruction/Second 4 Execute 10 million Instruction/Second

4 Running Insertion Sort to Sort an array 4 Running Merge Sort to Sort an array

4 Running Time of the Insertion sort = n? 4 Running Time of the Merge sort = n logn

Input Size = 10 million Numbers
Time taken by Computer A ~ 6 Hours Time taken by Computer B ~ 25 minutes

Input Size = 100 million Numbers

Time taken by Computer A ~ 23 Days Time taken by computer B ~ 4 Hours

What difference do we observe? Computer B is taking much less time than computer A, if the input

size is large. This gap will increase further if we increase the input size. This would be one of the
reason for analysing the efficiency of an algorithm. i

It means that using efficient algorithms can be even more important than building faster computers:

. more efficient thinking beats more efficient hardware! And this means that algorithms are definitely
worth studying.

< 1.6 Steps in Problem Solving |

A computer cannot solve a problem on its own. One has to provide step by step solutions of the
problem to the computer. In fact, the task of problem solving is not that of the computer. It is th}(:
Programmer who has to write down the solution to the problem in terms of simple operations whic

the computer can understand and execute. The following figure shows the steps involved in problem
solving,

Introduction to Algovilhmlm——

i nProblom Solving Techniques f\‘

| | 1. Analysing the problem : Itis importap -
. to L:it"lil']y understand a problem before we
; the solution for it. If we are

begin to find
not clear as to what Is to be solved, we may

N y a program which ma
Analysing the Problem end up developing a progr: ay
—~ not solve our purpose. 'hus, we need to

read and analyse the problem statement
carefully in order to list the principal

{\,/; components of the pl‘ohlcm and decide

Analysis of Algorithm the core functionalities that our solution
d have. By analysing a problem, we

Steps in Problem Solving

N
Designing Algorithm

[shoul ;
Implementation or Coding would be able to figure out what are the
inputs that our program should accept

V and the outputs that it should produce. We
should also understand the constraints on

input values and output values.

S
Testing and Debugging

2. Designing Algorithm: It is essential to device a solution before writing a program code fora
given problem. The output of this step is an algorithm. We start with a tentative solution plan
and keep on refining the algorithm until the algorithm is able to capture all the aspects of
the desired solution. The design of an algorithm depends mainly on the problem and chosen
design technique. There can be more than one algorithm to solve the same problem, and the
choice between them will be decided by their effectiveness.

3. Analysis of Algorithm : An essential task in algorithm development is proving its correctness.
One possible method is to run a number of data sets as inputs and compare the results against
expected output. Another important task of analysing algorithms is to find out the time
complexity and space complexity of an algorithm to prove that an algorithm is efficient.

4. Implementation or Coding : After finalising the algorithm, we need to convert the algorithm
into the format which can be understood by the computer to generate the desired solution.
Different programming languages can be used for writing a program. We must convert each
step of the algorithm into one or more statements in a programming language such as C, C++
and Java etc. S

5. Testing and Debugging: The program created should be tested on various parameters. The

program should meet the requirements of the user. It must respond within the expected .time

It should generate correct output for all possible inputs. In the presence of s ntac[;_ I rs.

no output will be obtained. In case the output generated is incorrect then they ica elrlro |C{
be checked for logical errors by debugging the program. Debugging is:the : progijam s. 09

and correcting or removing the Bugs (errors) Y 4 process of identifying

1.7 Designing Algorithms

There are many ways to design algorithms for a given problem, The followi
. n
design approaches. gare some of the popular

- -

-

1 5000 (“-("

(;V\Lﬂ?

7 \/ Introduction to Algomhm
e -~ o

1. Brute_ Forc.e Algorithm : This is the most basic and simplest type of algorithm. A Brute Force
Algorithm is the straightforward approach to a problem It is just like iterating every possibility

available to s:olve that problem. This type of algorithms are moreover used to locate the Ideal
or best solution as it checks all the potential solutions.

Example: If there is a lock of 4-digit PIN. The digits to be chosen from 0-9 th-cn the brute force

will be tn’ing all possible combinations one by one like 0001, 0002, 0003, 0004, and so on until
we get the right PIN. In the worst case, it will take 10,000 tries to find the right combination.

2. Recursive Algorithms: This type of algorithm is based on recursion. In recursion, a problem

s 5?“'9‘1 _bY breaking it into sub-problems of the same type and calling own self again and
again until the problem is solved with the help of a base condition.

Example: Some common problem that is solved using recursive algorithms are Factorial of a
Number, Fibonacci Series, Tower of Hanoi, tree traversals, depth first search for Graph, etc.

3. Divide and Conquer Technique: The “divide and conquer” technique involves solving
particular problem by dividing it into one (or) more sub problems of smaller size, recursively
solving gach sub problem and then “merging” the solutions to the sub-problem to produce a
solution to the original problem. The divide and conquey paradigm involgfguree steps at each

level of'rt?cursmn. (>2 \\/\M&S 'C(UJ u[%
1. Divide: Divide the problem info a number of sub problems.

2. Conquer: Conquer the sub problems by solving them recursively. If the sub problem
sizes are small enough, then solve the sub problem in a straightforward manner.

3. Combine: Combine the solutions to the sub problems in to the solution for the original
problem.

Example : This technique is the basis of efficient algorithms for all kinds of problems, such as
sorting (Quick Sort and Merge Sort), finding maximum and minimum numbers, multiplying
large numbers etc.,

<
4. Greedy Approach: A greedy algorithm is a type of algorithm that is typically used for solving
optimization problems. So whenever one wishes to extract the maximum in minimum time or
with minimum resources, such an algorithm is employed.

This is an algorithm paradigm that makes the best choice possible on each iteration in the
hopes of choosing the best solution. It is simple to set up and has a shorter execution time.
The result is a good solution but not necessarily the best one. The greedy algorithm does not
always guarantee the optimal solution however it generally produces solutions that are very
close to the optimal solution.

Example : Some common problems that can be solved through the Greedy Algorithm are
Prim’s Algorithm, Kruskal’s Algorithm, Huffman Coding, etc.

5. Dynamic Programming: A dynamic programming algorithm works by remembering ”:"-'
results of a previous run and using them to arrive at new results. Such an algorlthmbSO:)V;Z
complex problems by breaking it into multiple simple subproblems, solving them one by
and storing them for future reference and use.

Example : The following problems can be solved using Dynam.i S
Knapsack Problem, Weighted Job Scheduling, Floyd Warshall Algorithm, U]
Algorithm, etc.

i ithm
programming algor
: & tra Shortest Path

that entails

- m Problem Solving Techniques

6. Backtracking Algorithms: Backtracking algorithm = .O':invo
incremental manner. There is often recursion/ r.cpC.lrl“‘;c s unsucce
solve the problem one part at a time. At any point.! o other W
one backtracks and comes back to start over and f_i"d an it fail
backtracking algorithm solves a subproblem and ifan O agai

last step is undone and one starts looking for the solutl

ved throu :
an be sol tin

Example : Some common problems thatc | Ra
. " . ’ /_/,__————\
Hamiltonian Cycle, M-Coloring Problem .
we are generally concerng,
following qualities an:

1.8 Qualities of Good Algorithm

There are usually many ways to solve any given problem. In com
ms. Good algorithms usually P

ossess the

finding a solution j, _

and attempts are mag,;, —

ssful at moving fory,, -

of reaching the solutiop .

s to solve the problem .~

d when In from the previous point. b

gh the Backtracking Algorithm ;.
Maze Problem, etc. ‘

with "good” solutions to proble

capabilities:

Qualities of Good Algorithm //

1. They are simple but powerful and general solutions. |
i : i i aran
2. They can be easily understood by others, that is, the xmplementatlon is cle

"tricky” .
3. They can be easily modified if necessary.
4. They are correct for clearly defined situations.
5. They are able to be understood on a number of levels.
6. They are economical in the use of computer time , computer storage and peripherals.

7. They are documented to be used by others who do not

workings.

8. They are no

t dependent on being runona particugir computer or particular pro
9. They are able to be used as a sub-procedure or functions for other problems.

—_—

d concise without being

have a detailed knowledge of their inner

gramming language.

The above qualitative aspect s ofa good algorithmare very imp
some quantitative measures to evaluate the "go

ortantbutitis also necessary to provide
odness" of an algorithm. Quantitative measures are

valuable in that they can give us a way of directly predicting the performance of an algorithm and of
comparing the relative performance of two or more algorithms that are intended to solve the same
problem. This can be important because the use of an algorithm that is more efficient means a saving

o

in computing resources which translates into a saving in time and money

1.9 Analysing Algorithms

5 mwmit is Analysis or Performance Analysis of Algorithms?

Algorithm analysis refers to the task of determining the computing time and ce
requirement of an algorithm. It is also known as performance analysis or effici and storage s.;z;

which enables us to select an efficient algorithm. The general idea is to take a'ean o algor?thrr:
ind to determine its quantitative behaviour, occasionally we also study Whetherp::tr:zl:l:; :]l:z:thm

; optional in some sense.

Introduction to Algovilhmsm—
/ -]
when we have a problem to solve, there may be man

y algorithms available. We would obviously like
to choose the best. The selection of best algorithm is possible by analysing the algorithms in proper
manner.

ﬁ\'hnt is Analysis of an Algorithm? :

yse is refers to the task of determining how much computing
a challenging area which sometimes require great mathematical

time and storage an algorithm requires. This is

skills. An important result of this study is that it allows to make quantitative judgments about the value of one
algorithm over another. Another result is that

tallows to predict whether the software will meet any efficiency
constraints that exist. Analysis of an algorithm is a process of making evaluative judgement about algorithms.
And also Performance of an algorithm means predicting the resources which are required to an algorithm to
perform its task.

Generally, the performance of an algorithm depends on the following elements.

1. Whether that algorithm is providing the exact solution for the problem?
2. Whether it is easy to understand?

Whether it is easy to implement?

How much space (memory) it requires to solve the problem?

How much time it takes to solve the problem? Etc.,

» we consider onl
algorithm and we ignore all remaining elements.

Based on this information, performance analysis of an algorithm can also be defined as follows.

"Performance analysis of an algorithm is the process of calculating space required by that
algorithm and time required by that algorithm".
We can analyse an algorithm by two ways.

1. By checking the correctness of an algorithm

2. By measuring time and space complexity of an algorithm

Time Factor: Time is measured by counting the number of key operations such as comparisons
in the sorting algorithm.

Space Factor: Space is measured by counting the maximum memory space required by the
algorithm. '

MPriori and Posteriori Analysis

To compute the analysis of algorithm, two phases are required

1. Priori Analysis 2. Posteriori Analysis

“Priori” means “before”.
In this, the algorithm is
by the algorithm desi

Hence Priorianalysis means checkingthe algorithm before its irr}plementaticl)r.
checked when it is written in the form of theoretical steps. This is done usually
gner. Algorithm complexity is determined in this phase.

A

¥ nil Problem Solving Techniques —

g ' . me. Suppose there i?—
In this we obtain a function which bounds the algorithms computing nme.f st Ome
statement and we wish to determine the total time that statement W”! spend t(:;n They are: + Blven

some initial state of input data. This requires essentially two items of informati®r:

a. The statements frequency count.
i.e, the number of times the statement will be executed.
b. The time taken for one exgc'ution/ -

The product of these two numbers is the total time. th -)

Since the time per execution depends on both i.e., the machine being used and pe F;]r ﬁrammlng

languages used together with its compiler, a priori analysis limits itself to determine t .e requency

count of each statement.

Priori analysis of computing time ignores all of the factors,

language dependent and only concentrates on determining the ord

frequency of execution of the statements.

The notation used in the priori analysis are Big-oh (0), Omega (Q),

2. Posteriori Analysis

which are machine or programming
er of the magnitude.of the

- -

Theta (0) and Small-oh(o).

“Posterior” means “after”. Hence Posterior analysis means checking the algorithm after its
implementation. In this, the algorithm is checked by implementing it in any programming language
and executing it. This analysis helps to get the actual and real analysis report about correctness, space
required, time consumed etc.) .

In this we will collect the actual statistics about the algorithm, conjunction of the time and space
while executing. Once the algorithm is written it has to be tested. Testing a program consists of two

major phases.

a. Debugging : It is the process of executing programs on Profiling
sample data sets that determine whether we get proper (

results. If faulty results occurs it has to be corrected.

] . F . 1. Read data
b. Profiling : It is the process of executing a correct program 2. Time (t)
. e
on actual data sets and measuring the time and space it 3. p !
. . . roce
takes to compute the results during execution. The actual P ss (data)
time taken by the algorithm to process the data is called » Time (t,)
profiling. 5. Write (time = t, - t,)
- . }
\
Differences between Priori Analysis and Posteriori Analysis
Priori Analysis Posteriori Analysis
1. Analysis is the process of determining 1. Profiling is the process of executin the correct
how much computing time and storage an program on data sets and measur?ng the time
algorithm will require.. and space it takes to compute the results
2. This is independent of machine promqlming 2. This is dependent on machine, programmin
language and won't involve the execution of language and the compiler useép gra g
program. ;

Introduction to Algovi!hmlm
—_—
—

3. Itwill give approximate answer. 3. It will give exact answer. _\
J—
4. Ituses the asymptotic notations to represent 4. It doesn't use asymptotic notations to

how much time the algorithm will take in represent the time complexity of an
order to complete its execution.

algorithm.

L~
| m00mplexity of Algorithms

Complexity of an algorithm is a measure of the amount
for an input of a given size (n). '

of time and/or space required by an algorithm

Algorithm complexity can be further divided into two types: time complexity and space complexity.
1. Space required to complete the task of that algorithm (Space Complexity).
2. Time required to complete the task of that algorithm (Time Complexity)

IR ER I Space Complexity

It indicates the amount of temporary storage required for running the algorithm. i.e., “the amount of
memory needed by the algorithm to run to completion”,

When we design an algorithm to solve a problem, it needs some computer memory to complete its
execution. For any algorithm, memory is required for the following purposes.

1. Memory required to store program instructions - |

2. Memory required to store constant values

3. Memory required to store variable values

4. And for few other things

2
Definition: Space Complexity

Total amount of computer memory required by an algorithm to complete its execution is called as space
complexity of that algorithm.

Generally, when a program is under execution it uses the computer memo

ry for three reasons. They
are as follows.

1.

Instruction Space: It is the amount of memory used to store compiled version of instructions.

Environmental Stack: It is the amount of memory used to store information of partially
executed functions at the time of function call.

-
Data Space: It is the amount of memory used to store all the variables and constants.>

‘ i COﬂStan N -

R, =

7

m Problem Solving Techniques !‘////_\\
Understanding Space Complexity //‘_\

: h'
n an algorithm for binary searc

Let us consider Rama and Sita have writte
Rama's algorithm: It takes 30 bytes of memory to execute.

Sita's algorithm: It takes 50 bytes of memory to execute.

Which is space efficient?
Of course it's Sita's algorithm. /,_/,—_\
> store different data type

required to _)
ry qg Language compiler requires the

we must know the memo

To calculate the space complexity, :
the C Programmin

values (according to the compiler). For example,
following.

1. 4 bytes to store Integer value,

2. 4 bytes to store Floating Point value.

3. 1 byte to store Character value,

4. 8 bytes to store Double value

In most cases, we do not count the storage required for the input / OlftPUt as part‘of the space
complexity. This is so, because the space efficiency is used to compare different algorithms ff)r the
same problem, in that case the input/output requirements are fixed. Also, we cannot move without
input or output, and we want to count only the storage that may be served. We also do not count the
storage required for the program itself, since it is independent of the size of the input. The space
needed by an algorithm consists of the following components.

a. The fixed static part that is independent of the characteristics (eg: number size) of the inputs
and outputs. This part typically includes the instruction space (i.e., space for code), space for
simple variables, space for constants and fixed size component variables. Let C, be the space
required for the code segments of a program (i.e., static part).

b. The _variable dynamic part,' that consists o.f the space needed by component variables whose
ts)lze 1? depengent ?nb:he partlc;:lar prob?em instance at runtime being solved, the space needed

y referenced varia es,‘and the recursion stack space (depends on instance characteristics).
Let S, be the space required for the dynamic part.

The overall space requirements for an algorithm is the sum of both the fixed static part storage
and variable dynamic part storage. If P be a program, then space required fo g-”
be denoted by S(P). r program P wi

S(p)=C, +5,

Finding the Sum of Array Elements

In Example 1, it requires 4 bytes of memory to store

int square(int a) variable ‘2’ and a
nother 4 bytes
{ for return value, ytes of memory is used

return a*a; That means, totally it requires 4 bytes of memory to
complete its execution. And this 4 bytes of memrc-)yry

/

If any algorithm requires j fixeq amoun
said to be Constant Space Complexity.

S(P)= CP S,
S(P) =8+0
S(P) =g

Henc

tof space for a)) input values

e, space complexity for the above given program is O(1), or constant.

Finding the Sum of Array Elements

43 WrZ
&D"' > *L\‘X\

In Example 2, the Space needed by X is the space

int ADD (int X[1, int n) needed by variables of type array of integer
{ numbers. This is at least containing n elements
int tota] - 0, i, to be summed. Here the problem instance is
for (1 =0;1¢p; 4 +4) characterized by n,
total = total + x [i); The code requires, 'n*2' bytes of memory to store
return total; array variable 'X[]', 4 bytes of memory for integer
} parameter 'n’', 8 bytes of memory

For local integer variables 'total’ and 'j' (4 bytes each) and 4 bytes of memory for return value.

S(P) =C,+S,=4*44+* =16+ 2n
S(P) =2n+16

Complexity. If the amount of Space required by an algorithm is increased with the increase of input
value, then that space complexity is said to be Linear Space Complexity.

The space complexity for the above code is O(n) or linear.

Finding the Sum of Three Numbers In Example 3, there are no instance characteristics

and the space needed by X, y, z and sum is
independent of instance characteristics. The
space for each integer variable is 4. We have 4
integer variables and space needed by x, y, z and
sum are 4 x 4 = 16 bytes.

#include<stdio.h>
void main()

int X,Y,Z,sum;

printf(“Enter the three numbers®”);

S(P) =G +S,
scanf(" %d %d %d”,8x,8y,&z); S(P) =16+0
Sum = x + y + z; S(P) =16

rintf(“The sum = %4~ sum); . iven
} P (»Sum) Hence, space complexity for the above g

program is O(1), or constant.

Ploblem s°|vi"° Techniqutl / N \
N : » rogram is recursive
— e e - le 4, The ProB ang g

' ace fOI" the formal tiri
Finding ”"‘W space include® S:d the return addressal:am“"’
i es a - Hep, !
int Fact(int n) local v:lrlilblmnce . characterized by 'y e‘h._
m ins .
: prODIe = 4 bytes
if(n < = 1) Space dué=4 tytes
V —_—
return 1; Memory for return .
-g* depth of recursion
ESE Total space=
return(n * Fact(n-1)); Total spaC€= g*n =8n
} The space complexity for the above codeis o,
Fact (5) I or linear
120

5 * Fact (4)
(_J | 24 The depth of recursion = 5

ki &) - The depth of recursion =1

6
3* Fact (2)
2 .
2 * Fact (1) ‘

MTime Complexity \ -

The amount of time needed to run the program iskrmed as time efficiency or time complexity.

The total time taken by a program is the sum of the compile time and runtime. The compile time

does not depend on the instance characteristics and it can be assumed as a constant factor so we

concentrate on the runtime of a program. Let this runtime is denoted by t_ (instance characteristic),

then
tp(n) =t , ADD(n) +t, SUB(n) +t_MUL(M) +----

Where n indicates the instance characteristicsand t, t, t_--- denote the time needed. for an addition,
subtraction, multiplication, and so on. ADD, SUB, MUL - - - represent the functions and they are
performed when the code for the program is used on an instance characteristic 'n’

Obtaining such an exact formula is itself an impossible task, since the time needed for an addition
subtraction, multiplication and so on, often depends on the numbers being added subtracted
multiplied and so on. :
The value of t (n) for any given 'n’' can be obtained only experimentally.

Definition: Time Complexity

The time complexity of an algorithm is the total amount of time requi
' equired by an algorith '
m to complete It

execution.

Introduction to Algovllhmlm_

@ Understanding Time Complexity

Let us consider there's a smal| piece of code that takes one second on a slow computer. This piece of code will
be used on alist of items for processing; something like an array waiting to be searched or sorted.

If you have designed an algorithm that is O(1), it means,
If the array contains just a single item, it will take 1 second.

If array has 10 items, it will still take 1 second to finish with all of them.
If it has 100, again 1 second only.

The algorithm we designed is great even for the large arrays.

Let's proceed to quite larger and practical time complexities. Now we have created a similar algorithm, but in
0(n) this time.

If array has one item, it wil] take 1 second.

If we have 10 items, it will take 10 seconds.

Now it we have 100 items, it will take 100 seconds.

What will happen to the longer lists?

We can also create many algorithms that are of O(n?)order.

Again, to process a single item, it will take 1 second.

to process 10 items, it will take 100 seconds to process the whole array.

And what if we have 10()? It'll take 10000 seconds.

In practical cases we may have really big arrays containing millions of items. Such algorithms may not be an
efficient. :

So, when we design an algorithm, we should consider time and space efficiencies,

Understanding Running Time

Suppose you developed a program that finds the shortest distance between two major cities You showed the
program to another friend and he/she asked you “What is the running time of your program?”, You answered
promptly and proudly “Only 3 seconds”. It sounds more practical to say the running time in seconds or minutes
but is it sufficient to say the running time in time units like seconds and minutes? Did this statement fully
answer the question? The answer is NO. Measuring running time like this raises so many other questions like

What's the speed of the processor of the machine the program is running on?
What is the size of the RAM?

What is the Programming language?

How experience and skillful the programmer is?

In order to fully answer your friend's question, you should say like “My program runs in 3 seconds on Intel

Core i5 8-cores 4.7 GHz processor with 8 GB memory and is written in Dev C++". Who would answer this w?y?
Of course, no one. Running time expressed in time units has so many dependencies like a com;‘)uter'nl::l?f
| used, programming language, a skill of the programmer and so on. Therefore, expressing running ti

' seconds or minutes makes so little sense in computer programming.

——

m Problem Solving Techniques —//ft e.N th\
bl nning time. Now the qy
Sice to measure the ru q estioms

You are now convinced that “seconds" is not a good ch d by the speed of computers, Programp,

how should we represent the running time so that it is not affect;: ulii, we represent the running time g, th“g
sho : Fo G q

languages, and skill of the programmer? In another word, how o is simple which is “input Size"

; t . g
we can abstract all those dependencies away?. The answer to e in terms of the inpyy, §i
: n : R
solve all of these dependency problems we are going to repres¢ ' jon fofn.ie.
ing tim

If the input size is n (which is always positive), then the runn
Running Time=f(n)

he questio)
t the running tim

e is some funct

13

ss the input with size n g, the

uired to proce
) ry out the given task.

The functional value of f(n) gives the number of operations re o car
running time would be the number of operations (instructlons) requir h o
if the input size increases, the running time als,

Function f(n) is monotonically non-decreasing. That means, 2+2n, %, 3n, 2" log n, etc. HaVing

i i ing time would be n
increases or remains constant. Some examples of the running time

p g time of your program, you would s,
takes 3 seconds to run”,

this knowledge of running time, if anyone asks you about the runnin 4
“the running time of my program is n? (or 2n, nlogn etc)” instead of “my progra

The running time is also called a time complexity

The input sizevis denoted by 'n’ and we use 'n' in most of the algorithms. In searching and sortin,

n indicates the number of array elements, in matrix manipulation n indicates the matrix order j
polynomials n indicates the degree and in travelling sales man problem n indicates the number ¢
cities. Therefore the input size n is very much important in analyzing the algorithm.

The analysis of an algorithm will be focussed on input size 'n'. Some algorithms require more than on
parameter to indicate the size of their inputs. For example, the number of vertices and the numbero

edges for algorithms on graphs represented by adjacency linked lists.
Finally, we can say that it is logical to investigate an algorithm's efficiency as a function of som

parameter n indicating the algorithm's input size.

Units for Measuring Running Time

e —
We cannot measure the running time by seconds, milliseconds, and so on because such a measuremen!
depends on the type of computer, compiler and the program. We would like to have a metric that doe:

not depend on these extraneous factors.
Following are the some of the methods of computing the time efficiency of algorithms

A Operation Counts A Step Counts

4 Asymptotic notations (Mathematical Analysis)

- ———

Operations Counts

Consider an algorithm ‘A" with 'n' size of the input data, The time and space are th ' ures
for the efficiency of the algorithm. In operation counts, the time is measyreq b etwo .mam meas .
of basic operations or key operations. Y counting the num
The basic operations are defined that the time for the other operations is ost
sroportional to the time for the basic operations, much less than or alm

Introduction to Algorithmlm_

Code

Description

A=a=*pb;

| (1

This code takes 1 unit of time

for (i =9; i < n; i ++)

a=as«|;

This code takes 'n’ units of time because, it

executes for n times.

for (3 = 08; i < n; 1 ++)
for (1 = 8; j ¢ n; j ++)
printf (" Hello");

S

This code takes 'n*' units of time

The operation count method concentrates on certain important basic operations like multiplications,
forloop or whileloop where it takes considerably more time than any other operations in an algorithm,

In step counts method, we attempt to find the tim
computational unit that is independent of the selec

s I X=a+b

e spent in all parts of the program. A step is any
ted characteristics.

ii. for (i

1; 1 ¢ =n; iwe)

X=3+b

iii. for (i =1; i ¢ = n; i++)
for (j = 1; J < = n; j0e)

X =a+b

Step Count = 1

Step Count = n

Step Count = p?

Mnding the Sum of all Array Elements

{

}

int sum(int a[], int n)

int i, sum = 0;
SUM_count++;
for (1 = 8; i < n; i+4)

{
for_count++;
Sum = sum + a [i];
assign_count++;

}

for_count +;
return_count ++;
return sum;

O ————

The step count for 'sum’ =1

The step count for 'for" statement =n+1

The step count for ‘assignment’ =p

The step count for 'return’ =1
Total steps =2n + 3

Here we consider the everystatement rather
than basic operations. The sum initialization
takes 1 unit of time, the for loop executes n+1
times, the assignment statement executes n
times and the return statement takes 1 unit
of time.

\Mroblom Solving Techniques
- g mo:-ders of Growth

S

—

e Name
The time complexity of an algorithm is generally some _——-f-E-T constant
function of the instance characteristics. This function is very - logam\
useful in determining how the time requirements vary as the _‘___lg_g____ linear
instance characteristics change. Let T(n) be the complexity £ linearithmie
function with input size 'n'. The values of T(n) increases ____ﬂ.}fz—gfn quad;tr:c\
when 'n’ value increases and T(n) value decreases when L. evbl
'n’ value decreases. Therefore, the complexity function is n’ ;_\
directly proportional to the instance characteristics 'n'. 2" exponeEL
Assume that algorithm P has complexity O(n) and algorithm n! facmriil___

Q has complexity O(n?). We can assert that algorithm P is
faster than algorithm Q for sufficiently large n. Since here (n
<n?) and we can say that algorithm P is faster than algorithm
Q. The most standard common computing time functions are
shown below.

The order of growth is

0(1) < 0(log n) < 0(n) < O(n log n) < O(n?) < O(n®) < 0(2") < O(nl)

To know how the various functions grow with "'n", it is advised to study the following table.

Fig: Order of growth of some functions

n logn |nlogn| n? n? 2" It is evident from the above table that the
1)) 1 1 2 function 2" grows very rapidly with n. In fact,
2 1 2 a 8 a if an algorithm needs 2" steps for execution,
N > 3 16 64 16 then when n = 32, the number of steps needed
is a i 9
8 3 24 64 512 256 pproximately 4.2 x 10°. Therefore we may
conclude that the utilj i i
16 B e 256 | 4,096 65.536 ' utility of algorithms with
exponential complexity is limited to small n.
32 5 160 1,024 | 32,768 4,294,967,296

Introduction to Algoriihm:m—

/_
@ Understanding O(1) — Constant Time 2
(1) means that it takes a constant time to run an algorithm, regardless of the size of the input._—

' gookmarks are a great example of O(1) in real word. Bookmark in a book allow a reader to find the last page
| that we read in a quick, efficient manner. Itdoesn’t matter if we are reading a book that has 30 pages or a book
that has 1000 pages. As long as we are using a bookmark, we will find that last page in a single step.

via the index, function returing a value, pushing and popping on a stack, insertion and removal from a queue
liR:gardless of the size of n, all of these operations will take a constant amount of time.

Understnnding O(n) — Linear Time

0(n) means that the runing time increases at the same pace as the input size 'n'".

Reading a book is an real world example of linear time. Let’s assume that it takes exactly 1 minute to read a
single page of a large print book. Given that, a book that has 50 pages will take 50 minutes to read. Likewise, a
book that has 500 pages will take 500 minutes of reading time. We might not read all the pages but worst-case
reading time is 500 minutes for a 500 page book.
In programming, one of the most common linear-time o
iterating from 1 to n is an example of linear time.For exa

perations is traversing an array. In this, single loop
mple, finding the sum of n elements.

Understanding O(n?) — Quadratic Time

0(n?*) means that the calculation runs in quadratic time,

which is the squared size of the input size 'n'.
In programming, many of the more basic sorting algorithms have a worst-case run time of O(n

?). For example,
Bubble Sort, Insertion Sort, Selection Sort etc.,

Generally speaking (but not always), considering two nested loops is typically a good indicator that the piece
ofcode has a run time of O(n?). Similarly three nested loops would indicate a run time of O(n3).

Understanding O(log n) — Logarithmic Time

O(log n) means that the running time grows in proportion to the logarithm of the input size 'n’, meaning that
the run time barely increases as we exponentially increase the input size 'n'.

Finding a word in a physical dictionary by halving sample size is an excellent example of how logarithmic time
works in the "real world.” For example, when looking for the word “computer,” we could open the dictionary
precisely in the begging. Once we determine that “c” is in the first half of the book, then we can dismiss all of
the pages in the second half. We then repeat the same process. By following this process, we would cut the
number of pages we must search through in 1/2 every time until we find the word.

In rogramming, binary search operation is an example which runs in logarithmic time.

Understanding O(n log n) — Linearithmic Time _/

'O(n log n), which is often confused with O(log n), means that the running time of an algoritnrn is hngef:zh;r::;.

' Which is a combination of linear and logarithmic complexity. Sorting algorithms thflt uuh'ze acz',;;lexif}’-

 ‘Onquer strategy are linearithmic, such as merge sort, quick sort, heapsort. When looking at time
O(nlogn)is between O(n?) and 0O(n).

.l;l Problem Solving Techniques
morst Case, Best Case’ and Average Case Efﬁcie,lmies or Comple$

We have already studied that the algorithm efficiency is measured by the complexity fupcy;

e

and n indicating the size of the algorithm's input. Several factors affect the running time of e T /
Some, such as the compiler and computer used, are obviously beyond the scope of any theo,g’?”
model, so, although they are important, we cannot deal with them hgre. The ot-he,- maip, [:4;.‘
are the algorithm used and the input to the algorithm. Typically, the size of the input is v, m;f'
consideration. 2
Let us find the complexity function T(n) for certain cases.
.- 1. Worst Case : It gives the maximum value of T(n) for any possible input.
_ 2. Best Case : It gives the minimum value of T(n) for any possible input.
3. Average Case : lItgives the expected value of T(n).
Complexity of average case of an algorithm is usually much more complicated to analyse.
T

Definitions: Worst Case, Best Case, Average Case Complexities

The worst-case efficiency of an algorithm is its efficiency for the worst-case input of size n, which is an inpy
1 of size n for which the algorithm runs the longest among all possible inputs of that size. Let us denote t,
worst-case efficiency of an algorithm by T, __, (n). To determine the worst-case efficiency of an algorithm, y,

worst

have to analyze the algorithm to see what kind of inputs makes the algorithm to run longest.

The best-case efficiency of an algorithm is its efficiency for the best-case inputs of size n, which is an input
size n for which the algorithm runs the fastest among all possible inputs of that size. Let us denote the best.
case efficiency of an algorithm by T,__ (n). To determine the best-case efficiency of an algorithm, we havet;
analyze the algorithm to see what kind of inputs makes the algorithm to run fastest.

It is noticed that neither the worst-case nor the best-case yields the necessary information about the
algorithm's behaviour on random input. The average-case efficiency provides that information.

Let us denote the average-case efficiency of an algorithm by Tm (n). We must make some assumptions about
possible inputs of size n to determine the average-case efficiency.

Sequential Search
The following algorithm searches for a given value in a given array by sequential search

| algorithm sequential_search (A [@.. n-1], item)
{

input : An array A [08.. n-1] and search element called item.

output : Returns the index of the first element of A that matches item or - 1 if there
~are no matching elements,

i=20; .
while (i < n and A [i] != item) do
i=1i+1

end while
ific<n

return i ; \
else

return -1 ;

f .
/Analygs. Introduction to Algori!h";‘m\
1. Best Case: The best cage occurs w

ched is found at the fi

rstlocation,.

I) e P P
Tm(n)—[1;+2;+——+l.;+——+n;—:|+n(1—p)

_P
_;[1+2+——+n]+n(1—p)

Pn(n+1)
n

> +n(1-p)

=w+n(1_p)

P = 1 makes the search successful and T,Mgives(n+1) /2. -
P = 0 makes the search unsuccessful and [- (n) gives n.

Note:

In most of the cases, the following inequality holds good.

T, (M)sT, sT, 0 L

1.10 Growth of Functions

: . R i k.-A
Performing step count or operation count calculation for large algorithms is a time consuming tas

i i i atical tools. In the previous section,
another standard way of analysing algorithms is through mathem o read e

we discussed that the running times are expressed in terms of th'e input siz uickly the running
the growth of the functions i.e we want to find out, if the input increases, how @

time goes up.

X P \m’bl.m Solving Tochniqu'i ‘/_——_\

mmymptotxc Notations ithm In terms of time and space, we Cap, =
algor ace required by the algorjyy, he, -2

“—When it comes to analysing the complexity of any)
Provide an exact number to define the time require

es 1 Ine ’
and the sp as Asymptotic Nolaun'h* :

) .o known
ations, als© Ony
/ \\

‘W€ express it using some standard mathematical not

: i tations
Meaning and Definition of Asymptotic No boundation/framing of ir: —

t
t case, average case, an(Worg, Itng
Steg,

ical
ASymptotic analysis of an algorithm refers to defining the mathzm;:::cbcs
performance. Using asymptotic analysis, we can very well ganclicie
complexities of an algorithm.
In mathematics, asymptotic analysis, is a method of deSCl‘i'bl.ng t
computing, asymptotic analysis of an algorithm refers to defining:*

time performance based on the input size. d maybe for another operatj
For example, the running time of one operation is computed as f(n?. Al s}; lirtearly with fa, on, it
computed as g(n?). This means the first operation running time it "Tcrea hen n increases. Sj 'Clrease I
n and the running time of the second operation will increase exponentially w - Similarly

he limiting behaviour of a r“"Cllon

he mathematical boundation of s, h
!

I

running time of both operations will be nearly the same if n is small in value. .

The word Asymptotic means approaching a value or curve arbitrarily 'Cloff?l)’ (i.e, as sofme sort of lfmit i
taken). In Asymptotic analysis, we ignore the constant factors and insignificant .pflns ol an €Xpression, ,
device a better way of representing complexities of algorithms, in a single coefficient, so that CoOmparig,,

between algorithms can be done easily.
Example 1: Let us take an example, if some algorithm has a time complexity of T(n) = (n? + 8n + 6), whig, is

a quadratic equation. For large values of n, the 8n + 6 part will become insignificant compared to the p? part

For n = 1000, n? will be 1000000 while 8n + 6 will be 8006.
Also, When we compare the execution times of two algorithms the constant coefficients of higher order term,

are also neglected.
An algorithm that takes a time of 200n? will be faster than some other algorithm that takes n? time, for any
rowth of the

value of n larger than 200. Since we're only interested in the asymptotic behaviour of the g

function, the constant factor can be ignored too.

Example 2:
If we have two algorithms with the following expressions representing the time required by them for execution,|

then:
Expression 1: 8n?+ 6n - 2

|

Expression 2: n®+50n-5 |
Now, as per asymptotic notations, we should just worry about how the function will grow as the value ofn|

(input) will grow, and that will entirely depend on n?for the Expression 1, and on n? for Expression 2. Hence,
we can clearly say that the algorithm for which running time is represented by the Expression 2, will grow
faster than the other one, simply by analyzing the highest power coefficient and ignoring the other constants(8

in 8n?) and insignificant parts of the expression(6n - 2 and 50n - 5).

All we need to do is, first analyze the algorithm to find out an expression to define it's time requirements and

then analyze how that expression will grow as the input(n) will grow.

Introduction to Algov"hmm—

qymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to work in
4 constant time. Other than the "input” all other factors are considered constant.

sThe next topics gives several standard methods for simplifying the asymptotic analysis of algorithms.

To analyse the algorithms, computer scientists used several asymptotic notations and important
ations among them are :

not
Types of Asymptotic Notations:
1. Big Oh Notation (0)
2. Big Omega Notation (Q)

3. Big Theta Notation (0)

Let f(n) and g(n) are non-negative functions defined on the set of natural numbers. O(g (n)) is the set
of all functions with a smaller or same order or growth as g(n). For example

ne O (n?) } These two functions are linear and have

25n+ 10 € 0 (n?) a smaller order of growth than g (n) = n?

n®¢ O (n?) These three functions are cubic and have a

50 n3 ¢ O (n?) higher value of growth than g (n) = n?
n‘+5n+6¢g 0 (n?)

The next notation, Q2 (g (n)), stands for the set of all functions with a large or same order of growth
as g (n).

n® e Q (n?) These functions have higher value
1
En(n -1)e Q(nz) of growth or same growth as n2.
50n + 25 ¢ Q (n?) These functions have smaller value
n?+50 ¢ Q (n?) of growth than g (n) = n%

/Big-oh Notation (O)

This notation is known as the upper bound of the algorithm, or a Worst Case of an algorithm. It tells
us that a certain function will never exceed a specified time for any value of input n.

Big Oh notation gives an upper bound on function f(n). The upper bound of f(n) indicates that the
function f(n) will be the worst-case that it does not consume more than this computing time.

Consider Linear Search algorithm, in which we traverse an array elements, one by one to search a
given number.

_—Mroblom Solving Techniques umber we are Sm
ntorn in
ithe ecleme B fe,

array, we finc s the number of total eje .
here n rcprcsent Mep,

In Worst case, starting from the front of the

at the end, which will lead to a time complexity of n. W 0
) exity is

We use the big-O notation to say that the time complexity B
r boundv henc

complexity will never exceed n, defining the uppet

equal to n, which is the correct rcpresentation;// T
|
i |
t Definition : Big-oh Notation (O) : |
d ' - with the constraint that. -~

] 'n
f(n) = O(g(n)) such that there exists two positive constants € and 'n,

(n), which means that the Urr.
aying that it can be less than:

If(n)I<clg(n)| Vvnz2n, o analyze.
. , : - the function
It is often useful to think of g as some given function and fas fible of g(n) for all large values of Let

The important point is that f is bounded above by some constant mu
s no more than g(n).

us assume that n is a real number.
. 3 TOW.
The notation O(g(n)) is usually called “big oh of g of n”. In this notation f(n) 8 iy
/ T~
T~

Given f(n) =5n+ 2 Prove thatf(n) =0 (n)

Here g(n) is n.
|f(n)]sclg(n)]|
[Sn+2|sc|n]|
Now we should find the value of c and n0 such that the above inequality can be satisfied.
vnz1
c=7 and n, = 1. (always find the minimum possible value of

vnzn,
vnzn,

I5n+2[|<7|n|
The above inequality can be satisfied by setting

|
|
|
|

n,and c).

f(n) =0(n)

Givenf (n) = 3n + 2 Prove that g (n) = 0(n)
Here g (n) = n and big - oh - notation constraint is
f(n) |sclgm] ¥n2n,
|3n+3]sc|n]| vn2n,
3n+2s<4n vn22
or
3n+2<5n vVn21

The above inequality can be satisfied by settingc=4,n =2 orc=35, n,=1

f(n) = 0 (n)

Introduction to Algomhmm_

]

Given f(n) = 10n* + 4n + 2 Prove that f(n) =0 (n?)
[fn) [sc|gn)| Yn2n,
|10n:+4n+2|5c|nr| Vn2n,

1 10n* + 4n + 2| s 11 | n?| ¥Yn25
10n* +4n+2 <112 ¥Yn25

The above inequality can be satisfied by settingn,=5andc=11.

i1 f(n) =0(n?)

Given f(n)=10°n? Prove that f(n)=0(n?

[10°n?* | sc|n?) Vn2n,
choose c=10%and n =1, we get
| 10® n? | s 10 p? vn>1

f(n) = O(n?) is proved.

Given, f(n) = 20n® - 5 Prove that f(n) = O(n%)
|20n*-5|<c|n?| VYn2n
20n*-S<cn*Vn2n,

choosec=20andn =1

20n*-5<20n? Vn21
5« f(n) = 0(n%) is proved.
Given f(n) = 100n + 5 Prove that f(n) = O(n?)
|]100n+ 5| <c. |n?| Vn2n,
100n + 5 < 105.n? vYn21

The above inequality can be satisfied by settingc=105and n, = 1.
f(n) = O(n?) is proved.

MBig Omega Notation (QQ)

Big Omega notation is used to define the lower bound of any algorithm or we can say the best case
of any algorithm. This always indicates the minimum time required for any algorithm for all input.

values, therefore the best case of any algorithm.

In simple words, when we represent a time complexity for any algorithm in the form of big £, we
mean that the algorithm will take atleast this much time to complete it's-execution. It can definitely

take more time than this too.

n‘l Problem Seolving Techniques

' . _ . T
This notation is used to find the lower bound behaviour of f(n) TihE

» . . w
this time the algorithm cannot perform better. i.e., the algorithm

e " by notat
(this indicates the lower bound). It is represented mmlwmatlcall)’f)l:ction o(n) is only a lower boun,
g(n), we denote by Q (g(n) (pronounced as omega - of g of n). The Iu

: Id be as large a function of ..
on f(n). For the statement f(n) = Q(g (n) to be informative, g(n) shou EH
possible for which the statement f(n) = Q (g(n)) is true.

s \l
Definition: Omega Notation (Q) \J

f(n) = Q(g(n))

. I3 \
he lower bound implies that bel,
ake at least this much ortim‘—
ion 2 For a given fu"CtiO‘

|

i . int that
if and only if there exists two positive constants ¢ and n0 with the constrain
[fin) |>c|g(n)| Vn2n,

or c) on the value of ff,
Here c is some positive constant. Thus g is a lower bound (except for a constant factor c) r
all suitably large n.

Given, f(n) =5n + 2 Prove that f(n) = Q (n)
Here g(n) is n and omega notation constraint is

|f(n)|2c|gn)| Vn2n,

ISn+2[2c|n| Vn2n,

Since 5n + 2 is always greater than 5n we can choose ¢ = § andn =1

5n+2>5n vYn21

The above inequality can be satisfied according to omega-notation by settingc =5 and n, =1

f(n) = Q (n) is proved.

Given f(n) =6 * 2"+ n? Prove that f(n) =Q (2
Hence g (n) is 2" and we have the constraint as

[f(n)|2c|g(n)|

Vn2n,
6.2" + n?>c.2" Vn2n,
6.2"+n?>1.2" vYn>1

The above inequality can be satisfied by settingc=1 and n, =1

f(n) = Q(2") is proved. -

Introduction 1o Alqovllhmm
—_— e — ' — S

given f(n) =10n%+ qp 43

Prove that f(n) = Q(n)
10n* + 4n 4+ 3> cn

choosec=landn =1, we get

/ 10n*+4n+35 1,

'r f(n) = Q(n) is proved.

L——

MThem-N otation (0)

The theta notation can be ygeq when the function f(n) can be bounded both from above and below
by the same fun.ction 8(n). For some functions, the lower bound and upper bound may be same. In
finding the maxnmum Or minimum element in an array, the computing time is O(n) and Q(n). There
exists a special notation to denote for functions having the same time complexity for lower bound and
upper bound and this Notation is called the theta - notation and which is denoted by 6.

The time compexity represented by the Big-0 notation is like the average value or range within which
the actual time of execution of the algorithm will be. For example, if for some algorithm the time
complexity is represented by the expression 3n? + 5n, and we use the Big-O notation to represent
this, then the time complexity would be O(n?), ignoring the constant coefficient and removing the
insignificant part, which is 5n,

The above inequality can be satisfied by setting ¢ = 1 and n =1
0

Here, in the example above, complexity of @(n?) means, that the avaerage time for any input n will
remain in between, k1 * nz and k2 * n?, where k1, k2 are two constants, therby tightly binding the
expression rpresenting the growth of the algorithm.

Definition: Theta Notation)

f(n) = 8(g(n))

Ifand only if there exists three positive constants C,» €, and n with the constraint that

¢, I8(n)| = |f(n) | < c,| g(n)| Vnzn,

Prove that lnz —3n = e(n?)
2

To prove the above statement, we must determine positive constants c,, ¢, and n_ such that
2 1 2 2
¢,n“<-n"-3n<c,n Vn2n,
2
Dividing by n? throughout
1 3
¢, <--—<g, Vn2n,
2 n

/ \
m Problem Solving Techniques ""/’_\
d

il hold goo

When n, = 1 and c,==t

)

When

Summarizing we get

2ot 855
1472 n 2

S he inequality >

! -3‘5C2w

—_——

1 3 il holdgood

& - ——

1 ‘
n,=7andc, = 1 the inequality €, =5 5

vn=27

S

The constraint is
c,lg(n)|=s|f(n)sc,|gn)l
c.ns<3n+2<c,.n VYnzn,
3.ns3n+2<4.n Vn22

c,=3,cz=4andno=2
f(n) = 8(n) is proved.

f(n) = 8(n?) is proved.
f(n) = 3n + 2 Prove that f(n) = 9(")_//

The above inequality can be satisfied by setting

’ c,.g(n)
f(n)

c,-g(n)

n

Me £(n) = 6(g(n))

{BUBEM Comparison of O, Q and 6 notations’

vnzn,
e £(n) = 0(g(n))
(b)
f(n)
c.g(n)

| R

f(n) =Q(g(n))

)

Fig: Graph examples of 6, 0 and Q notations

Introduction to Algori'hmsm_

ove graph, ; 7=t :
n the ab graph, the value of n, shown is the minimum possible value; any greater value would

n figure (a) theta notation bounds 3 function to within a constant factor. The value of f(n) always lies
petween ¢,. 8(n) and c,. g(n) inclusive.

The figure (b) gives an upper bound for a function to within a constant factor. The value of f(n) always
lie on or below c. g(n).

The figure () gives an lower bound for a function to within a constant factor. The value of f(n) always
lie on or above c. g(n)

mOme Useful Properties

1. Transitivity

f(n) = 8(g(n)) and g(n) = 8(h(n)) imply f(n) = 8(h(n))
f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)) '
f(n) = Q(g(n)) and g(n) = Q(h(n)) imply f(n) = Q(h(n))
2. Reflexivity
f(n) = O(f(n)) f(n) = Q(f(n)) " f(n) = 8(f(n))
3. Symmetry
f(n) = 6(g(n)) iff g(n) = 6(f(n))
4. Transpose Symmetry
f(n) = O(g(n)) iff g(n) = Q(f(n))

We can draw an analogy between the asymptotic comparison of two functions f(n) and g(n) and the
comparison of two real numbers a and b.

f(ln)=0(g(n))=~a<b f(n) =Q(g(n)~a=2b - f(n) = 6(g(n)) ~a= b

Using limits for Comparing Orders of Growth

The asymptotic notations like 0, Q and 6 are rarely used for comparing orders of growth of two
specific functions. A much more convenient method for doing so is based on computing the limit of
the ratio of two functions. There exists three cases for doing so.

£(n) 0 implies that f(n) has smaller order of growth than g(n)
lim =

c implies that f(n) has the same order of growth g(n)
oo implies that f(n) has larger order of growth than g(n)

The first two cases are for Big-oh(0), the last two cases are for omega(€2) and only second case is for

theta(8).

/”’_\‘

m Problem Scolvimg Technigues —
— — = = (], n) /’—‘———\ -

; f -

\

y = 5n ¢ 3 prove that “"'/

- _lim 5+3y =3

o
’

‘e
-

fin)

¥
- —

r=Eg(n)

\
= {im
— -

nj.
Jf growth of &) .

e same order ¢ f

Since S is a constant, we can say that f{n) is of th

Since § is //
- 0(n" =
m“v-\c“ that fin) = 20n’ — 3 Prove that fin) \

20 -3
1_20

'3 T
f(n) 20n" -3 y . K
—.=11m_._-l_-—:llm:0‘_3} -
y—d .

:
S 29 bsmrme, 2 M= DRt = —
Example 3 Given that f{n) = 2n. then prove thaﬂﬂn—q"’/

’ 1

f(n) —lim 2" ; !i_T_l—".zl'iE_l,z)':O
T g‘n' Hn] — ’
y

. n).
' Since the result is 0, which implies that f(n) has a smaller order of growth than g(n)

f(n) = O(n?) is proved.

/MBasxc Efficiency Classes _
irasymptotic efficiencie

We are concerned here about the classification of algorithms according to thei
ms fall into only a few classes. Thes

Some times the time efficiencies of a large number of algorith
classes are listed in the following table in increasing order of their orders of growth along with the

names and comments.

Comments

[Class Name
1 constant

Short of best-case efficiencies, very few reasonable examples can be given since ar

algorithm's running time typically goes to infinity when its input size grows infinitel;

[[large.

[o . .

| logn / logarithmic | Typically, a result of cutting a problem'’s size by a constant factor on each iteratior
of the algorithm. Note that a logarithmic algorithm cannot take into account all it

input(or even a fixed fraction of it) : any algorithm that does so will have at leas

linear running time.
=
’ Algorithms that scan a list of size n(e.g., sequential search) belong to this class.

[n] linear |
logn | linearithmic | Many divide-and-conquer algorithms including mergesort and quicksort in the

average case, fall into this category.

e —————

Introduction to Algori'hmlm——

ﬁ— quadratic | Typically,charac terizesefficiency ofalgorithms with two embedded loops. Elemcntarﬂ
sorting algorithms and certain operations on n-by-n matrices are standard examples. |
12— . —— |

n' cubic Typically, characterizes efficiency of algorithms with three embedded loops. Several ‘
/LA< nontrivial algorithms from linear algebra fall into this class. ;

Yo exponential | Typical for algorithms that generate all subsets of an n-element set. Often, the term l
[— | XPonential” is used in a broader sense to include this and faster orders of growth as well. |
_,,l'——-J*— factorial Typical for algorithms that generate all permutations of an n-element set.

/

1.11 Standard Mathematical Notations and Functions

To analyse an algorithm, we need to know some of the commonly used mathematical functions and
notations used. Let us see some of the important functions.

mMonotonicity

A function f(n) is monotonically increasing if m < n implies f(m) < f(n). Similarly, it is monotonically
decreasing if m < nimplies f(m) > f(n). A function f(n) is strictly increasing if m < n implies f(m) < f(n)
and strictly decreasing if m < n implies f(m) > f(n).

mmoor and Ceiling Functions

If x is a real number, then floor and ceiling of x is defined as follows:
floor(x) : Returns the largest integer that is smaller than or equal to x (i.e : rounds downs the nearest

integer).
ceil(x) : Returns the smallest integer that is greater than or equal to x (i.e : rounds up the nearest

integer).
Example: floor(2.5)=2 floor(2.9) =2 floor(-7.2)=-8 ceil(2.5)=3 ceil(2.9)=3 ceil(-7.2)=-7

MRemainder'Function (Modular Arithmetic)

Ifk is any integer and M is a positive integer, then: k (mod M) gives the integer remainder when k is
divided by M.

Example: 26(mod 7) =5 30(mod 5) =0

MInteger and Absolute Value Functions

If x is a real number, then integer function INT(x) will convert x into integer and the fractional part
s removed.

Example: INT (5.34)=5 INT (-7.5)=-7

The absolute function ABS(x) or | x | gives the absolute value of x i.e. it gives the positive value of x

even if x is negative.
Example: ABS(-99) = 99 or ABS [-99] = 99 ABS(-3.33) = 3.33 or ABS [-3.33] = 3.33

- m Problem Solving Techniques

T .

\\
Sllnlmntion Symbol
Here we ider a sequence of n-terme
the Ve introdyce the summation symbol £ (Sigma). Consideraseq nsa, 4 %y
Sums ; ’
q+a,+ *+a_ will be denoted as)
S a
)

|
1sigy

Examples are SUm of n natural numbers, square of n positive integers and many more, We e,

an expression a5 3 Sum of series or sequence. We can also call summation of summatiop,,

Consider that 3 functior
Computes the order of m

() = 22 =142+ 4= n(n +1)/2, and the order of complexity is O(n?)

mFactorial Function

n! denotes the product of the positive integers from 1 to n. n! is read as 'n factorial’, j.e,
nl=1*2+*3% * (n-2) * (n-1) *n
Example: 41=1 *2%3%4=-24

1 f(n) denotes the summation of n positive integers. Here funcy;,
agnitude of an algorithm.

SI=5*41=120

Let us consider a set of n elements. A

permutation of this set means the arrangement of the elem
of the set in some order.

Example: Suppose the set contains a, b and c. The various

permutations of these elements cap
abc, acb, bac, bca, cab, cba.

If there are n elements in the set then there will be n!
set has 3 elements then there will be 3! =

MExponents and Logarithms

Exponent means how many times a number is multiplied by itself, If m is a positive integer, then:

permutations of those elements. It means if
1*2*3 =6 permutations of the elements.

am"=a*a*a*...*a(mtimes) and am=1/am
Example: 2°=2%*2*2*2*2=32, 25=1/25=1/32

The concept of logarithms is related to exponents. If b is a positive number, then the logarithm of:
positive number x to the base b is written as log,x. It represents the exponent to which b should

: _ -
raised to getxie.y = log,x and b’ = x

Introduction to Algovi'hmsm_

/
1.12 Advantages and Disadvantages of Algorithms

Advantages of Algorithms

Itis a ste ; .
p by step representation of a solution to a given problem, which makes it easy to understand.

Itis not depe : -
pendent on any programming language, so it is easy to understand for anyone even without

programming knowledge.
Every step in an algorithm has its own logical sequence so it is easy to debug.

The problem is broken down into smaller pieces or steps hence, it is easier for programmer to convert

it into an actual program.
An algorithm acts as a blueprint of a program and helps during program development.

An algorithm uses a definite procedure.

Disadvantages of Algorithms

A Writing algorithm takes a long time.

A Difficult to show branching and looping in algorithms.
riting complex logic through algorithms can be very difficult.

A Understanding and w

